双极晶体管微波损伤效应与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着脉冲功率技术的发展,借助各种脉冲功率手段产生的高功率微波(high-powermicrowave,HPM)使得当前的电磁环境日益恶化,电子系统更容易受到HPM的干扰和毁伤。半导体器件作为电子系统的基本组成部分,外界有意或无意的HPM可能经过各种耦合途径导致其产生扰乱出错、降级甚至毁伤作用。而半导体器件高集成度、低功耗、高性能、高可靠性的发展趋势也增强了其对HPM的敏感性和易损性。通常,HPM的损伤效应研究以及确定HPM参数对半导体器件的干扰及损伤阈值的影响可以通过实验研究和理论研究的方法来实现。由于受到器件类型、系统的复杂性和电磁环境诸多因素的限制,使得实验研究的成本较高,效应机理研究的理论支撑不足,而且难以得到具有普适性的结论。因此,半导体器件HPM损伤效应和机理的理论研究具有十分重要的现实意义。
     本论文以典型Si基n+-p-n-n+外延平面双极晶体管为研究对象,建立了其在HPM作用下的二维电热模型,采用数值仿真的方法研究了HPM损伤效应与机理,得到了微波参数对器件损伤的影响和规律性结果以及器件抗微波损伤的加固措施。主要的研究成果包括以下几个方面:
     1.结合Si基n+-p-n-n+外延平面双极晶体管,考虑了器件自热、高电场下的载流子迁移率退化和载流子雪崩产生效应,建立了其在HPM作用下的二维电热模型。通过分析器件内部电场强度、电流密度和温度分布随信号作用时间的变化,研究了频率为1GHz的等效电压信号由基极和集电极注入时双极晶体管的损伤效应和机理。结果表明基极注入信号时比集电极注入更容易毁伤器件,发射结的柱面处是因热积累最易毁伤的部位。由于在信号的负半周发射结柱面处电流密度和电场强度都达到峰值,器件升温快,因而初始为负半周的信号使器件更快烧毁。对初相分别为0和π的两个高幅值信号的损伤研究结果表明,初相为π的信号更容易损伤器件。验证结果表明理论模型仿真结果和实验数据吻合良好。
     2.基于BJT二维电热模型研究了BJT在HPM作用下的脉宽效应,采用曲线拟合的方法得到了损伤功率、损伤能量和脉冲宽度之间的关系,对比分析了HPM损伤数据和EMP(electromagneticpulse,EMP)损伤数据,通过器件与电路仿真软件ISETCAD分别分析了在微波电压信号和直流脉冲电压信号作用下器件内部的损伤过程。仿真结果表明器件在微波信号的作用下在正负半周内部升温位置不同,而在EMP脉冲信号的作用的损伤过程只存在一个热点。在脉宽相同的前提下,微波脉冲的损伤功率阈值和吸收能量必须超过直流脉冲的损伤功率阈值和吸收能量。由于两者损伤数据的数量级相同,因此EMP的损伤数据可以作为HPM损伤数据的一个下界。
     3.基于BJT二维电热模型,采用HPM注入的方式对器件的频率损伤敏感趋势进行了理论研究,得到了烧毁时间、损伤功率和信号频率之间的关系。通过分析器件内部电场强度、电流密度和温度的分布变化研究了器件的损伤效应和机理。结果表明烧毁时间和信号频率之间呈正相关关系。随着频率的增大,发射结柱面处的电流密度和电场强度逐渐减小。同时,pn结和n-n+界面之间的温度由于电场强度的增大而逐渐升高,器件内部最高温度仍在发射结柱面处。最后,得到了恒定脉宽单脉冲损伤平均功率随信号频率的变化规律,结果表明损伤功率随信号频率的升高而单调增加。
     4.采用高功率微波脉冲信号注入的方式对器件的热积累效应进行了理论研究,研究了信号的重复频率和占空比对热积累效应的影响。通过分析器件内部电场强度和电流密度的分布变化研究了器件的损伤机理。结果表明器件内部的积累温度随重复频率的升高而增加,BJT重复频率阈值大约为2KHz。单个脉冲注入时器件峰值温度变化趋势表明温度的下降时间比上升时间更长。采用拟合的方法得到了单脉冲注入时上升沿和下降沿峰值温度与时间的关系。重复频率和平均功率一定的脉冲信号注入损伤结果表明累积温度随占空比的增加而减小。
     5.基于BJT二维电热模型,对三角波信号、正弦波信号和方波脉冲信号等三种典型信号样式的HPM进行了注入仿真研究,研究表明三种HPM注入下器件的损伤部位都是发射结,频率和信号幅值一定时方波脉冲信号更容易使器件损伤。位移电流密度和烧毁时间随信号幅值的增大而增大,而位移电流在总电流所占的比例随信号幅值的增大而减小。相比于因信号变化率而引起的位移电流而言,信号注入功率在高幅值信号注入损伤过程中占主要作用。利用数据分析软件,分别得到了三种信号作用下器件烧毁时间和信号频率的变化关系式,结果表明器件烧毁时间随信号频率的增加而单调增加。
     6.基于BJT二维电热模型研究了静态工作点和外部电路对器件HPM损伤过程的影响,通过分析器件内部温度的分布变化对其机理进行了研究。研究表明静态工作点越高器件越不容易损伤。基极串联二极管和较低的发射极串联电阻Re都能明显的延长器件的烧毁时间。然而,Re继续增加直至足够高的数值时将会加剧器件的烧毁过程,这是由于最高温度点由发射区转移到基区所致。同时,基极串联电阻Rb将会减弱器件的抗微波损伤能力。
With the development of pulse power technology, the electromagnetic environment is deteriorating due to high-power microwave (HPM) generated by various pulse power sources, and the electronic systems become more susceptible to interference and damage induced by HPM. Being the essential parts of the electronic systems, semiconductor devices can be disrupted, confused, or damaged by the intentional and unintentional HPM from the external environments. Meanwhile, the semiconductor devices become more sensitivity and vulnerability due to the tendency of high integration, low power consumption, high performance and high reliability. Usually, there are two classic technological approaches exploring HPM effects and determining certain disrupted or burnout parameters of HPM, one of them is test research, and the other is theory research. Due to the restriction of varieties of device types and the complexity of electronic systems and the electromagnetic environments, the huge budgets and inadequate theoretical supports are the major problems to the test research. Therefore, the theoretical study of the effect and mechanism of semiconductor devices is of great practical significance.
     In this thesis we establish a two-dimensional (2D) electro-thermal model of the typical silicon-based n+-p-n-n+structure bipolar transistor induced by HPM, obtain the effect and mechanism of the device caused by HPM, and study the influences of microwave parameters on the device damage process and some hardening measures against microwave-induced damage. The main studies and conclusive results are as follows:
     1. With a consideration of self-heating effects, mobility degradation in high electric fields and avalanche generation effects, a two-dimensional electro-thermal model of the typical silicon-based n+-p-n-n+structure bipolar transistor induced by HPM is established in this thesis. By analyzing the variations of device internal distributions of the electric field, the current density and the temperature with time, a detailed investigation of the damage effect and mechanism of the bipolar transistor under the injection of1GHz equivalent voltage signals from the base and collector is elaborated. The results show that temperature elevation occurs in the negative half-period and the maximum temperature falls slightly in the positive half-period when the signals are injected from the collector. Compared to the former, device damage occurs more with the signals injected from the base. Specifically, the base-emitter juncti susceptible to damage. The damage results caused by two large-amplitude signal initial phase of0and π respectively indicate that the injected signal with initial phase of π is more liable to cause device damage. The theoretical model calculation results and the test results are in good agreement.
     2. Based on the2D electro-thermal model of bipolar transistor, a theoretical study of the pulse width effects on the damage progress of the bipolar transisitor caused by HPM is presented through the injection approach. The relationship between the microwave damage power P, the absorbed energy required to cause the device failure E and the pulse width τ are obtained in the nanosecond region utilizing the curve fitting method. Meanwhile, a comparison of microwave pulse damage data and the existed dc pulse damage data for the same transistor is carried out. By means of two-dimensional simulator ISE-TCAD, the internal damage progress of the device caused by microwave voltage signals and dc pulse voltage signals respectively is analyzed comparatively. The simulations suggest that the temperature-rising positions of the device induced by the microwaves are different between negative and positive half-period while only one hot spot exists under the injection of dc pluses. The comparisons demonstrate that the microwave damage power threshold and the absorbed energy must exceed the dc pulse power threshold and the absorbed energy and the dc pulse damage data may be quite useful as a lower bound for microwave pulse damage data.
     3. A theoretical study of the damage susceptibility trend of the typical bipolar transistor induced by HPM as a function of frequency is conducted. The dependences of the burnout time and the damage power on the signal frequency are obtained. A study of the internal damage process and mechanism of the device is carried out from the variation analysis of the distribution of the electric field, the current density and the temperature. The investigation shows that the burnout time is linearly depend on signal frequency. The current density and the electric field at the damage position decrease with the increasing frequency. Meanwhile, the temperature elevation occurs in the area between the pn junction and the n-n+interface due to the increase of the electric field. Adopting the data analysis software, the relationship between the damage power and the frequency is obtained.
     4. A theoretical study of the thermal accumulation effect of the typical bipolar transistor caused by HPM is carried out, and the thermal accumulation effect as function of the pulse repetition frequency (PRF) and the duty cycle is investigated. A study of the damage mechanism of the device is carried out from the variation analysis of the distribution of the electric field and the current density. The research shows that the accumulation temperature increases with the increasing PRF and the threshold for the transistor is about2KHz. The response of the peak temperature injected by the single pulses indicates that the falling time is much longer than the rising time. Adopting the fitting method, the relationship between the peak temperature and the time during the rising edge and the falling edge is obtained. Moreover, the accumulation temperature decreases with the increasing duty cycle for a certain mean power.
     5. By analyzing the variations of the internal distributions of the temperature with time and the current density and the burnout time with the signal amplitude, a study of the internal damage process and mechanism of the bipolar transistor induced by three kinds of HP Ms such as triangular wave, sinusoidal wave and square wave is carried out. The results show that the base-emitter junction is the damage position and the device is more susceptible to damage under the injection of the square waves. The displacement current and the burnout time increase but the proportion of the displacement current in the total current decreases with the increasing signal amplitude. The injected power play a determinative role in the damage process compared with the displacement current. Adopting the data analysis software, the relation equation between the burnout time t and the signal frequency fis obtained. It is demonstrated that the burnout time increases with the increase of the signal frequency.
     6. The influence of the bias voltage and the external components on the damage progress of the bipolar transistor induced by HPM is studied. The mechanism is presented by analyzing the variations of device internal distributions of the temperature. The findings show that the device becomes less vulnerable to damage with the increasing bias voltage. Both the series diode at the base and the relatively low series resistance at the emitter resistance Re can make the burnout time of the device increase obviously. However, Re will aid the damage of the device when the value is sufficiently high due to the fact that the highest hot spot shifts from the base-emitter junction to the base region. Moreover, the series resistance at the base resistance Rb will weaken the capability of the device to withstand microwave damage.
引文
[1.1]Benford J, Swegle J, Schamiloglu E高功率微波(江伟华,张弛译).北京:国防工业出版社,2009:1-10.
    [1.2]Radasky W. Progress in the Field of Intentional Electromagnetic Interference (IEMI) Since the New Delhi General Assembly in2005. Proceedings of the29th General Assembly of the URSI, Chicago, USA,2008.
    [1.3]王鹏,李万玉.高功率电磁效应及防护技术研究概述.火控雷达技术,2012,(1):81-83.
    [1.4]Krzikalla R, Luiken J, ter Haseborg L, et al. Systematic Description of the Protection Capability of Protection Elements. IEEE International Symposium on the Electromagnetic Compatibility, Honolulu, HI, United states,2007.
    [1.5]Bayram Y, Chang P C,Volakis J L, et al. High power EMI on digital circuits within automotive structures. IEEE International Symposium on the Electromagnetic Compatibility, Portland, OR, United states,2006:507-512.
    [1.6]Nitsch D, Camp M, Sabath F, et al. Susceptibility of some electronic equipment to HPEM threats. IEEE Transactions on Electromagnetic Compatibility,2004,46(3):380-389.
    [1.7]张长亮,陈雷,赵然等.高功率微波武器的研究现状与发展趋势.中国航天,2008,(12):35-39.
    [1.8]Camp M, Garbe H, Nitsch D. UWB and EMP susceptibility of modern electronics. IEEE International Symposium on the Electromagnetic Compatibility, Montrealm, Que, Canada,2001:1015-1020.
    [1.9]Camp M, Garbe H, Nitsch D. Influence of the technology on the destruction effects of semiconductors by impact of EMP and UWB pulses. IEEE International Symposium on the Electromagnetic Compatibility, Minneapolis, MN, United states,2002:87-92.
    [1.10]Backstrom M G, Lovstrand K G, Nordstrom B. The Swedish microwave test facility:technical features and experience from system testing. Proceedings of the27th General Assembly of the URSI, Maastricht, Netherlands,2002.
    [1.11]Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwaves:summary of test experience. IEEE Transactions on Electromagnetic Compatibility,2004,46(3):396-403.
    [1.12]Rao G V, Roy A, Paithankar A S, et al. Electromagnetic interference by high power microwaves. Proceedings of the International Conference on the Electromagnetic Interference and Compatibility, Piscataway, NJ, USA,2002.
    [1.13]Hoad R, Carter N J, Herke D, et al. Trends in EM susceptibility of IT equipment. IEEE Transactions on Electromagnetic Compatibility,2004,46(3):390-395.
    [1.14]Korte S, Camp M, Garbe H. Hardware and software simulation of transient pulse impact on integrated circuits. Proceedings of International Symposium on the Electromagnetic Compatibility, Chicago, IL, United states,2005.
    [1.15]刘长军,闫丽萍,范如东等.L波段微波脉冲对微型计算机的辐照效应实验.强激光与粒子束,2007,(9):1580-1584.
    [1.16]Hwang S M, Hong J I, Huh C S. Characterization of the susceptibility of integrated circuits with induction caused by high power microwaves. Progress In Electromagnetics Research,2008,81:61-72.
    [1.17]Sabath F. HPEM susceptibility test on IT-Networks and their components. Poceedings of the29th General Assembly of the URSI, Chicago, USA,2008.
    [1.18]Mansson D, Thottappillil R, Backstrom M, et al. Vulnerability of European Rail Traffic Management System to Radiated Intentional EMI. IEEE Transactions on Electromagnetic Compatibility,2008,50(1):101-109.
    [1.19]Mansson D, Thottappillil R, Nilsson T, et al. Susceptibility of Civilian GPS Receivers to Electromagnetic Radiation. IEEE Transactions on Electromagnetic Compatibility,2008,50(2):434-437.
    [1.20]Zhenru Q Huichang Z, Youchao T, et al. Study on the Ultra-Wide Band High Power Microwave coupling effect on electronic fuze system. Proceedings of the Automation Congress, Waikoloa, HI, United states,2008.
    [1.21]Brauer F, Sabath F, ter Haseborg J L. Susceptibility of IT network systems to interferences by HPEM. IEEE International Symposium on the Electromagnetic Compatibility, Piscataway, NJ, USA,2009.
    [1.22]Fisahn S, Garbe H. Special coupling effects of UWB pulses to short signal traces. IEEE Symposium on the Electromagnetic Compatibility, Piscataway, NJ, USA,2009.
    [1.23]Nana R K, Dickmann S, Schetelig B, et al. Estimation of the threat of IEMI to complex electronic systems. Proceedings of the2009International Conference on Electromagnetics in Advanced Applications, Torino, Italy,2009:249-253.
    [1.24]Sonnemann F, Mirschberger J. Susceptibility of a generic CAN-bus network against high-power electromagnetics (HPEM). Proceedings of the Electromagnetics in Advanced Applications,2009:174-177.
    [1.25]Yoo M, Kim W, Park Y-M, et al. The investigation of measurement method for HPM radiation to the analog switch chip. IEEE International Symposium on the Electromagnetic Compatibility (EMC), Fort Lauderdale, FL, USA,2010:364-369.
    [1.26]Genender E, Kreth A, Zamow D, et al. Combination of the failure probability with a random angle of incidence of the radiated interference. Proceedings of the30th URSI General Assembly and Scientific Symposium,,2011:1-4.
    [1.27]Palisek L, Suchy L. High Power Microwave effects on computer networks. Proceedings of EMC Europe2011York-10th International Symposium on Electromagnetic Compatibility, York, United kingdom,2011:18-21.
    [1.28]Wunsch D C, Bell R R. Determination of Threshold Failure Levels of Semiconductor Diodes and Transistors Due to Pulse Voltages. IEEE Transactions on Nuclear Science,1968,15(6):244-259.
    [1.29]Whalen J J. The RF Pulse Susceptibility of UHF Transistors. IEEE Transactions on Electromagnetic Compatibility,1975,17(4):220-225.
    [1.30]Whalen J J, Calcatera M C, Thorn M L. Microwave Nanosecond Pulse Burnout Properties of GaAs MESFET's. IEEE Transactions on Microwave Theory and Techniques,1979,27(12):1026-1031.
    [1.31]余稳,鲁光军,郭杰荣等.高功率微波激励下二极管失效和烧毁与载流子寿命的关系.常德师范学院学报(自然科学版),2001,13(2):84-85.
    [1.32]余稳,蔡新华,周传明等.硅二极管对高功率微波的非线性响应计算.强激光与粒子束,2000,12(3):324-326.
    [1.33]余稳,蔡新华,黄文华等.二极管失效和烧毁阂值与电磁波参数关系.强激光与粒子束,2000,12(2):215-218.
    [1.34]李平,刘国治,黄文华等.半导体器件HPM损伤脉宽效应机理分析.强激光与粒子束,2001,13(3):353-356.
    [1.35]方进勇,申菊爱,杨志强等.集成电路器件微波损伤效应实验研究.强激光与粒子束,2003,15(6):591-594.
    [1.36]Kim K, Iliadis A A, Granatstein V L. Effects of microwave interference on the operational parameters of n-channel enhancement mode MOSFET devices in CMOS integrated circuits. Solid-State Electronics,2004,48(10-11):1795-1799.
    [1.37]周怀安,杜正伟,龚克.双极型晶体管损坏与强电磁脉冲注入位置的关系.强激光与粒子束,2006,18(4):689-692
    [1.38]周怀安,杜正伟,龚克.双极型晶体管在强电磁脉冲作用下的瞬态响应.强激光与粒子束,2005,17(12):1861-1864.
    [1.39]Kyechong K, Iliadis A A. Critical Upsets of CMOS Inverters in Static Operation Due to High-Power Microwave Interference. IEEE Transactions on Electromagnetic Compatibility,2007,49(4):876-885.
    [1.40]Kyechong K, Iliadis A A. Impact of Microwave Interference on Dynamic Operation and Power Dissipation of CMOS Inverters. IEEE Transactions on Electromagnetic Compatibility,2007,49(2):329-338.
    [1.41]Kim K, Iliadis A A. Latch-up effects in CMOS inverters due to high power pulsed electromagnetic interference. Solid-State Electronics,2008,52(10):1589-1593.
    [1.42]Chahine I, Kadi M, Gaboriaud E, et al. Characterization and Modeling of the Susceptibility of Integrated Circuits to Conducted Electromagnetic Disturbances Up to1GHz. IEEE Transactions on Electromagnetic Compatibility,2008,50(2):285-293.
    [1.43]Kim K, Iliadis A A. Operational upsets and critical new bit errors in CMOS digital inverters due to high power pulsed electromagnetic interference. Solid-State Electronics,2010,54(1):18-21.
    [1.44]柴常春,杨银堂,张冰等.硅基双极低噪声放大器的能量注入损伤与机理.半导体学报,2008,29(12):2403-2407.
    [1.45]Chai C, Yang Y, Zhang B, et al. The effect of injection damage on a silicon bipolar low-noise amplifier. Semiconductor Science and Technology,2009,24(3):035003
    [1.46]Chai C, Yang Y, Zhang B, et al. The effect of passive component damage of an integrated si bipolar low-noise amplifier under energy-injection. The16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, Suzhou, China,2009:402-405.
    [1.47]汪海洋,李家胤,周翼鸿等.PIN限幅器PSpice模拟与实验研究.强激光与粒子束,2006,18(1):88-92.
    [1.48]Wang H, Li J, Li H, et al. Experimental study and SPICE simulation of CMOS inverters latch-up effects due to high power microwave interference. Progress In Electromagnetics Research,2008,87:313-330.
    [1.49]汪海洋.高功率微波效应机理理论与实验研究.博士论文,成都:电子科技大学,2010.
    [1.50]Iliadis A A, Kyechong K. Theoretical Foundation for Upsets in CMOS Circuits Due to High-Power Electromagnetic Interference. IEEE Transactions on Device and Materials Reliability,2010,10(3):347-352.
    [1.51]Ren Z, Yan W Y, Shi YB, et al. Thermal Accumulation Effects on the Transient Temperature Responses in LDMOSFETs Under the Impact of a Periodic Electromagnetic Pulse. IEEE Transactions on Electron Devices,2010,57(1):345-352.
    [1.52]范菊平,张玲,贾新章.双极型晶体管高功率微波的损伤机理.强激光与粒子束,2010,22(6):1319-1322.
    [1.53]Dubois T, Laurin J J, Raoult J, et al. On the effect of amplitude modulated EMI injected on a PLL active filter. Proceedings of the8th Workshop on the Electromagnetic Compatibility of Integrated, Dubrovnik, Croatia,2011:170-175.
    [1.54]Van Keuren E, Knighten J. Implications of the high-power microwave weapon threat in electronic system design. IEEE International Symposium on Electromagnetic Compatibility, Cherry Hill, NJ, USA,1991:370-371.
    [1.55]陈栋,许黎明.高功率微波武器对C4ISR系统毁伤效应研究.装备环境工程,2010,7(2):48-50.
    [1.56]王聪敏,张博.高功率微波对电子设备的影响分析.航天电子对抗,2007,27(5):26-28.
    [1.57]Whalen J J. A Comparison of DC and RF Pulse Susceptibilities of UHF Transistors. IEEE Transactions on Electromagnetic Compatibility,1977,19(2):49-56.
    [1.58]方进勇,刘国治,李平等.高功率微波脉冲宽度效应实验研究.强激光与粒子束,1999,11(5):639-642.
    [1.59]Palisek L, Suchy L. Pulse power electromagnetic fields, rep-rate influence on electromagnetic effects. Proceedings of the17th IEEE International Pulsed Power Conference, Washington, DC, United states,2009:1244-1249.
    [1.60]Klunder C, ter Haseborg J L. Effects of high-power and transient disturbances on wireless communication systems operating inside the2.4GHz ISM band. IEEE International Symposium on Electromagnetic Compatibility (EMC), Fort Lauderdale, FL, United states,2010:359-363.
    [1.61]Chen X, Du Z W Effect of Pulse Repetition Frequency on the Semiconductor Devices Burnout Caused by Microwave Pulses. International Review of Electrical Engineering,2010,5(5):2500-2507.
    [1.62]Goransson G HPM effects on electronic components and the importance of this knowledge in evaluation of system susceptibility. IEEE International Symposium on the Electromagnetic Compatibility, Seattle, WA, USA,1999:543-548.
    [1.63]Zammit C, Kerr B. General Electronic Equipment Microwave Susceptibility Trend as a Function of frequency. Proceedings of the Pulsed Power Symposium on the Institution of Engineering and Technology, Warrington, United kingdom,2006:59-61.
    [1.64]Radasky W A, Baum C E, Wik M W. Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI). IEEE Transactions on Electromagnetic Compatibility,2004,46(3):314-321.
    [1.65]Nana R K, Dickmann S, Schetelig B, et al. Estimation of the threat of IEMI to marine equipment and EM hardening solutions. Proceedings of the International Conference on the Electromagnetics in Advanced Applications, Torino, Italy,2009:51-54.
    [1.66]Xi X W, Chai C C, Ren X R, et al. Influence of the external component on the damage of the bipolar transistor induced by the electromagnetic pulse. Journal of Semiconductors,2010,31(7):49-52.
    [1.67]Brauer F, Fahlbusch S, Haseborg J L, et al. Investigation of Hardening Measures for IT Equipment against Radiated and Conducted IEMI. IEEE Transactions on Electromagnetic Compatibility,2012,54(5):1055-1065.
    [2.1]孙永军.电磁脉冲武器原理及其防护.空间电子技术,2004,3:21-24.
    [2.2]王仁德,何炳发.高功率微波武器与天线(一).中国电子科学研究院学报,2012,7(2):152-157.
    [2.3]赖祖武.高功率微波及核电磁脉冲的防护问题.微波学报,1995,11(1):1-8.
    [2.4]李海山.高功率微波武器攻击电子信息设备影响因素分析及防护方法研究.博士论文,合肥:国防科学技术大学,2011.
    [2.5]Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwaves:summary of test experience. IEEE Transactions on Electromagnetic Compatibility,2004,46(3):396-403.
    [2.6]余稳,蔡新华,黄文华等.半导体器件烧毁的物理机理.物理,1999,6:40-43.
    [2.7]Johnston A H. Radiation effects in advanced microelectronics technologies. IEEE Transactions on Nuclear Science,1998,45(3):1339-1354.
    [2.8]姜治北.高功率微波作用下的计算机系统失效机理研究.博士论文,成都:电子科技大学,2006.
    [2.9]余稳,聂建军,郭杰荣等.PIN二极管的高功率微波响应.强激光与粒子束,2002,14(2):299-301.
    [2.10]吴如军,郭杰荣,余稳.高功率微波激励下p-n结器件响应.常德师范学院学报(自然科学版),2002,14(1):19-21.
    [2.11]孙可平,赵俊萍.集成电路绝缘氧化层ESD击穿机理探讨.中原工学院学报,2003,14(S1):19-20.
    [2.12]席晓文.双极晶体管电磁脉冲损伤机理研究.博士论文,西安:西安电子科技大学,2010.
    [2.13]许蓉蓉.高功率电磁脉冲辐射下半导体器件的击穿效应.博士论文,上海:上海交通大学,2008.
    [2.14]Manck O, Engl W L. Two-dimensional computer simulation for switching a bipolar transistor out of saturation. IEEE Transactions on Electron Devices,1975,22(6):339-347.
    [3.1]张玲.双极型半导体器件高功率微波损伤研究.博士论文,西安:西安电子科技大学,2008.
    [3.2]范菊平,张玲,贾新章.双极型晶体管高功率微波的损伤机理.强激光与粒子束,2010,22(6):1319-1322.
    [3.3]柴常春,张冰,任兴荣等.集成Si基低噪声放大器的注入损伤研究.西安电子科技大学学报,2010,37(5):898-903.
    [3.4]Chai C C, Yang Y T, Zhang B, et al. The effect of injection damage on a silicon bipolar low-noise amplifier. Semiconductor Science and Technology,2009,24(3):035003
    [3.5]柴常春,杨银堂,张冰等.硅基双极低噪声放大器的能量注入损伤与机理.半导体学报,2008,29(12):2403-2407.
    [3.6]Xi X W, Chai C C, Ren X R, et al. EMP injection damage effects of a bipolar transistor and its relationship between the injecting voltage and energy. Journal of Semiconductors,2010,31(4):32-36.
    [3.7]Xi X W, Chai C C, Ren X R, et al. Influence of the external component on the damage of the bipolar transistor induced by the electromagnetic pulse. Journal of Semiconductors,2010,31(7):49-52.
    [3.8]柴常春,席晓文,任兴荣等.双极晶体管在强电磁脉冲作用下的损伤效应与机理.物理学报,2010,59(11):8118-8124.
    [3.9]陈曦,杜正伟,龚克.外电路在电磁脉冲对双极型晶体管作用过程中的影响.强激光与粒子束,2007,121(7):1197-1202.
    [3.10]周怀安,杜正伟,龚克.双极型晶体管在强电磁脉冲作用下的瞬态响应.强激光与粒子束,2005,17(12):1861-1864.
    [3.11]Integrated Systems Engineering,10.0ISE user's manual, Zurich:Integrated Systems Engineering International,2004.
    [3.12]李梅芝,韦光萍,陈星弼LDMOS的局部电热效应分析.半导体学报,2005,26(9):1823-1828.
    [3.13]张冰,柴常春,杨银堂.源、漏到栅距离对次亚微米ggNMOS ESD保护电路鲁棒性的影响.物理学报,2010,59(11):8063-8070.
    [3.14]Korte S, Camp M, Garbe H. Hardware and software simulation of transient pulse impact on integrated circuits. Proceedings of International Symposium on the Electromagnetic Compatibility, Chicago, IL, United states,2005.
    [3.15]杨雨川.导体板上单极天线对电磁脉冲响应特性的矩量法分析.强激光与粒子束,2008,20(4):649-652.
    [3.16]Kyechong K, Iliadis A A. Critical Upsets of CMOS Inverters in Static Operation Due to High-Power Microwave Interference. IEEE Transactions on Electromagnetic Compatibility,2007,49(4):876-885.
    [3.17]Kyechong K, Iliadis A A. Impact of Microwave Interference on Dynamic Operation and Power Dissipation of CMOS Inverters. IEEE Transactions on Electromagnetic Compatibility,2007,49(2):329-338.
    [3.18]Radasky W A. Protection of commercial installations from the high-frequency electromagnetic threats of HEMP and IEMI using IEC standards. Proceedings of the2010Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Beijing, China,2010:758-761.
    [3.19]Chahine I, Kadi M, Gaboriaud E, et al. Characterization and Modeling of the Susceptibility of Integrated Circuits to Conducted Electromagnetic Disturbances Up to1GHz. IEEE Transactions on Electromagnetic Compatibility,2008,50(2):285-293.
    [3.20]Jayant Baliga B, Ghandhi S K. Analytical solutions for the breakdown voltage of abrupt cylindrical and spherical junctions. Solid-State Electronics,1976,19(9):739-744.
    [3.21]刘树林,张华曹,柴常春.半导体器件物理.北京:电子工业出版社,2004.
    [4.1]方进勇,刘国治,李平等.高功率微波脉冲宽度效应实验研究.强激光与粒子束,1999,11(5):639-642.
    [4.2]李平,刘国治,黄文华等.半导体器件HPM损伤脉宽效应机理分析.强激光与粒子束,2001,13(3):353-356.
    [4.3]李平,方进勇,刘国治等.电子系统HPM脉宽效应探讨.试验与研究,2000,23(1):70-77.
    [4.4]陈曦,杜正伟,龚克.脉冲宽度对PIN限幅器微波脉冲热效应的影响.强激光与粒子束,2010,22(07):1602-1606.
    [4.5]Ren Z, Yan W Y, Shi Y B, et al. Thermal Accumulation Effects on the Transient Temperature Responses in LDMOSFETs Under the Impact of a Periodic Electromagnetic Pulse. IEEE Trans Electron Devices,2010,57(1):345-352.
    [4.6]刘长军,闫丽萍,范如东等.L波段微波脉冲对微型计算机的辐照效应实验.强激光与粒子束,2007,19(9):1580-1584.
    [4.7]Zeng X Z, Yan S, Wang G. Effects of Microwave Pulse Width on the Spatial Resolution of Microwave-Induced Thermoacoustic Imaging. Proceedings of the7th International Symposium on Antennas, Propagation and EM Theory, Guilin, China,2006:1000-1003.
    [4.8]Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwaves:summary of test experience. IEEE Transactions on Electromagnetic Compatibility,2004,46(3):396-403.
    [4.9]方进勇,申菊爱,杨志强等.集成电路器件微波损伤效应实验研究.强激光与粒子束,2003,15(6):591-594.
    [4.10]Wunsch D C, Bell R R. Determination of Threshold Failure Levels of Semiconductor Diodes and Transistors Due to Pulse Voltages. IEEE Transactions on Nuclear Science,1968,15(6):244-259.
    [4.11]Tasca D M. Pulse Power Failure Modes in Semiconductors. IEEE Transactions on Nuclear Science,1970,17(6):364-372.
    [4.12]刘亿亮.半导体器件的高功率微波毁伤阂值实验技术研究.博士论文,成都:电子科技大学,2004.
    [4.13]刘波.半导体器件的高功率微波毁伤阂值数值计算研究.博士论文,成都:电子科技大学,2004.
    [4.14]Chumakov V I, Slichenko N I, Stolarhuk A V. Simulation of the thermal mechanism in semiconductors under action of pulsed electromagnetic field. Problems of Atomic Science and Technology,2004,2(43):203-205.
    [4.15]王长河.高功率微波和电磁脉冲对半导体器件辐射损伤的研究.半导体情报,1997,34(1):9-16.
    [4.16]柴常春,席晓文,任兴荣等.双极晶体管在强电磁脉冲作用下的损伤效应与机理.物理学报,2010,59(11):8118-8124.
    [4.17]Tao X, Xi C, Zhengwei D. The Effect of Frequency on the Thermal Effect of High Power Microwave Pulses on a PIN Limiter. Asia-Pacific Symposium on the Electromagnetic Compatibility (APEMC), Beijing, China,2010:401-404.
    [4.18]Xi X W, Chai C C, Ren X R, et al. EMP injection damage effects of a bipolar transistor and its relationship between the injecting voltage and energy. Journal of Semiconductors,2010,31(4):32-36.
    [4.19]席晓文,柴常春,任兴荣,et al. Influence of the external component on the damage of the bipolar transistor induced by the electromagnetic pulse. Journal of Semiconductors,2010,31(07):49-52.
    [4.20]Brown W D. Semiconductor Device Degradation by High Amplitude Current Pulses. IEEE Transactions onNuclear Science,1972,19(6):68-75.
    [5.1]Zacharias R, Pennock S, Poggio A, et al. Tools and techniques for estimating high intensity RF effects. Aerospace and Electronic Systems Magazine, IEEE,1992,7(1):24-31.
    [5.2]Hoad R, Carter N J, Herke D, et al. Trends in EM susceptibility of IT equipment. IEEE Transactions on Electromagnetic Compatibility,2004,46(3):390-395.
    [5.3]Zammit C, Kerr B. General Electronic Equipment Microwave Susceptibility Trend as a Function of frequency. Proceedings of the Pulsed Power Symposium on the Institution of Engineering and Technology, Warrington, United kingdom,2006:59-61.
    [5.4]Weissgerber T, Peier D, Hirsch H. Electromagnetic Susceptibility Of TTL And CMOS Inverters. Influence Of Pulseform And External Elements. Proceedings of the6th International Conference on the Optimization of Electrical and Electronic Equipments, Brasov, Romania,1998:257-262.
    [5.5]Goransson G. HPM effects on electronic components and the importance of this knowledge in evaluation of system susceptibility. IEEE International Symposium on the Electromagnetic Compatibility, Seattle, WA, USA,1999:543-548.
    [5.6]方进勇,申菊爱,杨志强等.集成电路器件微波损伤效应实验研究.强激光与粒子束,2003,15(6):591-594.
    [5.7]Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwaves:summary of test experience. IEEE Transactions on Electromagnetic Compatibility,2004,46(3):396-403.
    [5.8]Wang H Y, Li J Y, Li H, et al. Experimental study and SPICE simulation of CMOS inverters latch-up effects due to high power microwave interference. Progress In Electromagnetics Research,2008,87:313-330.
    [5.9]Nitsch D, Camp M, Sabath F, et al. Susceptibility of some electronic equipment to HPEM threats. IEEE Transactions on Electromagnetic Compatibility,2004,46(3):380-389.
    [5.10]Radasky W A. Protection of commercial installations from the high-frequency electromagnetic threats of HEMP and IEMI using IEC standards. Proceedings of the2010Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Beijing, China,2010:758-761.
    [5.11]刘永,张福海.晶体管原理.北京:国防工业出版社,2004.
    [5.12]Klunder C, ter Haseborg J L. Effects of high-power and transient disturbances on wireless communication systems operating inside the2.4GHz ISM band. IEEE International Symposium on Electromagnetic Compatibility (EMC), Fort Lauderdale, FL, United states,2010:359-363.
    [5.13]李平,方进勇,刘国治等.电子系统HPM脉宽效应探讨.试验与研究,2000,23(1):70-77.
    [5.14]李梅芝,郭超,陈星弼LDMOS在正常开关工作下的瞬态热效应.半导体学报.2006,27(11):1989-1993.
    [5.15]李梅芝LDMOS功率器件的电热效应研究.博士论文,成都:电子科技大学,2007.
    [5.16]Ren Z, Yan W Y, Shi Y B, et al. Thermal Accumulation Effects on the Transient Temperature Responses in LDMOSFETs Under the Impact of a Periodic Electromagnetic Pulse. IEEE Transactions on Electron Devices,2010,57(1):345-352.
    [5.17]柴常春,席晓文,任兴荣等.双极晶体管在强电磁脉冲作用下的损伤效应与机理.物理学报,2010,59(11):8118-8124.
    [5.18]Kyechong K, Iliadis A A. Critical Upsets of CMOS Inverters in Static Operation Due to High-Power Microwave Interference. IEEE Transactions on Electromagnetic Compatibility,2007,49(4):876-885.
    [5.19]Kyechong K, Iliadis A A. Characterization of latch-up in CMOS inverters in pulsed electromagnetic interference environments. Proceedings of the Semiconductor Device Research Symposium,2007International, College Park, MD, United states,2007.
    [5.20]Kyechong K, Iliadis A A. Impact of Microwave Interference on Dynamic Operation and Power Dissipation of CMOS Inverters. IEEE Transactions on Electromagnetic Compatibility,2007,49(2):329-338.
    [6.1]沈文军,刘长海.军用电子设备抗高功率微波技术分析.雷达与对抗,2006,1:17-20+33.
    [6.2]王长河.高功率微波和电磁脉冲对半导体器件辐射损伤的研究.半导体情报,1997,34(1):9-16.
    [6.3]Baker G, Castillo J P, Vance E F. Potential for a unified topological approach to electromagnetic effects protection. IEEE Transactions on Electromagnetic Compatibility,1992,34(3):267-274.
    [6.4]Goransson G. HPM effects on electronic components and the importance of this knowledge in evaluation of system susceptibility. IEEE International Symposium on the Electromagnetic Compatibility, Seattle, WA, USA,1999:543-548.
    [6.5]Radasky W A, Baum C E, Wik M W. Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI). IEEE Transactions on Electromagnetic Compatibility,2004,46(3):314-321.
    [6.6]Bayram Y, Chang P C, Volakis J L, et al. High power EMI on digital circuits within automotive structures. IEEE International Symposium on the Electromagnetic Compatibility, Portland, OR, United states,2006:507-512.
    [6.7]Krzikalla R, Luiken J, ter Haseborg L, et al. Systematic Description of the Protection Capability of Protection Elements. IEEE International Symposium on the Electromagnetic Compatibility, Honolulu, HI, United states,2007:1-5.
    [6.8]Song H, Hou D T, Zhou D F, et al. Modeling of electromagnetic topology in analysing High Power Microwave effect on shielding system. IEEE International Conference on the Automation and Logistics, Qingdao, China,2008:2878-2883.
    [6.9]Keshtkar A, Kalantarnia A. The Effect of Shield Orifice on the Electromagnetic Interference Factor in HPM. Proceedings of the14th Symposium on the Electromagnetic Launch Technology, F Victoria, BC, Canada,2008:397-402.
    [6.10]Mansson D, Thottappillil R, Backstrom M, et al. Vulnerability of European Rail Traffic Management System to Radiated Intentional EMI. IEEE Transactions on Electromagnetic Compatibility,2008,50(1):101-109.
    [6.11]Brauer F, Sabath F, ter Haseborg J L. Susceptibility of IT network systems to interferences by HPEM. IEEE International Symposium on the Electromagnetic Compatibility, Piscataway, NJ, USA,2009:237-242.
    [6.12]Nana R K, Dickmann S, Schetelig B, et al. Estimation of the threat of IEMI to marine equipment and EM hardening solutions. Proceedings of the2009International Conference on Electromagnetics in Advanced Applications, Torino, Italy,2009:51-54.
    [6.13]Radasky W A. Protection of commercial installations from the high-frequency electromagnetic threats of HEMP and IEMI using IEC standards. Proceedings of the2010Asia-Pacific Symposium onElectromagnetic Compatibility (APEMC), Beijing, China,2010:758-761.
    [6.14]Brauer F, Fahlbusch S, Haseborg J L, et al. Investigation of Hardening Measures for IT Equipment against Radiated and Conducted IEMI. IEEE Transactions on Electromagnetic Compatibility,2012,54(5):1055-1065.
    [6.15]Integrated Systems Engineering,10.0ISE user's manual, Zurich:Integrated Systems Engineering International,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700