线性切换系统的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一类重要的混杂系统,线性切换系统由多个线性子系统和一条切换规则组成,该规则也称切换信号或切换律,它决定了子系统间如何切换。线性切换系统具有重要的理论意义和广泛的工程背景,因而受到了人们的重视。近年来,线性切换系统研究领域产生了很多重要的成果。然而,由于切换系统本身的复杂性,这一理论尚未完善,仍有很多问题亟待解决。
     本文在总结前人工作的基础上,主要研究了线性切换系统的静态输出反馈、鲁棒H2控制和滤波、有限频滤波器设计以及故障检测等几类问题。目前,关于受限切换下线性切换系统的静态输出反馈的研究还比较少,针对这一情况,本文结合Finsler引理和平均驻留时间技术,给出了这类切换系统的静态输出反馈控制器设计方法,新方法通过引入两组松弛变量减少了设计的保守性。对于任意切换下线性切换系统的静态输出反馈,已有的方法只适用于几类具有特殊结构的线性切换系统,本文借助于Finsler引理和切换Lyapunov函数,给出了新的静态输出反馈设计条件,该条件可用于已有方法失效时,是已有方法的补充。参数依赖Lyapunov函数已用于解决离散不确定线性切换系统的鲁棒控制问题,而对连续不确定切换系统则不然,其原因是很难利用已有方法实现系统矩阵和Lyapunov变量的解耦,本文通过使用Schur补克服了这一困难,从而给出了连续不确定线性切换系统的鲁棒H2控制器和滤波器的设计方法。已有的线性切换系统滤波器设计都是在全频范围内进行的,当外部扰动的频率范围已知时,全频方法可能引入保守性。针对这种情况,本文首次提出了有限频l2增益概念处理线性切换系统的有限频问题,给出了离散不确定线性切换系统的有限频滤波器设计方法,该方法在已知扰动频率范围时,可以取得比全频方法更好的性能。目前,关于切换系统故障检测的研究还比较少,本文在最后部分给出了两类线性切换系统的故障检测方法。针对任意切换和受限切换两种情况,分别给出了故障检测滤波器设计方法以及阈值设计条件。
     具体工作如下:
     第1章系统地分析和总结了切换系统研究领域的发展状况和研究方法,并给出了与本文有关的一些预备知识。
     第2章研究了离散线性切换系统的静态输出反馈控制问题。分为两个部分,第一部分研究了受限切换下离散线性切换系统的静态输出反馈问题。利用多Lyapunov函数和平均驻留时间技术,首先给出了保证闭环切换系统指数稳定且具有指定加权l2增益的充分条件。根据此条件,结合Finsler引理,给出了新的静态输出反馈控制器设计条件。对于给定的系统衰减度,最小平均驻留时间以及相应的控制器增益可以通过所给的条件求得。该方法通过引入两组松弛变量减少了设计保守性。本章第二部分研究了任意切换下离散线性切换系统的静态输出反馈问题。基于切换Lyapunov函数和Finsler引理,给出了新的静态输出反馈控制器综合条件,该条件在已有方法失效时仍可用。最后,仿真算例说明了所提出方法的有效性。
     第3章研究了具有多胞不确定性的连续线性切换系统的鲁棒H2控制及滤波问题。本章分为两部分,第一部分研究了鲁棒H2状态反馈控制器设计问题。利用参数依赖的多Lyapunov函数和平均驻留时间技术,首先得到了切换系统指数稳定且满足H2性能要求的充分条件。之后,通过运用Schur补技术,实现了系统矩阵与Lyapunov变量的解耦,从而得到了鲁棒H2控制器设计的线性矩阵不等式条件。为了方便比较,同时给出了基于参数无关Lyapunov函数的控制器设计方法。第二部分研究了鲁棒H2滤波器设计问题。所用的技术手段与第一部分类似,得到了鲁棒H2滤波器设计的线性矩阵不等式条件。仿真算例进一步验证了所提出方法的有效性。
     第4章研究了离散不确定线性切换系统的有限频滤波器设计问题。为了处理线性切换系统的有限频问题,首次提出了有限频l2增益的概念,并给出了离散线性切换系统具有有限频l2增益的充分条件,基于此条件,分别给出了低频、中频以及高频滤波器的设计条件。当外部扰动的频率范围已知时,所设计的有限频滤波器可以取得比全频更好的性能。最后,给出仿真算例验证所提出方法的有效性。
     第5章研究了线性切换系统的故障检测问题。分为两个部分,第一部分研究了任意切换下离散线性切换系统的故障检测问题。基于切换Lyapunov函数和Finsler引理,首先得到了滤波误差系统稳定且具有指定H∞性能指标的线性矩阵不等式条件,然后根据此条件设计出了故障检测滤波器,最后给出了阈值的设计条件。本章第二部分研究了受限切换下连续线性切换系统的故障检测问题。结合多Lyapunov函数和平均驻留时间技术,首先得到了滤波误差系统指数稳定且具有指定H∞性能指标的充分条件。之后,给出了故障估计滤波器的设计方法,故障可根据滤波器的输出估计出来。仿真算例验证了本章所提出方法的有效性。
     第6章总结了本文的主要工作,并展望了下一步的研究工作。
As an important class of hybrid systems, switched linear systems consist of several linear subsystems and a rule named switching signal or switching law that orchestrates the switching among them. Switched linear systems have attracted increasingly more at-tention since they are of theoretical importance and have wide engineering applications. Despite the rapid progress made so far, many fundamental problems are still either unex-plored or less well understood due to the complicated behavior of switched systems.
     Based on previous works of others, this dissertation studies several problems of switched linear systems including static output feedback (SOF), robust H2 control and filtering, finite frequency filter design and fault detection. At present, there are few results on SOF control for switched linear systems under constrained switching. In response to this situation, this dissertation proposes a SOF control method for this class of switched systems based on Finsler's lemma combined with average dwell time technique. The pro-posed method reduces design conservatism by introducing two sets of slack variables. For switched linear systems under arbitrary switching, the existing SOF methods are only ap-plicable to several classes of switched linear systems with special structures. By the aid of Finsler's lemma and switched Lyapunov functions, this dissertation presents new SOF de-sign conditions which can work successfully in situations where the existing ones do not. The proposed method and the existing methods can be seen as alternative ones. Parameter-dependent Lyapunov functions have been employed to solve robust control problems of discrete-time uncertain switched linear systems. However, for continuous-time uncertain switched systems, this is not the case since it is hard to decouple system matrices with Lyapunov variables using the existing methods. In this dissertation, we overcome this difficulty by using Schur complement formula. Then a robust H2 state-feedback con-trol method and a robust H2 filtering method are proposed for continuous-time uncertain switched linear systems. The existing filters for switched linear systems are designed in full frequency domain. The full frequency approaches can increase conservatism when the frequency ranges of external disturbances are known beforehand. For this case, the con-cept of finite frequency l2 gain is first defined which is used to deal with finite frequency problems of switched linear systems. Based on it, a finite frequency filtering method is proposed for discrete-time uncertain switched linear systems. When the frequency ranges of disturbances are known, the finite frequency filters can achieve better performances than the full frequency ones. To my knowledge, fault detection for switched systems has not been fully investigated up to now. The last part of this dissertation studies the problem of fault detection for two classes of switched linear systems. The design conditions for fault detection filters and thresholds are presented for arbitrary and constrained switching, respectively.
     The details of the dissertation are as follows:
     Chapter 1 summarizes and analyzes the development and main research methods of switched systems. Preliminaries about the considered problems are also given.
     Chapter 2 investigates the SOF control problem of discrete-time switched linear systems. The first part studies the SOF problem of discrete-time switched linear sys-tems under constrained switching. Based on multiple Lyapunov functions combined with the average dwell time technique, sufficient conditions which guarantee switched linear systems exponentially stable with a weighted l2 gain are given. Then, combined with Finsler's lemma, new SOF control design conditions are derived. The minimal average dwell time and the corresponding controller gains can be obtained from these conditions for a given system decay degree. The proposed method reduces design conservatism by introducing two sets of slack variables. The second part studies the SOF problem of discrete-time switched linear systems under arbitrary switching. By the aid of switched Lyapunov functions and Finslers lemma, new sufficient conditions for SOF controller synthesis are derived. The proposed approach can work successfully in situations where the existing ones fail. The simulation examples have shown the effectiveness of the pro-posed methods.
     Chapter 3 focuses on the problems of robust H2 control and filtering for continuous-time switched linear systems with polytopic uncertainties. The first part studies the robust H2 state-feedback control problem. By using multiple parameter-dependent Lyapunov functions and the average dwell time technique, sufficient conditions are obtained such that switched systems are exponentially stable and satisfy a prescribed H2 performance index. Then, we decouple the system matrices and Lyapunov variables by Schur com-plement formula. LMI-based conditions for robust H2 controller synthesis are derived. Additionally, another controller design method based on multiple parameter-independent Lyapunov functions is also given for comparison. The second part studies the robust H2 filtering problem. By using similar techniques, LMI-based conditions for robust H2 fil- ter design are obtained. The simulation examples have shown the effectiveness of the proposed methods.
     Chapter 4 studies the problem of finite frequency filter design for discrete-time un-certain switched linear systems. The concept of finite frequency l2 gain is first defined to deal with finite frequency problems of switched linear systems. Sufficient conditions are given such that discrete-time switched linear systems have a prescribed finite frequency l2 gain. Based on these conditions, low-frequency, middle-frequency and high-frequency filter design conditions are derived, respectively. When the frequency ranges of external disturbances are known beforehand, the proposed finite frequency filters can receive bet-ter results than the existing full frequency ones. The simulation examples have shown the effectiveness of the proposed methods.
     Chapter 5 investigates the fault detection problem of switched linear systems. The first part of this chapter studies the problem of fault detection of discrete-time switched linear systems under arbitrary switching. By the aid of switched Lyapunov functions and Finsler's lemma, LMI-based conditions are first derived such that the filtering error system is stable with a prescribed H∞performance index. Then a fault detection filter is designed based on these conditions, and a threshold design condition is given. The second part studies the problem of continuous-time switched linear systems under constrained switching. Combined multiple Lyapunov functions with average dwell time technique, sufficient conditions are obtained which guarantee the filtering error system exponentially stable and satisfying the H∞performances. Then a fault detection filter design method is proposed. The fault signal can be estimated from the output of the filter. The simulation examples have shown the effectiveness of the proposed methods.
     Finally, the results of the dissertation are summarized and further research topics are pointed out in Chapter 6.
引文
1. Liberzon D, Morse A S. Basic problems in stability and design of switched systems [J], IEEE Contrl Systems Magazine,1999,19(5):59-70.
    2. Decarlo R A, Branick M S, Pettersson S, Lennartson B. Perspectives and results on the stability and stabilizability of hybrid systems [J], Proceedings of the IEEE, 2000,88(7):1069-1082.
    3. Hespanha J P, Unbehauen H. Stabilization through hybrid control [M], in Proc. En-cyclopedia Life Support Syst. (EOLSS), Volume Control Syst., Robot., Automat., Oxford, U.K.,2004.
    4. 程代展,郭宇骞.切换系统进展[J],控制理论与应用,2005,22(6):954-960.
    5. Sun Z, Ge S S. Analysis and synthesis of switched linear control systems [J], Au-tomatica,2005,41 (2):181-195.
    6. Shorten R, Wirth F, Mason O et al. Stability criteria for switched and hybrid sys-tems [J], SIAM Review,2007,49(4):545-592.
    7. Lin H, Antsaklis P J. Stability and stabilizability of switched linear systems:a short survey of recent results [J], IEEE Transactions on Automatic Control,2009,54(2): 308-322.
    8. Liberzon D. Switching in Systems and Control [M], Boston:Birkhauser,2003.
    9. Sun Z, Ge S S. Switched Linear Systems:Control and Design[M], Springer-Verlag, 2005.
    10. Brockett R W, Wood J R. Electrical networks containing controlled switches [A]. In:Applications of Lie groups theory to nonlinear networks problems, supplement to IEEE international symposium on circuit theory [C], San Francisco, CA,1974, 1-11.
    11. Sworder D D. Control of systems subject to sudden changes in character [J], Pro-ceedings of IEEE,1976,64(8):1219-1225.
    12. Feuer A, Goodwin G C, Salgado M. Potential benefits of hybrid control for linear time invariant plants [A], Proceedings of the American control conference [C], Albuquerque, New Mexico,1997,2790-2794.
    13. McClamroch N H, Kolmanovsky I. Performance benefits of hybrid control design for linear and nonlinear systems [J], Proceedings of IEEE,2000,88(7):1083-1096.
    14. Ishii H, Francis B A. Stabilizing a linear system by switching control with dwell time [J], IEEE Transactions on Automatic Control,2002,47(12):1962-1973.
    15. Morse A S. Supervisory control of families of linear set-point controllers—part 1: exact matching [J], IEEE Transactions on Automatic Control,1996,41(10):1413-1431.
    16. Morse A S. Supervisory control of families of linear set-point controllers— part 2: robustness [J], IEEE Transactions on Automatic Control,1997,42(11):1500-1515.
    17. Kolmanovsk I, McClamroch N H. Developments in nonholonomic control prob-lems [J], IEEE Control Systems Magazine,1995,15(6):20-36.
    18. Hespanha J P, Morse A S. Stabilization of nonholonomic integrators via logic-based switching [J], Automatica,1999,35(3):385-393.
    19. Ge S S, Wang Z P, Lee T H. Adaptive stabilization of uncertain nonholonomic systems by state and output feedback [J], Automatica,2003,39(8):1451-1460.
    20. Blanchini F. Set invariance in control [J], Automatica,1999,35(11):1747-1767.
    21. De Dona J A, Goodwin G C, Moheimani S O R. Combining switching, oversatu-ration and scaling to optimise control performance in the resence of model uncer-tainty and input saturation [J], Automatica,2002,38(7):1153-1162.
    22. Sun Z. A modified stabilizing law for switched linear systems [J], International Journal of Control,2004,77(4):389-398.
    23. Fu M, Barmish B R. Adaptive stabilization of linear systems via switching control [J], IEEE Transactions on Automatic Control,1986,31(12):1097-1103.
    24. Narendra K S, Balakrishnan. Adaptive control using multiple models [J], IEEE Transactions on Automatic Control,1997,42(2):171-187.
    25. Hespanha J P, Liberzon D, Morse A S. Overcoming the limitations of adaptive control by means of logic-based switching [J], System & Control Letters,2003, 49(1):49-65.
    26. Tanaka K, Sano M. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-tailer [J], IEEE Transactions on Fuzzy systems,1994,2(2):119-134.
    27. Ravindranathan M, Leitch R. Model switching in intelligent control systems [J], Artificial Intelligence in Engineering,1999,13(2):175-187.
    28. Standford D P. Stability for a multi-rate sampled-data system [J], SIAM Journal on Control and Optimization,1979,17(3):390-399.
    29. Lall S, Dullerud G. An LMI solution to the robust synthesis problem for multi-rate sampled-data systems [J], Automatica,2001,37(12):1909-1922.
    30. Williams S M, Hoft R G. Adaptive frequency domain control of PWM switched power line conditioner [J], IEEE Transactions on Power Electronics,1991,6(4): 665-670.
    31. Sanders S R, Verghese G C. Lyapunov-based control for switched power converters [J], IEEE Transactions on Power Electronics,1992,7(1):17-24.
    32. Nael H.EI-Farra. Control of nonlinear and hybrid process systems [M], Springer-Verlag, Berlin Heidelberg,2005.
    33. Jeon D, Tomizuka M. Learning hybrid force and position control of robot manipu-lators [J], IEEE Transitions on Robotics and Automation,1993,9(4):423-431.
    34. Moision B E, Orlitsly A., Siegel P H. On codes that avoid specified differences [J], IEEE Transactions on Information Theory,2001,47(1):433-442.
    35. Varaiya P P. Smart car on smart roads:problems of control [J], IEEE Transactions on Automatic Control,1993,38(2):195-207.
    36. Horowitz R, Varaiya P. Control design of an automated highway system [J], Pro-ceedings of IEEE,2000,88(7):913-925.
    37. Brockett R W, Liberzon D. Quantized feedback stabilization of linear systems [J], IEEE Transactions on Automatic Control,2000,45(7):1279-1289.
    38. Zhang W, Branicky M S, Phillips S M. Stability of networked control systems [J]. IEEE Control Systems Magazine,2001,21(1):84-99.
    39. Kim D K, Park P G, Ko J W. Output-feedback H∞ control of systems over com-munication networks using a deterministic switching system approach [J], Auto-matica,2004,40(7):1205-1212.
    40. Lin H, Antsaklis P J. Stability and persistent disturbance attenuation properties for a class of networked control systems:switched system approach [J], International Journal of control,2005,78(18):1447-1458.
    41. Zhang W A, Yu L. Output feedback stabilization of networked Control sys-tems with packet dropouts [J]. IEEE Transactions on Automatic Control.2007. 52(9):1705-1710.
    42. Jadbabaie A. Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules [J]. IEEE Transactions on Automatic Control. 2003.48(6):988-1001.
    43. Ofati-Saber R., Eax J A, Murray R M. Consensus and cooperation in networked multi-agent systems [J], Proceedings of IEEE.2007,95(1):215-233.
    44. De Koning W L. Digital optimal reduced-order control of pulse-width-modulate swiched linear systems [J], Automatica,2003,39(11):1997-2003.
    45. Brockett R W. Hybrid models for motion control systems, in Essays on Control: Perspectives in the Theory and Its Applications. Progr. Systems Control Theory 14, Trentelman H and Willems J C, eds., Birkhauser, Boston, MA.1993,29-53.
    46. Hespanha J P. Stochastic hybrid systems:Application to communication network, in Hybrid Systems:Computation and Control. Proceedings of the 7th International Workshop, HSCC 2004. Philadelphia, PA, Springer, Berlin,2004.387-401.
    47. Molchanov A P. Pyatnitskii E S. Criteria of asymptotic stability of differential and difference inclusions encountered in control theory [J]. Systems & Control Letters, 1989,13(1):59-64.
    48. Dayawansa W, Martin C F. A converse Lyapunov theorem for a class of dynamical systems which undergo switching [J], IEEE Transactions on Automatic Control, 1999,44(4):751-760.
    49. Mancilla-Aguilar J L, Garcia R A. A converse Lyapunov theorem for nonlinear switched systems [J], Systems & Control Letters,2000,41(1):67-71.
    50. Narendra K S, Balakrishnan J. A common Lyapunov function for stable LTI sys-tems with commuting A-Matrices [J], IEEE Transactions on Automatic Control, 1994,39(12):2469-2471.
    51. Shorten R, Narendra K. Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for two stable second order linear time-invariant systems [A], Proceedings of American Control Conference [C],1999, 1410-1414.
    52. Shorten R, Narendra K. Necessary and sufficient conditions for the existence of a CQLF for a finite number of stable LTI systems [J], Intertional Journal of Adaptive Control and Signal Processing,2002,16(10):709-728.
    53. Shorten R, Narendra K, Mason O. A result on common quadratic Lyapunov func-tions [J], IEEE Transactions on Automatic Control,2003,48(1):10-113.
    54. Liberzon D, Hespanha J P, Morse A S. Stability of switched linear systems:A Lie-algebraic condition [J], Systems & Control Letters,1999,37(3):117-122.
    55. Agrachev A A, Liberzon D. Lie-algebraic stability criteria for switched systems [J], SI AM Journal on Control and Optimization,2001,40(1):253-270.
    56. Daafouz J, Riedinger P, lung C. Stability analysis and control synthesis for switched systems:a switched Lyapunov function approach [J], IEEE Transactions on Automatic Control,2002,47(11):1883-1887.
    57. Fang L, Lin H. Antsaklis P J. Stabilization and performance analysis for a class of switched systems [A], Proceedings of the 43rd IEEE Conference on Decision and Control [C],2004,3265-3270.
    58. Lee J W, Dullerud G E. Uniform stabilization of discrete-time switched and Marko-vian jump linear systems [J], Automatica,2006,42(2):205-218.
    59. Lee J W, Khargonekar P P. Detectability and stabilizability of dicrete-time switched linear systems [J], IEEE Transactions on Automatic Control,2009,54(3):424-437.
    60. Peleties P, Decarlo R A. Asymptotic stability of m-switched systems using Lyapunov-like functions [A], Proceedings of the American Control Conference [C], Boston,1991,1679-1684.
    61. Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems [J], IEEE Transactions on Automatic Control,1998,43(4): 475-482.
    62. Hou L, Michel A N, Ye H. Stability analysis of witched systems [A], Proceedings of the 35th IEEE Conference on Decision and Control.,1996,1210-1212.
    63. Ye H, Michel A N, Hou L. Stability theory for hybrid dynamical systems [J], IEEE Transactions on Automatic Control,1998.43(4):461-474.
    64. Zhao J, David J H. On stability, L2-gain and H∞ control for switched systems [J], Automatica.2008,44(5):1220-1232.
    65. Zhao J, Hill D J. Passivity and stability of switched systems: a multiple storage function method [J], Systems & Control Letters.2008.57:158-164.
    66. Zhao J, Hill D J. Dissipativity theory for switched systems [J]. IEEE Transactions on Automatic:Control.2008.53(4):941-953.
    67. Hespanha J P. Morse A S. Stability of switched systems with average dwell-time [A]. Proceeding of the 38th Conference on Decision and Control [C], Phoenix, AZ, 1999.2655-2660.
    68. Hespanha J P. Uniform stability of switched linear systems:extensions of LaSalle's invariance principle [J], IEEE Transactions on Automatic Control,2004,49(4): 470-482.
    69. Zhai G S. Hu B, Yasuda K. Michel A N. Stability analysis of switched systems with stable and unstable subsystems:an average dwell time approach [J], International Journal of Systems Science,2001,32(8):1055-1061.
    70. Zhai G S, Hu B, Yasuda K, Michel A N. Disturbance attenuation properties of time-controlled switched systems [J], Journal of Franklin Institute,2001,338(7): 765-779.
    71.赵军,聂宏.切换系统输入对状态稳定性的充分条件[J],自动化学报,2003.29(2):252-257.
    72. 宗广灯,武玉强.离散时间扰动脉冲切换系统鲁棒指数稳定性[J],自动化学报,2006,32(2):186-192.
    73. 李庆奎.切换线性时滞系统的跟踪控制[D],沈阳,东北大学,2008.
    74.宋杨,向峥嵘,陈庆伟,胡维礼.二阶切换系统滑动模态分析[J],自动化学报,2005,31(5):743-749.
    75. Loparo K A, Aslanis J T, IIajek O. Analysis of switching linear systems in the plane, part 2, globale behavier of tractories, controllability and atainability [J], Journal of Optimization Theory and Application,1987,52(3):395-427.
    76. Ezzine J, Haddad A H. Controllability and observability of hybrid systems [J], International Journal of Control,1989,49(6):2045-2055.
    77. Yang Z. An algebraic approach towards the controllability of controlled switching linear hybrid systems [J], Automatica,2002,38(7):1221-1228.
    78. Xie G M, Zheng D Z.Wang L Controllability of switched linear systems [J], IEEE Transactions on Automatic Control,2002,47(8):1401-1405.
    79. Sun Z D, Ge S S, Lee T H. Controllability and reachability criteria for switched linear systems [J], Automatica,2002.38(5):775-786.
    80. Xie G M, Wang L. Controllability and stabilizability of switched linear-systems [J], Systems & Control Letters,2003.48(2):135-155.
    81. Stikkel G, Bokor J, Szabo Z. Necessary and sufficient condition for the controlla-bility of switching linear hybrid systems [J], Automatica,2004,40(6):1093-1097.
    82. Cheng D, Lin Y, Wang Y. Accessibility of Switched Linear Systems [J], IEEE Transactions on Automatic Control,2006,51(9):1486-1491.
    83. Stanford D P, Conner L T, Jr. Controllability and stabilizability in multi-pair sys-tems [J], SIAM Journal on Control and Optimization,1980,18(5):488-497.
    84. Conner L T, Jr, Stanford D P. The structure of the controllable set for multimodal systems [J], Linear Algebra and its Applications,1987,95:171-180.
    85. Ge S S, Sun Z, Lee T H. Reachability and controllability of switched linear discrete-time systems [J], IEEE Transactions on Automatic Control,2001,46(9): 1437-1441.
    86. Ji Z J, Lin H, Lee T H. A new perspective on criteria and algorithms for reachability of discrete-time switched linear systems [J], Automatica,2009,45(6):1584-1587.
    87. Cheng D Z. Controllability of switched bilinear systems [J], IEEE Transactions on Automatic Control,2005,50(4):505-511.
    88. Meng B, Zhang J F. Reachability Conditions for Switched Linear Singular Systems [J]. IEEE Transactions on Automatic Control,2006.51(3):482-488.
    89. Liu B, Marquez H J. Controllability and observability for a class of controlled switching impulsive systems [J]. IEEE Transactions on Automatic Control,2008, 53(10):2360-2366.
    90. Zhao J, Spong M W. Hybrid Control for Global Stabilization of the Cart-Pendulum System [J], Automatica,2001.37(12):1941-1951.
    91. Cheng D Z. Stabilization of planar switching systems [J], Systems & Control Let-ters,2004.52(2):79-88.
    92. Lin H. Hybrid output feedback stabilization for LTI systems with single output [J]. IEEE Transactions on Automatic Control.2008,53(7):1736-1740.
    93. Li Z G, Wen C Y. Soh Y C. Observer-based stabilization of switching linear sys-tems [J], Automatica,2003.39(3):517-524.
    94. Cheng D, Guo L, Lin Y, Wang Y. Stabilization of switched linear systems [J], IEEE Transactions on Automatic Control,2005,50(5):661-666.
    95. Wulff K, Wirth F. Shorten R. A control design method for a class of switched linear systems [J], Automatica,2009,45(11):2592-2596.
    96. 孙常春,刘玉忠.一类不确定切换系统的鲁棒状态反馈镇定[J],控制理论与应用,2005,22(5):794-798.
    97.从岫.邹云.切换系统输出反馈镇定的特征结构配置方法[J],自动化学报,2009,35(2):210-214.
    98.谢广明,郑大钟.线性切换系统基于范数的系统镇定条件及算法[J],自动化学报,2001,27(1):115-119.
    99. 都海波,林相泽,李世华.一类含有输入时滞的不确定切换系统的鲁棒指数镇定[J],2009,24(9):1316-1320.
    100. 王泽宁,费树岷,冯纯伯.一类开关切换系统的输出反馈镇定[J],2003,18(2):169-172
    101. Feron E. Quadratic Stabilizability of Switched Systems via State and Output Feed-back, MIT, Cambridge, MA, Tech. Rep. CICS-P-468,1996.
    102. Wicks M A, Peleties P, DeCarlo R A. Switched controller design for the quadratic stabilization of a pair of unstable linear systems [J], European Journal of Control, 1998,4(1):140-147.
    103. Skafidas E, Evans R J, Savkin A V. Petersen I R. Stability results for switched controller systems [J], Automatica,1999,35(4):553-564.
    104. Zhai G, Lin H, Antsaklis P J. Quadratic stabilizability of switched linear systems with polytopic uncertainties [J], International Journal of Control,2003,76(7):747-753.
    105. Wicks M A, DeCarlo R A. Solution of coupled Lyapunov equations for the stabi-lization of multi-modal linear systems [A], Proceedings of the American Control Conference [C],1997,1709-1713.
    106. Pettersson S. Synthesis of switched linear systems [A], Proceedings of the 42nd IEEE Conference on Decision and Control [C],2003,5283-5288.
    107. Lin H, Antsaklis P J. Switching stabilization and l2 gain performance controller synthesis for discrete-time switched linear systems [A], Proceedings of the 45th IEEE Conference on Decision and Control [C],2006,2673-2678.
    108. Zhang W, Abate A, Hu J H, Vitus M P. Exponential stabilization of discrete-time switched linear systems, Automatica,2009,45(11):2526-2536.
    109. Hu T S, Ma L Q, Lin Z L. Stabilization of switched systems via composite quadratic functions [J], IEEE Transactions on Automatic Control,2008,53(11): 2571-2585.
    110. Lin H, Antsaklis P J. Switching stabilizability for continuoustime uncertain switched linear systems [J], IEEE Transactions on Automatic Control,2007,52(4): 633-646.
    111. Geromel J C, Colaneri P. Stability and stabilization of continuous-time switched linear systems [J], SIAM Journal on Control and Optimization,2006,45(5):1915-1930.
    112. Geromel J C, Colaneri P, Bolzem P. Dynamic output feedback control of switched linear systems [J], IEEE Transactions on Automatic Control.2008,53(3):720-733.
    113. Sun Z D. Combined stabilizing strategies for switched linear systems [J], IEEE Transactions on Automatic Control,2006,51(4):666-674.
    114. Ranlzer A. Johansson M. Piecewise linear quadratic optimal control [J], IEEE Transactions on Automatic Control.2000,45(4):629-637.
    115. Azuma S. Imurab J. Synthesis of optimal controllers for piecewise affine systems with sampled-data switching [J]. Automatica,2006,42:697-710.
    116. Hedlund S. Rantzer A. Convex dynamic programming for hybrid systems [J], IEEE Transactions on Automatic Control,2002.47(9):1536-1540.
    117. Xu X, Antsaklis P J. Optimal control of switched systems based on parameteriza-tion of the switching instants [J], IEEE Transactions on Automatic Control.2004. 49(1):2-16.
    118. Bengea S C, DeCarlo R A. Optimal control of switched systems [J], Automatica, 2005,41(1):11-27.
    119. Sun Z D. Stabilization and optimization of switched linear systems [J], Automat-ica,2006,42(5):783-788.
    120. Loxton R C, Teo K L, Rehbock V. Computational Method for a Class of Switched System Optimal Control Problems [J],IEEE Transactions on Automatic Control, 2009,54(9):2058-2071.
    121. Jiang S X, Voulgaris P G. Performance Optimization of Switched Systems:A Model Matching Approach [J], IEEE Transactions on Automatic Control,2009, 54(10):2455-2460.
    122. Hespanha J P. Logic-Based switching algorithms in control [D], PhD thesis, Yale University, New Haven, CT.1998.
    123. Hespanha J P. Root-mean-square gains of switched linear systems [J], IEEE Trans-actions on Automatic Control,2003,48:2040-2045.
    124. Lin H, Antsaklis P J. Disturbance attenuation properties for discrete-time uncertain linear switched systems [A], Proceedings of the 42nd IEEE conference on decision and control [C],2003.5289-5294.
    125. Xie D, Wang L, Hao F, Xie G. LMI approach to L2-gain analysis and control synthesis of uncertain switched systems [J], IEE Proceedings on Control Theory Applications,2004.151(1):21-28.
    126. 聂宏,赵军.一类线性切换系统具有H∞性能指标的二次稳定[J],控制理论与应用,2004,21(2):189-194.
    127. Sun X M, Zhao J, David J H. Stability and L2-gain analysis for switched delay systems:A delay-dependent method [J], Automatica,2006,42(10):1769-1774.
    128. 龙飞.切换动态系统的H∞控制研究[D],南京,东南大学,2006.
    129. 付主木,费树岷.一类不确定切换奇异系统的动态输出反馈鲁棒H∞控制[J],自动化学报,2008,34(4):482-487.
    130. Geromel J C, Colaneri P. H∞ and dwell time specifications of switched linear systems [A], Proceedings of the 47th IEEE Conference on Decision and Control, 2008,5318-5323.
    131. Zhao J, David J. Vector L2-gain and stability of feedback switched systems [J], Automatica,2009,45(7):1703-1707.
    132. Zhang L X, Shi P. Stability, l2 gain and asynchronous H∞ of discrete-time switched systems with average dwell time, [J], IEEE Transactions on Automatic Control, 2009,54(9):2192-2199.
    133. Syrmos V L, Abdallah C T, Dorato P, Grigoriadis K. Static output feedback-A survey [J], Automatica,1997,33(2):125-137.
    134. Trolino-neta A, Kucera V. Stabilization via static output feedback [J], IEEE Trans-actions on Automatic Control,1993,38(5):764-765.
    135. Kucera V, deSouza C. A necessary and sufficient condition for output feedback stabilizability [J], Automatica,1995,31(9):1357-1359.
    136. Garcia G, Pradin B, Zeng F. Stabilization of discrete-time linear systems by static ouput feedback [J]. IEEE Transactions on Automatic Control,2001,46(12):1954-1958.
    137. Ghaoui L E. Oustry F, Aitrmi M. A cone complementarity linearization algorithm for static output-feedback and related problems [J]. IEEE Transactions on Auto-matic Control.1997,42(8):1171-1175.
    138. Cao Y Y, Lam J. Sun Y X. Static output feedback statilization:an ILMI approach [J], Automatica,1998.34(12):1641-1645.
    139. Geromel J C, deSouza C C. Skelton R E. Static output feedback controllers:Sta-bility and convexity [J], IEEE Transactions on Automatic Control.1998,43(1): 120-125.
    140. Henrion D. Lasserre J B. Convergent relaxations of polynomial matrix inequalities and static output feedback [J], IEEE Transactions on Automatic Control,2006. 51(2):192-202.
    141. Crusius C A R, Trofino A. Sufficient LMI conditions for output feedback control problems [J]. IEEE Transactions on Automatic Control,1999,44(5):1053-1057.
    142. de Oliveira M C, Geromel J C, Bernussou J. Extended H2 and H∞ characteriza-tions and controller parameterizations for discrete-time systems [J], International Journal of Control,2002,75(9):1131-1134.
    143. Lee K H, Lee J H, Kwon W H. Sufficient LMI conditions for H∞ output feedback stabilization of linear discrete-time systems [J], IEEE Transactions on Automatic Control,2006,51(4):675-680.
    144. Dong J, Yang G H. Static output feedback control synthesis for linear systems with time-invariant parametric uncertainties [J], IEEE Transactions on Automatic Control,2007,52(10):1930-1936.
    145. Dong J, Yang G H. Robust static output feedback control for linear discrete-time systems with time-varying uncertainties [J], Systems & Control Letters,2008, 57(2):123-131.
    146. Bara G I, Boutyeb M. Switched output feedback stabilization of discrete-time switched systems [A], Proceedings of the 45th IEEE Conference on Decision and Control [C], San Diego, USA.2006,12-15.
    147. Bara G I. Robust switched output feedback control for discrete-time switched lin-ear systems[A], Proceedings of the 46th IEEE Conference on Decision and Control [C], New Orleans, USA,2007,12-14.
    148. Corless M. Robust stability analysis and controller design with quadratic Lyapunov functions [M], Lecture notes in Control and Information Sciences, Springer,1994, 181-203.
    149. Zhou K, Doyle J C. Glover K. Robust and optimal control [M], Prentice Hall,1995.
    150. de Oliveira M C. Bernussou J. Geromel J C. A new discrete-time robust stability condition [J], Systems & Control Letters,1999,37(4):261-265.
    151. Apkarian P, Tuan H D, Bernussou J. Continuous-time analysis, eigenstructure as-signment, and H2 synthesis with enhanced linear matrix inequalities (LMI) charac-terizations [J], IEEE Transactions on Automatic Control,2001,46(12):1941-1946.
    152. Tuan H D, Apkarian P, Nguyen T Q. Robust and reduced-Order filtering:new LMI-Based characterizations and methods [J], IEEE Transactions on Signal Processing, 2001,49(12):2975-2984.
    153. Xie D, Wang L, Hao F, Xie G. LMI approach to L2 -gain analysis and control synthesis of uncertain switched systems [J], IEE Proceedings of Control Theory & Applications,2004,151(1):21-28.
    154. Gao H, Zhang L, Shi P, et al. Stability and stabilization of switched linear discrete-time systems with polytopic uncertainties [A], Proceedings of the American Con-trol Conference [C], Minnesota, USA,2006,5953-5858.
    155. Zhang L, Shi P, Wang C, Gao H. Robust H∞ filtering for switched linear discrete-time systems with polytopic uncertainties [J], International Journal of Adaptive Control and Signal Processing,2006,20(6):291-304.
    156. Zhang L, Boukas E, Shi P. Exponential H∞ filtering for uncertain discrete-time switched linear systems with average dwell time:Aμ-dependent approach [J], International Journal of Robust Nonlinear Control,2008,18(11):1188-1207.
    157. Du D, Jiang B, Shi P, Zhou S. H∞ filtering of discrete-time switched switched sys-tems with state dalays via switched Lyapunov function approach [J], IEEE Trans actions Automatic Control,2007,52(8):1520-1525.
    158. Zhang L, Shi P, Wang C. Robust l2-l∞. filtering for switched linear discrete time-delay systems with polytopic uncertainties [J]. IET Preceedings of Control Theory & Applications,2007,1(3):722-730.
    159. Qiu J. Feng G, Yang J. New results on robust encrgy-to-peak filtering for discrete-time switched polytopic linear systems with time-varying delay [J], IET Preceed-ings of Control Theory & Applications,2008,2(9):795-806.
    160. Qiu J, Feng G. Yang J. Robust mixed H2/H∞ filtering design for discrete-time switched polytopic linear systems [J]. IET Preceedings of Control Theory &:Ap-plications,2008,2(5):420-430.
    161. Zhai G, Lin H, Antsakis P J. Quadratic stabilisability of switched linear systems with polytopic uncertainties [J], International Journal of Control.2003,76(7):747-753.
    162. Ji Z, Wang L. Xie G. Hao F. Linear matrix inequality approach to quadratic stabili. sation of switched systems [J], IEE Proceeding of Control Theory & Applications, 2004,151(3):289-294.
    163. Lin H, Antsakis P J. Switching stabilizabiliy for continuous-time uncertain switched linear systems [J], IEEE Transactions on Automatic Control,2007,52(4): 633-646.
    164. Geromel J C, Colneri P, Bolzern P. Dynamic output feedback control of switched linear systems [J], IEEE Transactions on Automatic Control,2008,53(3):720-733.
    165. De Koning W. Digital optimal reduced-order control of pulse-width-modulated switched linear systems [J], Automatica,2003,39(11):1997-2003.
    166. McClamroch N H, Kolmanovsky I. Performance benefits of hybrid control design for linear and nonlinear systems [J], Proceedings of the IEEE,2000,88(7):1083-1096.
    167. Li H, Fu M. A linear matrix approach to robust H∞ filtering [J], IEEE Transactions on Signal Processing,1997,45(9):2338-2350.
    168. Wang Z, Huang B. Robust H2/H∞ filtering for linear systems with error variance constraints [J], IEEE Transactions on Signal Processing,2000,48(8):2463-2467.
    169. Gcromcl J C, Bcrnussou J, Garcia G, dc Olivcira M C. Robust filtering of discrete-time linear systems with parameter-dependent Lyapunov functions [J], SIAM Jour-nal on Control and Optimization,2002,41(5):1353-1368.
    170. Gao H. Lam J, Shi P, Wang C. Parameter-dependent filter (?)esign with guaranteed H∞ performance [J], IEE Proceedings of Control Theory & Applications,2005, 152(5):531-537.
    171. Xie L, Lu L, Zhang D, Zhang H. Improved robust H2 and H∞ for uncertain discrete-time systems [J], Automatica,2004,40(5):873-880.
    172. Duan Z, Zhang J, zhang C, Mosca E. Robust H2 and H∞ filtering for uncertain linear systems [J], Automatica,2006,42(11):1919-1926.
    173. Iwasaki T, Hara S. Generalized KYP lemma:unified frequency domain inequali-ties with design applications [J], IEEE Transactions on Automatic Control,2005, 50(1):41-59.
    174. Iwasaki T, Hara S, Fradkov A L. Time domain interpretations of frequency domain inequalities on (semi)finite ranges [J], Systems & Control Letters,2005,54(7): 681-691.
    175. Wang H, Yang G H. A finite frequency approach to filter design for uncertain discrete-time systems [J], International Journal of Adaptive Control and Signal Processing,2008,22(8):533-550.
    176. Iwasaki T, Hara S. Feedback control synthesis of multiple frequency domain specifcations via generalized KYP lemma [J], International Journal of Robust Non-linear Control,2007,17(5):415-434.
    177. Chen J, Patton R. Robust model-based fault diagnosis for dynamic systems[M], Dordrecht:Kluwer Academic Publishers,1999.
    178. Gertler J J. Fault detection and diagnosis in engineering systems[M], New York: Marcel Dekker,1998.
    179. Frank P M, Ding X. Survey of robust residual generation and evaluation methods in observer-based fault detection systems [J]. Journal of Process Control,1997. 7(6):403-424.
    180. Ding S X. Model-based fault diagnosis techniques[M], Springer,2008.
    181. White J E and Speyer J L. Detection filter design:Spectral theory and algorithms [J]. IEEE Transactions on Automatic Control.1987,32(7):593-603.
    182. Zhong M Y, Ding S X, Lam J, Wang H B. An LMI approach to design robust fault detection filler for uncertain LTI systems [J]. Automatica,2003,39(3):543-550.
    183. Nobrega E G. Abdalla M O, Grigoriadis K M. LMI-based filter design for fault detection and isolation [A], Proceedings the 39 IEEE Conference on Decision and Control. Sydney. Australia, December 2000.
    184. Hou M, Patton R J. An LMI approach to H(?)/H∞ fault detection observers!A], UKACC International Conference on Control [C],1996,305-310.
    185. Ding S X, Teinsch T, Frank P M. Ding E L. A unified approach to the optimization of fault detection systems [J]. International Journal of Adaptive Control and Sigal processing,2000.14(7):725-745.
    186. Sauter D, Hamelin F. Frequency-domain optimization for robust fault detection and isolation in dynamic systems[J], IEEE Transactions on Automatic Control,1999, 44(4):878-882.
    187. Wang H, Yang G H. A finite frequency domain approach to fault detection for lin-ear discrete-time systems[J], International Journal of Control,2008,81(7):1162-1171.
    188. 苏佰丽,李少远.具有不确定件的非线性切换系统的约束预测控制[J].自动化学报,2008,34(9):1141-1147.
    189.董学平,工执铨.一类不确定非线性切换系统的鲁棒容错控制[J],2009,24(6):916-920.
    190.汪锐,冯佳听,赵军.一类线性不确定切换系统的非脆弱控制器设计方法[J],2006,21(7):735-738
    191. Boyd S, Ghaoui L, Feron E. Balakrishnan V. Linear Matrix Inequalities in Systems and Control Theory. Philadelphia, PA:SIAM,1994.
    192. Gahinet P. Nemirovski A, Laub A, Chilali M. The LMI Control Toolbox. Natick, MA:Mathworks,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700