表面增强拉曼散射结构化衬底制备及其高灵敏探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼散射(Surface-Enhanced Raman Scattering,SERS)技术是现代检测中一项很重要的技术。SERS技术以其极高的灵敏度、荧光背景低、对检测样品无损等优势,广泛应用于化学工业分析、生物分析以及医学检测等诸多领域。目前,常用的SERS衬底的制备工艺较为复杂、使用不便,阻碍了这一技术的广泛应用。本论文以研制大面积、高效率、低成本、高灵敏度的SERS衬底为目的,利用激光微纳加工技术、静电纺丝技术以及物理气相沉积(PVD)等技术,制备出了多种结构可设计的多层次SERS衬底,该衬底有表面形貌可控、探测灵敏度高、可实现大面积快速制备且成本较低等诸多优点。主要创新工作总结如下:
     一、以自然表面为基底结合物理气相沉积(PVD)的方法制备可量产化的SERS试纸。本部分工作主要思路是寻求具有一定粗糙度的自然表面,制备高灵敏度且易于长期保存的SERS衬底。第一部分我们研究了多种常用纸张的表面形貌,最终确定以滤纸为SERS试纸的基底材料。由于滤纸的纤维包括微米尺度纤维、微纳纤维表面褶皱和褶皱上纳米尺度的纤维多级结构,能够形成均匀的拉曼增强“热点”,可以有效提高表面增强拉曼散射效应。用滤纸的多级纤维结构为模板,通过物理气相沉积的方法蒸镀银膜进行修饰,得到SERS检测试纸。该方法制备的SERS检测试纸在R6G溶液降低至M时,仍然可以得到较强的拉曼信号。同时,该衬底能够暴露于空气中9小时内保持SERS活性,通过采用密闭氮气环境保存使得试纸在保存一个月后活性不发生明显改变,测试指标比较稳定。第二种方法是选用干的玫瑰花瓣作为基底,通过物理气相沉积的方法蒸镀银膜,得到具有高SERS效应的衬底。玫瑰花瓣表面具有微观凹凸的表面形貌,这样的形貌使其具有很好的超疏水特性。通过蒸镀银纳米粒子进行表面修饰,使其具有更好的表面粗糙度,表现出优异的SERS性能。通过测试,当R6G浓度降至M时,该衬底仍然有较强的拉曼信号,且重复性很好,增强因子能够达到。该试纸在密闭氮气的情况下能够长期保存,测试性能变化不大。上述两种以自然表面为基底制备SERS衬底,制备工艺简单,能够大幅降低衬底制备成本,便于使用。
     二、利用激光相干技术结合物理气相沉积(PVD)的方法快速制备具有二维光栅结构的SERS活性衬底。在本部分工作中,我们用NOA-63光刻胶通过激光双光束干涉系统快速制备光栅结构,再通过物理气相沉积在其上蒸镀金属纳米颗粒,最终得到双层次结构SERS活性衬底。具体通过调整两束相干光的夹角来确定第一层次光栅结构的周期,使入射光提高表面覆盖金属的表面等离子激元(Surface Plasmon Polaritons,SPPs)模式发生共振,从而使SERS衬底表面局域场得到大幅增加,拉曼散射也因此得到增强。以R6G和p-ATP作为探针分子,测试我们制备的SERS衬底,拉曼散射增强因子可达。由于该方法基于激光相干技术,能够大面积快速制备衬底,且工艺流程简单,是一种比较理想的SERS衬底制备方法。
     三、利用静电纺丝技术结合紫外光刻和物理气相沉积(PVD)制备金属覆盖的纳米纤维光栅周期性三层次SERS衬底。首先,我们用静电纺丝的方法制备出具有一定表面粗糙度的纳米纤维薄膜。静电纺丝技术工艺较为简单,所得纤维直径均匀,整体孔隙率较高。然后在静电纺丝得到的纳米纤维薄膜上覆盖具有光栅周期的掩膜版,并在紫外灯下进行曝光,通过定影、显影等光刻工艺得到了相应的光栅结构。这样的衬底可以看做是具有纳米纤维次级结构的光栅。最后通过物理气相沉积(PVD)的方法得到金属银覆盖的纳米纤维光栅周期性多层SERS衬底。该方法制备的SERS衬底具有光栅周期、纳米纤维以及金属银纳米粒子多级结构。进一步研究表明,上述所制备的SERS衬底由于其表面粗糙度而具有超疏水特性,测试过程中可以使待测溶液在SERS衬底表面聚集,实现待测分子的高聚,提高局域表面离子激元共振,以达到增强效果,大幅度提高了检测的灵敏度。用R6G作为探测分子对我们制备的SERS衬底进行性能测试,表面增强因子达到。上述制备SERS的方法工艺流程简单,较目前的SERS制备方法成本大幅降低,且工艺参数可控,所制备的SERS衬底分辨率和灵敏度较高,且测试重复性较好。
This paper aims to develop a kind of SERS substrate which is widespread,high efficient, low cost, highly sensitive. Surface Enhanced RamanScattering (SERS) technology is an important technology in modern testingfield. SERS technique is widely applied in chemical industrial analysis,biological analysis, medical detection and many other areas for its highsensitivity, low background fluorescence and nondestructive testing ofsamples. At present, the commonly used SERS substrate preparation processis relatively complex, difficult. All these disadvantages hinder theapplication of this technology. This thesis aims to develop multi-levelSERS substrates via laser micro-nano processing, electrostatic spinningtechnology and physical vapor deposition (PVD) technology. The substrateis not only surface morphology designed, high detection sensitivity andlow cost, but also can realize rapid preparation in large area. The keyinnovation work is summarized as followed:
     (1)Rapid SERS-active substrate preparation which has two-dimensional grating structure via laser interference technology and PVDmethod. In this part, we use the NOA-63photoresist to prepare gratingstructure rapidly via laser interference system, and then evaporate themetal nanoparticles onto the grating structure via PVD technology. So weget a metal covered double-level SERS substrate. We can determine thefirst level phase of grating structure through adjusting the angle of twobeams of coherent light, which enhances surface plasmon resonance. In thisway, the Raman scattering is increased. We use R6G and p-ATP as the probemolecules to test the SERS substrate we got,and the Raman scatteringenhancement factor can reach. Based on the method of laserinterference technology, we can rapidly prepare substrate in large area,and our SERS substrate process is relatively simple, so it is a kind of ideal SERS substrate preparation.
     (2)Metal covered nano fiber grating periodic three levels SERSsubstrate preparation via electrostatic spinning technology incombination with UV light lithography and PVD. First, we use SU-8toprepare the nano fiber film with a range of surface roughness viaelectrostatic spinning technology.Electrostatic spinning technology isrelatively simple.The fibre diameter is uniform,and porosity is high.Then Electrospun SU-8nanofiber films is patterned into gratings withperiods of100,200,300and400, respectively. Finally,deposition ofa silver nanolayer on these interlaced nanofiber films would lead to theformation of various plasmonic nanostructures.So this kind of SERSsubstrate has three levels structure——grating period,nanofiber andmetal silver nanoparticles.For the further study,which showed that theSERS substrate has a super hydrophobic properties due to its surfaceroughness,thus roughness can make the solution gathered in the surfaceof the SERS substrate and finally realize high molecular density to makea high SPR. We use rhodamine6G(R6G) as a probe molecule to test theperformance of the SERS substrates and the enhancement factor can reach
     .The SERS substrate preparation method above is relatively simplerand lower cost in technological process compared with the preparationmethods currently. In addition, the process parameters can be controlled.The resultant SERS substrates show both high sensitivity and goodreproducibility.
     (3)SERS test paper based on the natural surface via physical vapordeposition technology which can be used in production.The main idea isto seek a certain natural surface which have some roughness,and preparehigh sensitive and easy to long-term preserved SERS test paper. First,we studied the morphology of a variety of paper surface,and finally determined to use filter paper as a SERS test paper based material.Themorphology of the filter paper including the micron scale fiber,micro-nano fold on the fiber and the nanoscale fibers on the fold,whichcan form uniform Raman enhancement "hot spots" and effectively improvethe surface enhanced Raman scattering effect. We can use the multilevelstructure of filter paper as the template to get the SERS test paper viaphysical vapor deposition evaporate silver nanoparticles on it. It stillcan get stronger Raman signal,when R6G solution reduced to M. At thesame time, the substrate can keep the SERS activity when it is exposedin the air9hours.We adopt the method that to seal and nitrogenenvironment to save activity,and there is not obviously change aftera month, the test index is stable. The second approach is to choose driedrose petals as the base,and use PVD to evaporate silver film on it, thenget a high SERS effect substrate.Rose petals have micro concave and convexsurface topography,and it has a good super hydrophobic properties due tosuch a surface morphology.We deposite silver nanoparticles on it to makebetter surface roughness,and the SERS substrates show excellent SERSproperties. When R6G concentration is as low as M,the SERS substratealso has strong Raman signal, and the repeatability is very good, theenhancement factor can reach.Both method mentioned above are idealSERS substrate preparation and hold great promise for the applications.
引文
[1] Raman C. V, Krishman K.S. Nature,1928,121,50
    [2] Van Duyne R.P., Academic Press, New York,1979,Vol.4,Chapter5.
    [3] Wang D.S., Chew H., Kerker M. Applied Optics,1980,19,2256-2257
    [4] Kerker M, Wang D.S., Chew H., Applied Optics,1980,19,4159-174
    [5] Fleisehlnann, Hendra, P.J., A.J.Chem.Phys.Lett.1974,26,163
    [6] Jeanfnaire, D.L., Van Duyne R., Electroanal.Chem.1977,84,1
    [7] Otto A.J. Raman Spectrosc.[J],2005,36(6/7):497-509
    [8] Schatz G., Young M., Van Duyne R., New York:Springer,2006:19-46
    [9] Moskovits M. Rev.Mod.Phys.[J],1985,57(3):783-825
    [10] Otto A, Mrozek I, Grabhom H., et al. J.Phys: Cond. Mat.,1992,4(5):1143-1212
    [11] Jensen L, Aikens C.M., Schatz G.C., Chem. Soc. Rev.,2008,37(5):1061-1073
    [12] Kerker M., Wang D.S., Chew H., Appl.Opt.,1980,19(24):4159-4174
    [13] Kreibig U., Genzel L., Sur.Sci.,1985,156(Part2):678-700
    [14] Kreibig U., Voller, M.Optical Properties of Metal Clusters[M],Berlin:Springer,1995
    [15] Faraday M. Philosophical Transactions of the Royal Society ofLondon,1857,147:145-181
    [16] Otto,A., Mrozek, l., Grabhom, H., Akemann, W.J.Phys.Chem.Condens.Matter1992,4,1143
    [17] Moskovits M., Rev.Mod.Phys.1985,57,783
    [18]丁松园,吴德印,杨志林,任斌.高等学校化学学报Vol.292008
    [19] Hoffmann R. Solids and Surfaces: A Chemist’s View of Bonding inExtended Structures[M], New York:Wiley-VCH,1989
    [20] Zhang R.Y., Pang D.W., Zhang Z.L. et al. J. Phys. Chem. B2002,106,11233-11239
    [21] Leung L.W.,Waver M., J.Am.Chem.Soe.1987,109,5113-5119
    [22] Haynes C.L, Van Duyne R.P., J.Phys.Chem.B2001,106,1898
    [23] Tian Z.Q., Ren B., Wu D.Y., J.Phys.Chem.B2002,106,9463
    [24] Wang J., Zhang P., J.Phys.Chem.1988,92,1942-1945
    [25] KneiPP K., KneiPP H., Itzkan1, et al. Chem.Rev.1999,99,2957-2975
    [26] Siiman0., Bumm L.A., Callaghan R, et al. J.Phys. Chem.1983,87,1014-1023
    [27] LeeP.C., Meisel D., Chem.Phys.Lett.1983,99,262-265
    [28] Ni F., Sheng R., Cotton T.M.Anal.Chem.1990,62,1958-1963
    [29] Tran C.D., Anal.Chem.1984,56,824-826
    [30] Sequaris J.M.L., Koglin E., Anal.Chem.1987,59,525-527
    [31] Liu F.X., XiaoY., LiY.S., J.Raman Spectrose.2001,32,73-77
    [32] Brust M., Bethell D, Kiely C.J., et al. Langmuir,1998,14,5425-5429
    [33] Graber K.C., Smith P.C., Musiek M.D., et al. J. Am. Chem. Soc.1996,118,1148-1153
    [34] Freeman R.G., Graber K.C., Allison K.J., et al. Science,1995,267,1629-163
    [35] Ren B., Liu G.K., Lian X.B., Yang Z.L., Tian Z.Q., Anal. Bioanal.Chem.2007,388,29
    [36] Saito Y., Wang J.J., Smith D.A., et al. Langmuir2002,18,2959-2961
    [37] Liao P.F., Bergman J.G., Chemla D.S., et al. Chem. Phys. Lett.1981,82,355-359
    [38] Tessier P.M., Velevo.D., Kalambur A.T., et al. J. Anl. Chem. Soc.2000,122,9554-9555
    [39] Yao J.L., Xu X., Wu D.Y., et al. Chem.Commun.2000,1627-1628
    [40] Kneipp K, Wang Y, Kneipp H, et al. Phys.Rev.Lett.,1996,76:2444.
    [41] Kneipp K, Kneipp H, Itzkan I, et al. J.Phys.Condens.Mat.,2002,14:R597
    [42] Nie Shuming, Emory Steven. Science,1997,275:1102.
    [43] Otto Andreas. Proceedings of ⅩⅤⅢthInternational Conferecne onRaman Spectroscopy(ICORS ⅩⅤⅢ2002).63.
    [44] Bjerneld E J, et al. Proceedings of ⅩⅤⅢthInternationalConference on Raman Spectroscopy(ICORS ⅩⅤⅢ2002).269.
    [45] Tanaka Takeyuki, et al. Journal of Molecular Structure,2003,661-662:437.
    [46] Otto A, Bruck bauer1A, Chen Y X.Journal of Molecular Structure,2993,661-662:501.
    [47] Fredericks Peter M, Frost Ray L, Rintoul Liewellyt. Proceedingsof ⅩⅤⅢthInternational Conferecne on Raman Spectroscopy(ICORS ⅩⅤⅢ2002),2004.
    [48] Hope G A, et al. Colloids and Surfaces A: Physicochem. Eng. Aspects,2003,232:129.
    [49] Francioso O, San chez Cortes S, et al. J.Molecular Structure,2001,565-566:481.
    [50] Tian Z.Q. Proceeding of the12th Conference on Light Scattering
    [51] Etchegoin P, Maher R C, et al. Chemical Physics Letters,2003,375:84.
    [52] Gearheart L A, Ploeh H J, et al. J.Phys.Chem.B,2001,105:12609.
    [53] Amri Chahrazade El, Baron Marie He’lene, Spectrochimica Acta PartA,2003,59.
    [54] Shen H.B., Zhou W.J., et al. Acta Phys.Chim.Sin.,2002,18(6):490.
    [55] Zhang R.Y. et al. J.Phys. Chem.B,2002,106:11233.
    [56] Zheng J.W., Li X.W., Xu H.Y. et al. Spectroscopy and ApectralAnalysis,2003,23(2):294.
    [1]冯伯儒,张锦,等.用于高分辨大视场微光刻的全息照相技术研究,微细加工技术,2001,No.1,p1-7.
    [2]冯伯儒,张锦,等.无掩模激光干涉光刻技术研究,微纳电子技术,2002,No.3,p39-42.
    [3]张锦,冯伯儒,郭永康,等.用于大面积周期性图形制造的激光干涉光刻.光电工程,2001,Vol.28,No.6,p20-23.
    [4] Jin Au Kong, Electro Mangetic Wave Theory (2003),p62-64
    [5] J. P. Spallas, A. M. Hawryluk, D. R. Kania, J. Vac. Sci. Technil. B,Vol.13, No.5,1995, p1973-1978.
    [6] Saleem H. Zaldl, S. R. J. Brueck, Interferometric Lithography forNanoscale Fabrication, SPIE Vol.3618, January,1999, p2-8.
    [7] A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry,D. R. Kania, A. M. Hawryluk, J. Vac. Sci. Technol. B, Vol.15, No.3,1997, p729-735.
    [8]韩张华.基于表面等离子体及半导体准一维纳米结构的光子器件研究浙江大学2008.09
    [9] Matthew Rycenga, Claire M.Cobley, Jie Zeng, Weiyang Li, ChristineH.Moran, Dong Qin, You Nan Xia., Chemical Reviews. August20,2010.
    [10] Anders, Handbook of Plasma Immersion Ion Implantation andDeposition. Wiley-Interscience,2000.
    [11]林国强.脉冲偏压电弧离子镀的工艺基础研究.大连理工大学.2008
    [12] L.Zhang, X.Lang, A. Hirata, M.Chen, ACS Nano,2011,5,4407.
    [13] Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, Nature1998,391,667–669.
    [14] S ndergaard, Bozhevolnyi, S. I., Novikov, S. M., Beermann, Devaux,E., Ebbesen, T. W., Nano Lett.2010,10,3123–3128.
    [15] Genet, C., Ebbesen, T. W., Nature2007,445,39–46.
    [16] Laux, E., Genet, C., Ebbesen, T. W., Opt. Express2009,17,6920–6930.
    [17] Jimin Yao, An-Phong Le, Stephen K.Gray, Jeffrey S.Moore, John A.Rogers, Ralph G. Nuzzo Adv. Mater.2010,22,1102–1110
    [18] Lucas, B. D., Kim, J.S., Chin, C., Guo, L. J., Adv. Mater.2008,20,1129–1134.
    [19] Yao, J., Le, A. P., Gray, S. K., Moore, J. S., Rogers, J. A., Nuzzo,R. G., Adv. Mater.2010,22,1102–1110.
    [20] Ye, J., Shioi, M., Lodewijks, K., Lagae, L., Kawamura, T., VanDorpe, Appl. Phys. Lett.2010,97,163106.
    [21] Kneipp, J., Kneipp, H., McLaughlin, M., Brown, D.,Kneipp, K., NanoLett.2006,6,2225–2231.
    [22] De Angelis, Das, G., Candeloro, Patrini, Galli, Bek, A., Lazzarino,M., Maksymov, Liberale, C., Andreani, Di Fabrizio, Nat. Nano2010,5,67–72.
    [23] Stefan, A.M., Plasmonics: Fundamentals and Applications.Springer,Berlin2007.
    [24] Dejule R. Lithography:0.18nm and beyond [J]. SemiconductorInternational,1998,41(2):54-60.
    [25] McClay J A. Solid State Technol,2000,42(6):57-68.
    [26] Gwyn G W. Extreme ultraviolet lithography [J]. J Vac Sci Technol,1998,16(6):3142-3149.
    [27] J. P. Spallas, A. M. Hawryluk, and D. R.. Kania,J. Vac. Sci. Technil.B, Vol.13, No.5,1995, p1973-1978.
    [28] Saleem H. Zaldl and S. R. J. Brueck, SPIE Vol.3618, January,1999,p2-8.
    [29] A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry,D. R. Kania, and A. M. Hawryluk, J. Vac. Sci. Technol. B, Vol.15,No.3,1997, p729-735.
    [30] Y. Hirai, Y. Kanemaki, K. Murata, Y. Tanaka, J. Appl. Phys.38(1999)7272.
    [31] D. Zubia, S. H. Zaidi, S. R. J. Brueck, S. D. Hersee, Appl. Phys.Lett.76(2000)858.
    [32] Bing Mu et al. Water Research,2001,35(2):419-424.
    [33] Robert M Clarka et al. Water Research,2002,36:3141-3149.
    [34] Akira Yuasa. Water Science and Technology,1998,37(10):135-137.
    [35] Wang X Y, Riffe D M, Lee Y. S. et al. Phys. Rev. B,1994,50:8016.
    [36] Fann W S, Storz R, et al. Phys. Rev. B,1992,46:13592.
    [1] Formalas A., Process and apparatus for preparing artificialthreads.US patent.1934.1,975,504.
    [2] Doshi, Reneker, D.H., Journal of electrostatics.1995.35.151-160.
    [3] Scinivasan,G,Reneker, D.H.Structure and morphology of small diameterelectrospon aramid fibers.Polymer International,1995.36,195-201.
    [4] Reneker, D.H.Chun, Nanotechnology,1996.7.216-223
    [5] Fang, X.Reneker, D.H., Maoromolecular Science.1997.36.169-173.
    [6] Chun,Reneker, D.H.,Fong,Journal of AdvancedMaterials.1999.31.36-41.
    [7] Gibson,P.,Schreuder Gibson,H.,H.Rivin,D.,physicochemical andEngineering Aspects.Colloids and surface A,2001.469,187-188.
    [8]三好孝则.静电纺丝的纳米纤维——光催化剂纳米纤维的开发.纤维和工业,2008,64(2):2-3
    [9]川部雅章.静电纺丝非织造布的特征和应用.纤维和工业,2008,64(2):6-7
    [10]后藤卓真等.纳米纤维集合体红外分光法的吸附特性评价[J].纤维和工业,2008,64(3):27
    [11] Jing Z, Xu X Y, Chen X S, et al. Journal of Controlled Release,2003,92(3):227-231.
    [12] Zeng J, Yang L X, Liang Q.Z., et al. Journal of ControlledRelease,2005,105(1-2):43-51.
    [13] Zhang C. X., Yuan X. Y., Wu L. L., et al. Epolymers,2005: Art.No.072.
    [14] Zong X.H., Bien H., Chung C.Y., et al. Biomaterials,2005,26(26):5330-5338..
    [15] Venugopal J, Ma L. L., Yong T., et al. Cell Biology International,2005,9(10):861-867.
    [16]覃小红,王善元.高科技纤维与应用,2004,(02):28-32.
    [17]王新威,胡祖明,潘婉莲等.合成纤维工业,2004,27(2):1-3.
    [18] Yarin A L, Koombhongse S, Reneker D H. App Phys.2000,87(9):4531-4547
    [19] Reneker D H, Yarin A L, Fong H, et al. J Appl Phys.2000,87(9):4531-4547
    [20] C. J. Orendorff, A. Gole, T. K. Sau, C. J. Murphy, Anal. Chem.,77,3261(2005).
    [21] B.B. Xu, Z.C. Ma, L. Wang, R. Zhang, L.G. Niu, Z. Yang, Y.L. Zhang,W.H. Zheng, B. Zhao, Y. Xu, Q.D. Chen, H. Xia, H.B. Sun, Lab Chip,11,3347(2011).
    [22] B.B. Xu, R. Zhang, X.Q. Liu, H. Wang, Y.L. Zhang, H.B. Jiang, L.Wang, Z.C. Ma, J.F. Ku, F.S. Xiao, H.B. Sun, Chem. Commun.,48,1680(2012).
    [23] Y. Jiang, H.Y. Wang, H. Wang, B.R. Gao, Y.W. Hao, Y. Jin, Q. D.Chen, H.B. Sun, J. Phys. Chem. C,115,12636(2011).
    [24] T. Bhuvana, B. Kim, X. Yang, H. Shin, E. Kim, Nanoscale,4,3679(2012).
    [25] L. Wang, W. Xiong, Y. Nishijima, Y. Yokota, K. Ueno, H. Misawa,J. Qiu, G. Bi, Appl. Opt.,50,5600(2011).
    [26] E. C. Le Ru, P. G. Etchegoin, Chem. Phys. Lett.,423,63(2006).
    [27] C. Tian, C. Ding, S. Liu, S. Yang, X. Song, B. Ding, Z. Li, J. Fang;ACS Nano,5,9442(2011).
    [28] R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A.Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D.G. Walter, M. J. Natan, Science (New York, N.Y.),267,1629(1995).
    [29] S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, R. A. Tripp;Nano Lett.,6,2630(2006).
    [30] R. Alvarez Puebla, B. Cui, J.P. Bravo Vasquez, T. Veres, H. Fenniri,J. Phys. Chem. C,111,6720(2007).
    [31] B.B. Xu, Z.C. Ma, H. Wang, X.Q. Liu, Y.L. Zhang, X.L. Zhang, R.Zhang, H.B. Jiang, H.B. Sun,Electrophoresis,32,3378(2011).
    [32] B. Kim, J. Kim, E. Kim, Macromolecules,44,8791(2011).
    [33] J. Kim, J. K. Koh, B. Kim, J. H. Kim, E. Kim, Angew. Chem. Int.Ed.,51,6864(2012).
    [1]Zhao B., Xu W.Q., Ruan W., D.Han,X.X.,Chem. J. Chinese U.2008,29(12),2591-2596.
    [2]Aroca, R. Surface-Enhanced Vibrational Spectroscopy; John Wiley&Sons Ltd.: Chichester, UK:2006.
    [3]Yongwen Tan, Jiajun Gu, Xining Zang, Wei Xu, Kaicheng Shi, LinhuaXu, Di Zhang. Angew. Chem. Int. Ed.2011,50,8307–8311
    [4]Yongwen Tan, Xining Zang, Jiajun Gu, Dingxin Liu, Shenmin Zhu,Di Zhang, Langmuir2011,27,11742–11746
    [5]Tsien, Tsuen Hsuin. Paper and Printing. Joseph Needham, Chemistryand Chemical Technology.Vol.5part1.1985
    [6]韩斌.造纸设备控制系统网络化研究.山东轻工业学院.2011
    [7]田立,万红友,谢展文.工业水处理Vol.30No.2Feb.,2010
    [8]Wu D., Fang Y.,J. Colloid Interface Sci.,2003,265(2):234-238.
    [9]Wu D.,Fang Y., Spectrochim. Acta, Part A,2004,60(8–9):1845-1852.
    [10]Luo Z., Fang Y. J. Colloid Interface Sci.,2006,301(1):184-192.
    [11]Luo Z.,Fang Y. J. Colloid Interface Sci.,2005,283(2):459-463.
    [12]Zhang R., Xu B.B., Liu X.Q. et al. Chem. Commun.,2012,48(47):5913-5915.
    [13]Hübler A., Trnovec B., Zillger T. et al. Adv. Energy Mater.,2011,1(6):1018-1022.
    [14]Russo A., Ahn B. Y., Adams J. J. et al. Adv. Mater.,2011,23(30):3426-3430.
    [15]Tobj rk D., sterbacka, R.Adv.Mater.,2011,23(17):1935-1961.
    [16]Wang L., Xu B.B., Chen Q.D. et al. Opt. Lett.,2011,36(17):3305-3307.
    [17]Wu D., Chen Q.D., Yao J. et al. Appl. Phys. Lett.,2010,96(5):053704.
    [18]Zhang Y.L., Chen Q.D., Jin Z. et al. Nanoscale,2012,4(16):4858-4869.
    [19]Bi Y.G., Feng J., Li Y.F. et al. Appl. Phys. Lett.,2012,100(5):053304.
    [20]Zhang D.D., Feng J., Wang H. et al. Appl. Phys. Lett.,2009,95(26):263303.
    [21]Wang H., Wang H.Y., Gao B.R. et al. Appl. Phys. Lett.,2011,98(25):251501-251503.
    [22]Su Y.H., Ke Y.F., Cai S.L. et al.. Light Sci Appl [J],2012,1:e14.
    [23]Jiang Y., Wang H.-Y., Wang H. et al.. The Journal of PhysicalChemistry C [J],2011,115(25):12636-12642.
    [24]Cade N. I., Ritman-Meer T., Richards D. Physical Review B [J],2009,79(24):241404.
    [25]Wang W.K., Zheng M.L., Chen W.Q. et al. Langmuir [J],2011,27(7):3249-3253.
    [26]Rycenga M., Cobley C. M., Zeng J. et al. Chem. Rev.[J],2011,111(6):3669-3712.
    [27]L.Zhang, X.Lang, A. Hirata and M.Chen, ACS Nano,2011,5,4407.
    [28]Saito Y., Wang J. J., Smith D. A. et al. Langmuir [J],2002,18(8):2959-2961.
    [29]Tan Y., Zang X., Gu J. et al. Langmuir [J],2011,27(19):11742-11746.
    [30]D. Liu, Z. Wang, X. Jiang, Nanoscale2011,3,1421.
    [31]K. Liu, X. Yao, L. Jiang, Chem. Soc. Rev.2010,39,3240.
    [32]L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu,L. Jiang, D. Zhu, Adv. Mater.2002,14,1857.
    [33]D. Wu, J.N. Wang, S.Z. Wu, Q.D. Chen, S. Zhao, H. Zhang, H.B.Sun, Adv. Funct. Mater.2011,21,2927.
    [34] K. Chung, S. Yu, C.J. Heo, J. W. Shim, S.M. Yang, M. G. Han,H.S. Lee, S. Y. Lee, N. Park, J. H. Shin, Adv. Mater.2012,24,2375.
    [35] P. Vukusic, J. R. Sambles, Nature2003,424,852.
    [36] X. J. Feng, L. Jiang, Adv. Mater.2006,18,3063.
    [37] X. Gao, B. B. Snider, ChemInform2004,35
    [38] B. Bhushan, E. K. Her, Langmuir2010,26,8207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700