磁驱动平面加载实验技术及其在高压物态方程研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近20年来脉冲功率技术的快速发展,磁驱动平面加载实验技术已逐渐成为材料超高压动态特性研究的重要手段。目前主要采用n型平行电极板结构,脉冲电流沿相反方向同时流经两个电极板,一个电极板平面上电流产生的磁场与另外一个电极平面上的电流相互作用产生平滑上升的磁压力。作为介于准静态加载和冲击加载的新型实验手段,它能同时加载多个样品或飞片,一发实验可提供样品从数十kbar到数Mbar的准等熵参考线,发射宏观铝飞片的速度已达到45km/s。磁驱动准等熵加载下的材料响应数据对于校验材料本构模型和状态方程至关重要,在材料动力学特性、武器物理、高能量密度物理和天体物理等方面也具有重要的应用前景。
     应用磁驱动平面加载实验技术,要获取更有应用价值的高压物态方程数据,基于装置特性提高加载能力和获取实验数据精确性显得尤为重要。准等熵加载获取的偏离Hugoniot数据对于校验状态方程的合理性至关重要,数据的不确定度决定了它的有效性和应用范围。从多个方面降低获取数据的不确定度是现在磁驱动加载实验技术应用到材料状态方程研究的关键技术。本文主要从负载区优化设计、电流波形调节技术、多项诊断技术耦合研究、磁驱动加载实验状态数值模拟、数据处理方法和应用等方面入手,分析实验和处理方法中可能存在的不确定度来源,逐步开展从模拟到设计、实验诊断到分析、装置加载能力到应用的相关研究,形成可为高压物态方程研究提供高精度参考数据的磁驱动平面加载实验技术。
     本文主要研究内容包括:
     (1)磁驱动加载负载区优化设计
     通过开展负载区静态磁场分布模拟,由初始构型的磁场分布通过迭代计算逐步给出优化的负载区构型参数,以满足磁驱动加载平面性、均匀性和同步性的要求。其中,磁驱动加载的均匀性和同步性是获取实验数据不确定度的主要来源。
     (2)电流波形调节技术研究
     首先,根据物理实验的要求,参考相关电极和样品材料的SESAME数据库状态方程数据,计算实验需求下的理想电流波形。再通过包含负载耦合的装置全电路模型开展多支路脉冲功率发生器的计算分析并确定相应的汇流方案,实现磁驱动电流的波形优化和调节,以获取高精度的实验数据。
     (3)多项诊断技术耦合研究
     为获取超强磁场、超高压加载下的实验信息,除开展负载电流波形测量外,还将通过无接触测量技术开展样品速度-时间历史等波剖面信息测量,通过全光纤多普勒位移测量技术(DPS)、光波-微波混频速度测量技术(OMV)、任意反射面位移干涉测速系统(DISAR)和线VISAR成像技术开展相关诊断。另外,为耦合诊断获得的实验数据,还将通过时序控制将其关联起来。
     (4)磁驱动平面加载实验状态数值模拟
     分别结合装置等效电路模型和磁驱动平面加载状态模拟方法,开展不同装置和负载结构的实验加载状态模拟。从而计算负载电极和样品中的压力、密度和粒子速度等物理参量的计算,预估分析实验加载状态,以指导各种应用方向的实验设计(高速飞片发射、磁驱动准等熵压缩特性研究等)。另外,比较模拟和实验结果,在分析实验现象的同时校验和修正了模拟程序,形成了可指导实验方案改进和实验数据设计的实验加载状态模拟方法,确保磁驱动加载实验的顺利开展。
     (5)实验数据处理方法
     数据处理主要包括由实验测量速度干涉信号到速度历史的处理、波剖面信息到材料状态方程信息的计算等。本文着重于数据处理方法、负载加工、参量测量等方面带来的不确定度分析,并通过改进以实现获取状态方程数据的不确定度初步满足状态方程模型的校验需求。
     (6)应用于高压物态方程研究
     基于装置的输出特性,开展了超高速飞片发射实验设计,发射尺寸Φ10mm×0.725mm的Ly12铝飞片速度达到11.5km/s以上。另外,开展了LiF窗口材料在准等熵压缩下的光学特性研究,标定了LiF窗口材料直到50GPa准等熵压力下的折射率系数和界面速度修正因子。从而开展了样品/LiF窗口界面的速度历史测量,初步获取了铝和钽的准等熵压缩参考线。
     本文基于装置输出特性,开展磁驱动平面加载实验技术研究,形成了一套负载结构、电极和样品尺寸及电流波形的设计方法,并结合实验状态数值模拟,用于指导实验方案设计与检验。另外,发展耦合了多项诊断技术,并通过改进的实验数据处理方法,以获取更有价值的高压物态方程数据。获取的初步成果,证实了基于多支路脉冲功率装置的磁驱动平面加载实验技术在高压物态方程研究中的广泛应用前景。
With the rapid development of pulsed power technology in the past20years, The experimental technique of magnetic driven loaded techniques has become an important means to study the dynamic characteristics of materials under high pressure. Recently, an n-shape structure of parallel plate electrodes is widely used. The pulse current flows in the opposite direction in the two electrode plates, while smoothly rising magnetic pressure is generated by the interaction of magnetic field caused by the current of one electrode plate and the current caused by another electrode plate. As a new experimental technique between the quasi-static load and the impact load, it can load multiple samples or flyers simultaneously. One experiment can provide the quasi-isentropic reference line of sample from tens of Kbar to several Mbar, the speed of launched macro aluminum flyer has reached45km/s. the response data of material under magnetically driven quasi-isentropic test is of great importance to check the material constitutive model and the equation of state, and is also an important application for the kinetic properties of the material, weapons physics, high energy density physics and astrophysics.
     It is of great significance for improving the load capacity based on the property of device to get more accurate experimental data, while more valuable high-pressure data of state equation is needed with the application of magnetic driven loaded plate. The off-Hugoniot data obtained by quasi-isentropic load is essential for calibration of the state equation, the uncertainty of the data determines its validity and application. Reducing the uncertainty of access of data in many ways is the key technology for the application of magnetic driven loaded technology to the state equation of material research. This work starts from the optimization design of load configuration, the current pulse shape technology, a number of coupled diagnostic techniques, the simulation of experiment state of magnetic driven loaded, the data processing methods and applications, analyzes the intrinsic uncertainty and measurement uncertainty possible present in the experiment and data processing, and presents and verifies the program of reducing the uncertainty of experiment data, carries out the research of magnetic driven loaded experiment technology from simulation to design, experiment diagnosis to analysis, the ability of load to application direction gradually.
     The main contents of this paper include:
     (1) The optimization design of magnetic driven loaded area.
     To meet the requirement of plane of the magnetic drive, uniformity and synchronization, the optimized parameters of loaded area is obtained by iteration calculation from the initial configuration of the magnetic field distribution, and the simulation of distribution of the static magnetic field is carried out. Where, the uniformity and synchronization of magnetic driven load is a major source to obtain uncertainty of experimental data.
     (2) The research of current waveform control technology
     Firstly, according to the requirements of physical experiments, the ideal current waveform under the experimental requirement is calculated based on the reference of SESAME state equation database of related electrode and the sample material. After that the calculation of multi-branch pulsed power generator is carried out by coupled load parameter circuit simulation software to determine the appropriate convergence programs to achieve optimization and adjustment of magnetic driven current and to obtain experiment data of high accuracy.
     (3) The research of various diagnostic coupled techniques
     To obtain the experiment information under powerful magnetic field and high pressure loads, load current is the first diagnostic data. In addition, the measurement of speed-time history and wave profile is mainly carried out by non-contact measurement technique, while the related diagnostic is carried out by Doppler pins system(DPS), Optic-microwave mixing velocimeter(OMV) and line VISAR imaging techniques. To coupling all the diagnostic data, time schedule control system was performed in all experiments.
     (4) Numerical simulation of the experimental status of magnetic drive load plate
     The dynamic magnetic field and distribution of current in the loaded area are calculated by MHD combined with drive current and load configuration. Which accurately predict the experimental condition and guides the direction of the load design (launch of high speed flyer, the compression of magnetic driven quasi-isentropic sample, high-speed collision of flyers, etc.) In addition, It improves the efficiency of the physical experiments a lot by the improvement of analysis of data and program of experiment guided by the simulation program after calibration and correction.
     (5) The methods of experiment data processing
     The data processing mainly includes the processing of velocity interferometer signal and speed information from experiment measurement, the calculation from waveform profile information to state equation of material. This work focuses on the analysis of uncertainty caused by in terms of ways, such as data processing method, the load processing and diagnostic coupled techniques, etc. Finally, achieving the needs for check of the state equation by improvement and obtaining the uncertainty data of state equation.
     (6) The application to the high-pressure state equation of material
     Based on the output characteristics of the device, the launch experiment design of high-speed flyer are carried out, the lunched speed of10mm0.725mm Ly12aluminum flyer reaches over11.5km/s. In addition, the optical properties of LiF window materials under quasi-isentropic compression are also investigated. The refraction factor and interface speeds of LiF window material are also calibrated until the quasi-isentropic compression pressure of50GPa. Thus it carries out the measurement of the speed of the historical sample/LiF window interface, and obtains the reference line of aluminum and tantalum.
     In this work, based on the output characteristics of the device, it carries out the research of magnetic driven loaded plate experiment technology, forms a design method of load structure, size and current waveforms, combined with numerical simulation of the experimental status, which can be used to guide the experimental design. In addition, a number of coupled diagnostic techniques are developed, and more valuable high-pressure state equation data are obtained through the improved data processing methods. Preliminary results obtained confirms that the experimental technique based on magnetic driven loaded plate pulsed power devices of multi-branch pulsed power devices has broad application prospects in the study of high-pressure state equation of material.
引文
1.孙承纬,赵剑衡,王桂吉等。磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用,2012力学进展424
    2. Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading.2001 Rev. Sci. Instrum,72 9
    3. Knudson M D, Desjarlais M P, Dolan D H. Shock-Wave Exploration of the high-pressure phase of carbon, Science 322 1822 2008
    4. Lemke R W, Knudson M D, Davis J P, Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator, International Journal of Impact Engineering,38 p480-485,2011
    5. M. D. Knudson, R. W. Lemke, D. B. Hayes, C. A. Hall, C. Deeney et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique, J. Appl. Phys.94,4420 (2003);
    6. R.B.Spielman, C.Deeney, et al., Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ, Phys.Plasmas 5 (5),2105-2111,1998
    7. D. Swift, D. Paisley and M. Knudson. Equation of State Measurements for Berylium in the ICF Capsule Regime. Shock Compression of Condensed Matter-2003, Edited by M. D. Furnish, Y. M.Gupta and J. W. Forbes,2004:119-122
    8. J.P Davis, M.D knudson, C Deeney,R.W Lemke e tl, Magnetically driven isentropic compression to multimegabar pressure using shaped current pulses on the z accelerator, PHYSICS OF PLASMAS 12,056310 (2005)
    9. J. P. Davis. Experimental measurement of the principle isentrope for aluminum 6061-T6 to 240GPa. J. Appl. Phys.99103512 (2006)
    10. R. W. Lemke et al.,Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments, J. Appl. Phys.98,073530 (2005)
    11.Savage M. The Z pulsed power driver since refurbishment. In:The 13th International Conference on Megagauss Magnetic Field Generation and Related Topics, Suzhou, China, July 8-10, 2010:60-71
    12. M E Cuuneo, M C Herrmann, D B Sinars et al. Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories In:IEEE TRANSACTIONS ON PLASMA SCIENCE,40 12, DECEMBER 2012
    13. Trainor R J, Parsons W M et al. Overview of the Atlas project,1997 Proceedings of the 11th IEEE Int'l Pulsed Power Conf, Baltimore, MD USA, June 1997, p37-46
    14. P.L Hereil, F Lassalle,G Avrillaud GEPI:An Ice Generator for Dynamic Material Characterisation and Hypervelocity Impact,2004 AIP Conf. Proc.706,1209
    15. T.Ao, J.R.Asay, S.Chantrenne,et al. A compact strip-line pulsed power generator for isentropic compression experiments, Rev. Sci. Instrum 79,013903 (2008)
    16.王桂吉,磁驱动等熵压缩和飞片加载技术和实验研究,2007,博士学位论文(北京:中物院北京研究生部)
    17. Guiji Wang, Binqiang Luo, Xuping Zhang, et al. A 4 MA,500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading, Rev. Sci. Instrum.84,015117 (2013);
    18.蔡进涛,高能炸药的磁驱动准等熵压缩特性研究,2010,硕士学位论文(北京:中物院北京研究生部)
    19.黄显斌,林理彬,杨礼兵等,平行面多金属钨丝Z箍缩实验研究,2005强激光与粒子束17(5):793-796
    20.王贵林,李军,张朝辉*等,“阳”加速器磁驱动平面飞片实验和速度计算校验,2014强激光与粒子束26(1)015101
    21.王勐,关永超,宋盛义等.PTS装置分层真空轴向绝缘堆设计,2010,强激光与粒子束,22(4):777-781.
    22.夏明鹤,计策,王玉娟等,PTS装置工作模式及波形调节,2012,强激光与粒子束24(11):2768-2772
    23.王贵林,王治,张朝辉*等,磁驱动准等熵压缩下单晶氟化锂的光学特性,2014强激光与粒子束26(4)045030
    24.王珏,张适昌,严萍等,用自积分式罗氏线圈测量纳秒级高压脉冲电流[M],强激光与粒子束,第16卷第3期,2004年3月
    25. W. A. Stygar, R. B. Spielman, H. C. Ives, et al. D-dot and B-dot monitors for Z-vacuum-section power-flow measurements.11th IEEE Int. Pulsed Power Conf,1997:1258-1263
    26.清华大学电力系高电压技术专业组编著.冲击大电流技术[M].北京:科学出版社,1978:136-143
    27.卫兵,PTS负载电流测试,2013湖南张家界第三届全国脉冲功率技术会议
    28. D.B.Sinars, S.A.Slutz, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners, Phys. Plasmas 18,056301(2011).
    29.马云,胡绍楼,汪小松等,样品-窗口界面运动速度的VISAR测试技术,2003,高压物理学报,17(4):290-294
    30.王翔,王为,傅秋卫等,一种新型全光纤弹速测量系统的研制,光电工程,31(10)2004
    31. Weng J D, Wang X, Tao T J et al. Optic microwave mixing velocimeter for super high velocity measurement, Rev. Sci. Instrum 82,123114 (2011)
    32.翁继东,谭华,胡绍楼等,一种新型全光纤速度干涉,强激光与粒子束,2005,17(4):533-536
    33. D.H Dolan, Accuracy and precision in photonic Doppler velocimetry, Rev. Sci. Instrum 81,053905 (2010)
    34. T.Ao, R.J.Hickman, S.L.Payne et al.Line-imaging ORVIS measurements of interferometric windows under quasi-isentropic compression, CP1195, Shock Compression of Condensed Matter-2009:619-622
    35. T Bergstresser, S Becker. Temperature Measurement of Isentropically Accelerated Flyer Plates. Shock Compression of Condensed Matter-2001,2002:1169-1172.
    36. D.E Hare. How to plan and analysis an isentropic compression experiment(ICE). LNLL Reports, CA,UCRL-TR-206486,Sept.10,2004
    37. Seidel D B, Langston W L, Coats R S et al. An optimization study of stripline loads for isentropic compression experiments,2009, Proceedings of IEEE Pulsed Power conference, p1165
    38.王刚华,阚明先,王桂吉等,磁驱动高速飞片样品设计,爆炸与冲击,2012,32(5):547-550
    39. J.R Asay, L.C Chhabidas, L.M Barker et al.Projectile and impactor design for plate-impact experiments, SAND Reports, SAND-85-2009,1985
    40. Struve K W, Bennet L F, Chavez T F, et al. Circuit-code modeling of the refurbished Z accelerator: comparison of measurements with predictions. Proc.2008 IEEE International Power Modulators and High Voltage Conference.
    41. R.W.Lemke, M.D.Knudson et al., Characterization of magnetically accelerated flyer plates, Phys. Plasmas 10 (4),1092-1099,2003
    42. R.W.Lemke, M.D.Knudson et al., Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates, Phys. Plasmas 10 (5),1867-1874,2003
    43. R.W.Lemke, M.D.Knudson,A.C.Robinson et al., Considerations for generating up to 10 Mbar magnetic drive pressure with the refurbished Z-machine (ZR), Dense Z-pinches:5th Int. Conf. On Dense Z-Pinches, Ed. by J.Davis et al., Am. Inst. of Phys.,299-304,2002
    44. Reisman D. B., Forbes J. W, et al, Isentropic Compression of High Explosives with the Z Accelerator, Proceedings of the 12th International Detonation Symposium, San Diego, CA, August,2002, pp.343-348.
    45. Frese M H. MACH2:A Two-dimensional Magnetohydrodynamic Simulation Code for Complex Experimental Configurations. Defense Technical Information Center,1987
    46. Frese, Sherry D, Michael H,Recent Improvements to MACH2 and MACH3 For Fast Z-Pinch Modeling, DENSE Z-PINCHES:5th International Conference on Dense Z-Pinches. AIP Conference Proceedings,651,380-383,2002.
    47. Jongsoo K, Dongsu R, Jones T W et al., A Multidimensional Code for Isothermal Magnetohydrodynamic Flows in Astrophysics, The Astrophysical Journal,514(1),506-519,1999
    48. Israelevich P L,, Gombosi T I, Ershkovich A I et al., MHD simulation of the three-dimensional structureof the heliospheric current sheet, Astronomy&Astrophysics,376,288-291,2001
    49. Shibata K, MHD Astrophysics simulations, proceedings ofISSS-7,2005
    50.薛创,PTS装置开展准等熵压缩研究的初步MHD模拟分析,私人通讯,2013.10
    51.王刚华,磁驱动准等熵压缩和高速飞片及反积分数据处理技术,博士论文,北京:中国工程物理研究院研究生部,2008
    52.王刚华,孙承纬,王桂吉等.带窗口准等熵压缩实验的流畅反演技术,爆炸与冲击,200929(1):101-104
    53.张红平,孙承纬,李牧等.准等熵实验数据处理的反积分方法研究,力学学报,2011,43(1):106-112
    54. D.Hayes, Backward integration of the equations of motion to correct for free surface perturbaritz, SAND Reports,SAND2001-1440,2001
    55. J.B.Aidun and Y.M.Gupta, Analysis of Lagrangian gauge measurements of simple and nonsimple plane waves, J. Appl. Phys.69 (10),6998-7014,1991
    56. T.J Vogler, T.Ao, J.R Asay, High-pressure strength of aluminum under quasi-isentropic loading, International Journal of Plasticity (2009) 25,671-694
    57. T Ao, IWA:an analysis program forisentropic wave measurements, Sandia Laboratories Reports, SAND2009-0910 (2009)
    58.经福谦.实验物态方程导引[M].2版.北京:科学出版社.1999
    59.吴强.金属材料高压物态方程及Gruneisen系数的研究.博士论文,北京:中国工程物理研究院研究生部,2004.6
    60.孙承纬.磁驱动等熵压缩和高速飞片的实验技术.爆轰波与冲击波,2005(2):85-92
    61.莫建军.金属等熵压缩线计算及爆轰加载等熵压缩实验研究.博士论文,北京:中国工程物理研究院研究生部,2006.5
    62. P.W. Bridgman,The Physics of high pressure, London, Bell and Sons,1958.
    63. J. Lindl. Development of the Indirect-drive Approach to Inertial Confinement Fusion and the Target Physics Basis for Ignition and Gain. Phys. Plasmas, Vol.2(11) Nov.1995:3933-4024
    64. M. Pollington, P. Thompson and J. Maw. Equations of State. Discovery The Science and Technology Journal of AWE,2002:16-25
    65. J. R. Asay and L. C. Chhabildas[M]. Some New Developments in Shock Wave Research. High Pressure Science and Tech., edited by B. Vodar and Ph. Marteau, Pergamon Press,2,958-965 1980
    66. D. V. Nazarov, A. L. Mikhaylov, A. V. Fedorov et al. Characterization of optically transparent window material for isentropic-compression studies. Shock Compression of Condensed Matter-2003, eds. M.
    67. L. C. Chhabildas and L. M. Barker. Dynamic Quasi-Isentropic Compression Techniques: Applications to Aluminum and Tungsten. SAND Reports, SAND86-1888,1986:1-26
    68.赵剑衡,赵锋,文尚刚等.带空腔爆轰加载装置对驱动飞片的影响.爆炸与冲击,21(4),2001:307-311
    69. K. T. Lorenz, J. Edwards, S. G. Glendinning et al. Accessing ultrahigh-pressure, quasi-isentropic states of matter. Phys. Plasmas,12,056309,(2005)
    70. M.R. Martin, R.W. Lemeke, R.D. McBride, et al. Solid liner implosions on Z for producing multi-megabar, shockless compressions, Phys. Plasmas,19,056310,(2012)
    71.谭华.实验冲击波物理导引[M].绵阳:中物院流体物理研究所,2006
    72. M. D. Knudson, D. L. Hanson, J. E. Bailey, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques, Phys. Rev. B 69 144209 2004
    73. Trunin R F. Shock Compression of condensed materials, Cambridge University Press,1998
    74. C S Alexander, M D Knudson and C A Hall. High accuracy Hugoniot measurements at multi-megabar pressure utilizing the Sandia Z accelerator, Journal of Physics:Conference Series 215(2010)012150
    75. R.Cauble, D.B.Reisman et al., Isentropic compression experiments to 1 Mbar using magnetic pressure, J. Phys.:Condens. Matter 14,10821-10824,2002
    76. Hall C. A, Asay J. R, et al.Recent Advances in Quasi-isentropic Compression Experiments(ICE) on the Sandia Z Accelerator. Shock Compression of Condensed Matter-2001,2002:1163-1168.
    77. Hayes D B, Hall C A, et al. Measurement of the Compression Isentrope for 6061-T6 Aluminum to 185 GPa and 46% Volumetric Strain Using Pulsed Magnetic Loading. JAppl Phys,2004,96(10)
    78. C.A.Hall, Isentropic compression experiments on the Sandia Z accelerator, Phys. Plasmas,2000, 7(5):2069-2075
    79. S. D. Rothman, A. M. Evans et al., Measurements of the equation of state of lead under varying conditions by multiple methods, Shock Compression of Condensed Matter-2001,79-82,2002
    80. S. D. Rothman, K. W. Parker et al., Isentropic compression of lead and lead alloy using the Z machine, Shock Compression of Condensed Matter-2003,1235-1238,2004
    81. J. Eggert, M. Bastea, D.B. Reisman, et al. Ramp wave stress-density measurements of Ta and W. Shock Compression of Condensed Matter-2007,2007.1177-1180
    82. J.P. Davis and M.D. Knudson. Multi-megbar Measurement of the Principal Quasi-isentrope for Tantalum, Shock Compression of Condensed Matter-2009,2009.673-676
    83. C. W. Greeff and J. D. Johnson. New Sesame Equation of State for Tantalum, LANL Reports,2000. LA-13681-MS
    84. K.W. Struve, R. W Lemke and M. E. Savage et al. Expected Result of Firing an ICE Load on Z without Vacuum, SAND Reports, SAND2010-4671,2010
    85.唐志平.冲击相变[M].第一版.北京:科学出版社.2008.5:p29-p48
    86. Bastea M, Bastea S,Emig J A,et al.2005.Kinetics of propagating phase transformation in compressed bismuth. Phys. Rev.B,71,180101 (R)
    87. J.R.Asay, C.A.Hall et al., Isentropic compression on iron with the Z accelerator, Shock Compression of Condensed Matter-1999,1151-1154,2000
    88. J-P. Davis, D. B. Hayes et al., Investigation of liquid-solid phase transition using isentropic compression experiments (ICE), Shock Compression of Condensed'Matter-2001,221-224,2002
    89. J-P. Davis and D. B. Hayes, Isentropic compression experiments on dynamic solidification in tin,Shock Compression of Condensed Matter-2003,163-166,2004
    90. L. M. Barker and R. E. Hollenback. Shock-wave studies of PMMA, fused silica and sapphire. JAppl. Phys.41,1970:4208
    91. R. E. Setchell. Refractive index of sapphire at 532nm under shock compression and release. J. Appl. Phys.91,2833(2002)
    92. B. J. Jensen, D. B. Holtkamp, P. A. Rigg, et al. Accuracy limits and window corrections for photon Doppler velocimetry. J. Appl. Phys.101,013523 (2007);
    93. S. C. Jones and Y. M. Gupta. Refractive index and elastic properties of z-cut quartz shocked to 60 kbar. J. Appl. Phys.88,2000:5671-5679
    94. D. B. Hayes, C. A. Hall, J. R. Asay et al. Continuous index of refraction measurements to 20 GPa in Z-cut sapphire. J. Appl. Phys.94,2003:2331-2336
    95. D. B. Hayes. Unsteady compression waves in interferometer windows. J. Appl. Phys.89, 2001:6484-6486
    96. D.V Nazarov, A.L Mikhaylov, et al. Characterization of Optically Transparent Window Materials for Isentropic-compression Studies, Shock Compression of Condensed Matter-2003,2004:1221
    97. B. M. LaLone, O. V. Fat'yanov, J. R. Asay, et al. Velocity correction and refractive index changes for [100] lithium fluoride optical windows under shock compression, recompression,and unloading, J. Appl. Phys.103,093505 (2008)
    98. D. E. Fratanduono, T. R. Boehly, M. A. Barrios, et al. Refractive index of lithium fluoride ramp compressed to 800 GPa, J. Appl. Phys.109,123521 (2011);
    99.李雪梅,俞宇颖,张林等.<100>LiF的低压冲击响应和1550 nm波长下的窗口速度修正,物理学报,61(15),156202(2012)
    100.马云,李泽仁,胡绍楼等.用作VISAR窗口的LiF晶体折射率变化修正因子,物埋学报21(4),397-400(2007)
    101. C.A Hall, J. R. Asay, et al. Recent Advances in Quasi-isentropic Compression Experiments(ICE) on the Sandia Z Accelerator, Shock Compression of Condensed Matter-2001,2002:1163-1168.
    102.102.董海山,周芬芬.高能炸药及相关物性能[M].北京:科学出版社,1989
    103.王泽山,含能材料和含能材料学科的进展(1),化工时刊,95年7期,3-8。
    104. D. E Hare, D. B Reisman, Garcia et al. The Isentrope of Unreacted LX-04 to 170 kbar, Shock Compression of Condensed Matter-2003, edited by M. D. Furnish, Y. M. Gupta, and J. W. Forbes, AIP press,2004, pp.145-148.
    105. K. S. Vandersall, D. B. Reisman e tl. Isentropic compression experiments performed by LLNL on energetic material samples using the Z-accelerator. LLNL Reports, DE-AC52-07NA27344,2007.
    106. Reisman D.B, et al, Isentropic Compression of LX-04 on the Z accelerator, Shock Compression of Condensed Matter-2001, edited by M. D. Furnish, N. N. Thadhani, and Y. Horie, AIP press, 2002,pp.849-852.
    107. Hare D.E, Forbes J.W, Reisman D. B, et al, Isentropic compression loading of octahydro-1,3,4,7-tetranitro-1,3,5,7-tetrazocine (HMX) and the pressure induced phase transition at 27GPa, Applied Physics Letters, Vol.85, n 6, (2004).
    108. Hare D. E., Vandersall K. S et al, Isentropic Compression Data on LX-04 Explosive at 150℃ using the Z-accelerator, Shock Compression of Condensed Matter-2005, edited by M. D. Furnish, M. Elert, T. P. Russell, and C. T. White, AIP press,2006, pp.1315-1318.
    109. Hooks D. E., Hayes D. B et al, Isentropic Compression of cyclotetramethylene tetranitramine (HMX) single crystals to 50 GPa, J. Appl. Phys.99,124901 (2006).
    110.傅华,赵峰等,冲击作用下HMX晶体孔洞塌缩热点生成机制的细观数值模拟,高压物理学报,25(1),8-14,2011
    111. C. A. Hall, M. D. Knudson, J. R. Asay et al. High Velocity Flyer Plate Launch Capability on the Sandia Z Accelerator. Int'l J. Impact Eng'g, No.26,275-287(2001)
    112. S. D. Rothman, K. Parker, C. Robinson et al. Measurement of a release adiabat from--8 Mbar in lead using magnetically driven flyer impact. Physics of Plasmas,11(12),5620-5625(2004)
    113. M. D. Knudson, J. R. Asay and C. Deeney. Adiabatic release measurements in aluminum from 240-to 500-GPa states on the principal Hugoniot. Journal of Applied Physics,97,073514,2005
    114. Ao T, Asay J R, Davis J P, et al. VELOCE:A compact pulser for dynamic material characterization and hypervelocity impact of flyer plates, Shock Compression of Condensed Matter 2007 AIP Conf. Proc.955,1157;
    115.宋盛义,孙承纬.Pegasus Ⅱ电容器组套筒内爆引论,雅典娜报告NO.1译文,1994.12
    116.王礼立.应力波基础第二版[M].国防工业出版社,2005:45-50.
    117. S. A. Slutz, R. B. Spielman, W.A. Stygar et al.Z-pinch Driven Isentropic compression for Inertial Fusion. SAND Report, SAND98-2269,1999
    118. C. S. Alexander,T. A. Haill,D. G. Dalton et al. Fielding the Magnetically Applied Pressure-Shear Technique on the Z Accelerator (completion report for MRT 4519). SAND Report, SAND2013-8035,2013
    119. D.E Bliss, R.T Collins, D.G Dalton, et al. A new laser trigger system for current pulse shaping and jitter reduction on Z. In:Proc.14th IEEE Int'l Pulsed Power Conf,179-182, Dallas, TX, USA, June 2003
    120.丁宁,张扬,宁成等.PTS装置Z箍缩负载设计分析.物理学报575(2008)
    121.邹文康,郭帆.PTS装置全电路模拟,私人通讯,2013.11
    122.夏明鹤,何安,丁瑜.PTS装置激光触发系统,私人通讯,2013.10
    123.李洪涛,丁伯南,王玉娟等.激光触发多级多通道开关触发延迟及其抖动特性研究.强激光与粒子束16(8):1054-1058(2004)
    124.李洪涛,王玉娟,丰树平等.4MV激光触发多级多通道开关特性.强激光与粒子束19(11):1923-1926(2007)
    125. G. T. Sharp. Magnetic Diffusion in Conductors at Ultra-High Current Density, SAND Report, SAND 2002-3477, (2003)
    126.宋盛义,冯晓晖,周之奎等.共顶点同轴圆锥形和圆盘形传输线的电参数计算公式,强激光与粒子束16(2):256-260(2004)
    127. S.F. Glover, J.P. Davis, L.X. Schneider et al. Impact of Time-Varying Loads on the Programmable Pulsed Power Driver Called Genesis. IEEE Transactions on plasma science.2011
    128. K. Peterson, R. Lemke,Time dependent VISAR current diagnostic for pulse power Load, 49th plasma physics conf,2007
    129. D. B Reisman, Numerical Simulation of Fiber and Wire Array Z-pinches with Trac-II, LLNL Report,1998, UCRL-LR-131742
    130. Robinson Allen C, Brunner, Thomas A, Carroll Susan, et al. ALEGRA:An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code,46th AIAA Aerospace Sciences Meeting and Exhibit,2008,1235.
    131. Celliers, P.M., et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev. Sci. Instrum.75,4916(2004).
    132. Hinshelwood DD. BERTHA-A versatile transmission line and circuit code. Naval Research Laboratory Memorandum; 1983. Report No. NRL-Memo-5185
    133.别切尔斯基,伊斯多米,切特维尔特夫等.“阳”加速器科学技术报告,No.377/13-2.第一部分,1993
    134. Marsh S P. LASL Shock Hugoniot Datae[M]. Berkeley:University of California Press,1980
    135. S Crockett, S Rudin. Lithium fluoride equation of state (SESAME 7271). LANL Report No. LA-UR-06-8401,2006.
    136. J H Peterson, K G Honnell, C Greeff, et al. Global equation of state for copper. AIP Conf. Proc. 1426 763(2012).
    137.胡绍楼,胡绍楼,激光干涉测速技术[B].2001,北京:国防工业出版社.
    138.李泽仁,姚建链,VISAR测速中的信号丢失及丢失条纹数的确定.爆炸与冲击,1999.19(2):.182-187.
    139.陈光华,李泽仁,刘元坤.VISAR数据处理新方法及程序.爆炸与冲击,2001.21(4):315-320.
    140.国家质量技术监督局计量司组.测量不确定度评定与表示指南[M].北京:中国计量出版社,2000
    141.戴诚达,王翔,谭华Hugoniot实验的粒子速度测量不确定度分析.高压物理学报19(2):114-120.
    142. T. Ao, M. D. Knudson, J. R. Asay, and J.-P. Davis. Strength of lithium fluoride under shockless compression to 114 GPa, J. Appl. Phys.106,103507 (2009)
    143. J. R Asay, T. Ao, T. J Vogler et al. Yield strength of tantalum for shockless compression to 18 GPa, J. Appl. Phys.106,073515 (2009)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700