MIMO雷达波形设计及信号处理相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受多输入多输出(MIMO)通信和综合脉冲孔径雷达(SIAR)的启发,MIMO雷达得到了雷达界的广泛关注和研究。作为一种新体制雷达,其每个天线可以发射任意波形,将空间分集和波形分集的思想引入到雷达中。这使得MIMO雷达具有良好的干扰抵消能力和改善的参数识别能力,可以进行复杂的发射波束形成,可以改善杂波背景中探测低速目标和弱目标的能力,并在低截获以及目标识别等方面比传统雷达有明显优势。
     本文主要围绕MIMO雷达波形设计和信号处理算法展开相关研究,主要包括以下内容:
     [1]研究了MIMO雷达中发射波形集设计问题。针对离散频率编码波形(DFCW),分析了其模糊函数的特点。对于满码集DFCW,分析得知其距离自相关函数旁瓣峰值近似为固定值,因此可以在优化设计中只考虑互相关函数项而不考虑自相关函数项,在此基础上提出了低复杂度的优化设计方法;对于非满码集,分析得知其距离自相关函数旁瓣峰值可以低于满码集,在此基础上提出了基于最小最大准则的优化设计方法,实现了具有更好相关性能的波形集设计,并结合速度距离分辨率对两种码集进行了分析。将正交频分复用(OFDM)调制方式引入MIMO雷达中,研究了OFDM编码信号集的优化设计方法。
     [2]研究了收发共置MIMO雷达接收波束形成技术,从数学角度分析了标准线性阵MIMO雷达阵列排布与波束方向图的关系,针对高旁瓣问题,研究采用基于带零点调向的最小二乘方向图合成方法进行抑制。针对MIMO雷达接收端可以形成虚拟孔径的特点,将传统的常规波束形成和最小方差无畸变响应(MVDR)波束形成方法推广应用到MIMO雷达中,并与其在传统相控阵雷达下的性能进行了分析比较。针对采样矩阵求逆法(SMI)波束形成器的稳健性,研究了MIMO雷达体制下对角加载技术的应用。
     [3]研究了收发共置MIMO雷达发射波束形成技术。MIMO雷达在发射信号选择上的灵活性使其可以进行复杂的发射波束方向图合成,其方法主要是通过改变发射信号之间的互相关性来进行不同形状的发射波束方向图设计。基于发射信号互相关矩阵设计的思想,研究了在最小二乘和最小最大准则下发射波束形成的设计方法,分别基于梯度搜索法和遗传算法建立优化模型。针对发射方向图波形设计问题,提出基于已知互相关矩阵和期望方向图两种波形设计方法。
     [4]针对MIMO雷达接收端信号分离问题,研究了匹配滤波方法和非匹配滤波方法的应用。针对基于匹配滤波器进行信号分离的方法得到的主旁瓣比较差的特点,引入基于复合滤波进行信号分离的方法和基于MMSE准则进行信号分离的方法进行改进。两种方法均实现了对分离输出信号主旁瓣比的改善。基于复合滤波进行信号分离的方法可以调整脉冲压缩后的信号主瓣宽度,有利于提高分辨率,但其信噪比损失较大;基于MMSE准则的方法信噪比损失较小,且对多普勒有较好的适应性。
Inspired by multiple-input multiple-output (MIMO) communication technique and synthetic impulse and aperture radar (SIAR), MIMO radar is proposed and becomes the research focus concerned by scholars from many countries. As a new radar, MIMO radar is capable of transmitting arbitrary waveform from each antenna element, so it can exploit waveform diversity and space diversity. By exploiting these potentials, MIMO radar has several advantages, such as excellent interference rejection, improved parameter identifiability, enhanced flexibility for transmit beampattern design, advanced ability of low speed target detection and weak target detection in clutter environment, improved performance on low probability of intercept and target recognition.
     In this dissertation, MIMO radar waveform design and signal processing algorithms are investigated, and the main research focus on the following issues:
     [1] Investigate the design method of transmitting waveforms for MIMO radar. Based on the analysis of the ambiguity function, the performance of discrete frequency coding waveform (DFCW) is studied. For full-code set DFCW, the normalized range autocorrelation sidelobe peak almost does not depend on the firing order of frequency, so waveform design method with low complexity is proposed which can only consider the range cross-correlation to design the DFCW full code set; for non-full code set DFCW, its bound of ASP is lower than full code set's, so waveform design method with better correlation performance based on minimax criteria is proposed, and then range resolution and velocity resolution are analyzed. Orthogonal frequency division multiplexity (OFDM) used in MIMO radar is analyzed, and OFDM-code waveform design method is proposed.
     [2] Investigate receive beamforming of colocated MIMO radar. Based on mathematical analysis, the connection of antenna spacing and beampattern for MIMO radar with standard linear array is given. For grating lobes, a novel algorithm which can synthesize least squares error (LSE) receiving pattern subject to a set of null constraints is proposed. For additional virtual sensors at receiver of MIMO radar, conventional beamformer and minimum variance distortionless response (MVDR) beamformer are extended and applied for MIMO radar. And the performance of beamformers is compared under MIMO radar and phased array radar. For improving the robustness of sample matrix invert algorithm, diagonal loading is applied under MIMO radar.
     [3] Investigate the transmit beamforming technology of MIMO radar. MIMO radar can synthesize a desired spatial transmit beampattern through the selection of signal sets with arbitrary cross-correlation properties. For a given transmit beampattern, it can be achieved by designing the cross-correlation matrix of the probing signal vector transmitted by MIMO radar. Using the designing idea, the methods based on least square (LS) criteria and minimax criteria are studied, and the optimizing models based on gradient search and genetic algorithms are built. For designing a signal set which can approximate a desired spatial transmit beampattern, the methods based on known cross-correlation matrix and desired spatial transmit beampattern are proposed respectively.
     [4] For separating the echoes of different transmitting waveforms of MIMO radar, the methods based on matched filter and mismatched filer are studied. Because the performance of the separating method based on matched filter is poor, it can be improved by using the idea of compound filter and the approach based on a minimum mean-square error (MMSE) formulation. Based on the idea of compound filter containing a pre-filter and an inverse filter, a novel method of separating the echoes of different transmitting waveforms of MIMO radar is proposed, but the loss of signal to noise ratio (SNR) is large. The approach based on a MMSE formulation exhibits small SNR loss and is robust to doppler mismatch.
引文
[1].丁鹭飞,耿富录.雷达原理.第三版.西安:西安电子科技大学出版社,2002.
    [2].向敬成,张明友.雷达系统.第一版.北京:电子工业出版社,2001.
    [3]. Foscnini G J, Golden G D, Valenzuela R A, et al. Simplified processing for high spectral eficiency wireless communication employing multi-element arrays. IEEE Journal on Selected Areas in Communications,1999,17(11):1841~1852.
    [4], Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications,1998,16(8):1451~1458.
    [5]. Foschini G J, Gans M J. On limits of wireless communications in fading environment when using multiple antennas. Wireless Personal Communications,1998,6(3):311~335.
    [6]. Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar. Proeeedings of 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, United States,2003:1057~1064.
    [7]. Fishier E, Haimovich A, Blum R. MIMO radar: An idea whose time has come. Proeeedings of IEEE Radar Conference, Philadelphia, PA, United States.2004:71~78.
    [8]. Telatar L E. Capacity of multiple antenna Gaussian channels. European Transaction on Telecommunication,1999,10(6):585~595.
    [9]. Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, Autumn 1996,41~59.
    [10]. Wolniansky P W, Foschini G J, et al. V-BLAST: an Architecture for realizing very high data rates over rich scattering wireless channels. URSI International Symposium, ISSSE 1998:295~300.
    [11]. Tarokh V, Seshadri N, and Calderbank A R. Space-time codes for high data rate wireless communication:Performance criterion and code construction. IEEE Transaction on Information Theory,1998,44:744~765.
    [12]. Dorey J, Gamier G, Auvray G. RIAS, synthetic impulse and antenna radar. Proceedings of International Conference on Radar. Paris,1989:556~562.
    [13]. Luce A. Experimental results on SIAR digital beamforming radar. Proceedings of the IEEE International Radar Conference. Brighton, UK,1992:505~510
    [14].保铮,张庆文.一种新型的米波雷达——综合孔径与脉冲雷达.现代雷达,1995,17(1):1-13.
    [15].张庆文,保铮,张玉洪.综合脉冲和天线雷达的时空三维匹配滤波及其性能分析.电子科学学刊,1994,16(5):481-489.
    [16].陈伯孝,张守宏.基于稀布阵综合脉冲孔径雷达的长时间相干积累方法.电子科学学刊,1998,20(4):573-576.
    [17].张庆文,保铮,张玉洪.一种在接收端综合发射阵列波束的新方法.现代雷达,1992,14(3):41-51.
    [18].陈伯孝,许辉,张守宏.舰载无源综合脉冲/孔径雷达及其若干关键问题.电子学报,2003,31(12):1776-1779.
    [19]. Haimovich A M, Blum R S, and Leonard J. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine,2008,25(1):116~129
    [20]. Li J. and Stoica P. MIMO radar with colocated antennas. IEEE Signal Processing Magazine,2007,24(5):106~114.
    [21]. Skolnik M I. Introduction to radar systems (3rd ed.). New York:McGraw-Hill,2001.
    [22]. Robey F C, Coutts S, et al. MIMO radar theory and experimental reaults. Proeeedings of 38th Asilomar Conference on Signals, Systems and Computers,2004, (1):200~304.
    [23]. Deng H. Synthesis of binary sequences with good autocorrelation and crosscorrelation properties by simulated annealing. IEEE Transactions on Aerospace and Electronic Systems.1996,32(1):98~107.
    [24]. Deng H. Polyphase code design for orthogonal netted radar systems. IEEE Transactions on Signal Processing,2004,52(11):3126~3135.
    [25]. Deng H. Discreted frequeney coding waveform design for netted radar systems. IEEE Signal Proeessing Letter,2004,11 (2):179~182.
    [26]. Khan H A, Edward D J. Doppler problems in orthogonal MIMO radars. IEEE International Radar Conference,2006:24~27.
    [27]. Liu B, He Z. Comments on "Discrete Frequency-Coding Waveform Design for Netted Radar Systems. IEEE Signal Processing Letters,2008,15:449~451.
    [28]. Deng H. Reply to "Comments on'Discrete Frequency-Coding Waveform Design for Netted Radar Systems'". IEEE Signal Processing Letters,2008,15:452.
    [29]. Chen C Y, Vaidyanathan P P. MIMO radar ambiguity optimization using frequency-hopping waveforms. Proceedings of 41st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, United States,2007:192~196.
    [30]. Chen C Y, Vaidyanathan P P. MIMO radar ambiguity properties and optimization using frequency-hopping waveforms. IEEE Transactions on Signal Processing,2008, 56(12):5926~5936.
    [31]. Chen C Y, Vaidyanathan P P. Joint MIMO radar waveform and receiving filter optimization. IEEE International Conference on Acustics, Speech, Signal Processing (ICASSP),2009:2073~2076.
    [32]. Chen C Y, Vaidyanathan P P. MIMO radar waveform optimization with prior Information of the Extended Target and Clutter. IEEE Transactions on Signal Processing, 2009,57(9):3533~3544.
    [33]. Yang Y, Blum R S. MIMO radar waveform design. Proceedings of 14th Workshop on Statistical Signal Processing,2007:468~472.
    [34]. Yang Y, Blum R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Transaction on Aerospace and Electronic Systems,2007,43(1):330~343.
    [35]. Yang Y, Blum R S. Minimax robust waveform design for MIMO radar in the presence of PSD uncertainties. Proceedings of 41st Annual Conference on Information Sciences and Systems, Baltimore, MD, United States,2007:154~159.
    [36]. Yang Y, Blum R S. Minimax robust MIMO radar waveform design. IEEE Journal on Selected Topics in Signal Processing,2007,1(1):147~155.
    [37]. Forsythe K W, Bliss D W. Waveform correlation and optimization issues for MIMO Radar. Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers,2006(1):1306~1310.
    [38]. Friedlander B. On data-adaptive waveform design for MIMO Radar. Proceedings of 41st Asilomar Conference on Signals, Systems and Computers,Pacific Grove, CA, United States,2007:187~191.
    [39]. Friedlander B. Waveform design for MIMO radar with space-time constraints. Proceedings of 41st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, United States,2007:2168~2172.
    [40]. Friedlander B. Waveform design for MIMO radars. IEEE Transaction on Aerospace and Electronic Systems,2007,43(3):1227~1238.
    [41]. Li J, Stoica P, Zheng Xiayu. Signal synthesis and receiver design for MIMO radar imaging. IEEE Transactions on Signal Processing,2008,56(8):3959~3968.
    [42]. He H, Stoica P, and Li J. Designing unimodular sequence sets with good correlations-including an application to MIMO Radar. IEEE Transactions on Signal Processing,2009,57(11):4391~4405.
    [43]. Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using partial signal correlation. Proceedings of the 38th Asilomar Conference onSignals, Systems and Computers, Pacific Grove, Calif, USA,2004(1):295-299.
    [44]. Fuhrmann D R, San A G. Transmit beamforming for MIMO radar systems using signal cross-correlation. IEEE Transactions on Aerospace and Electronic Systems,2008, 44(1):171~186.
    [45]. Aittomaki T and Koivunen V. Low-complexity method for transmit beamforming in MIMO radars. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI,2007(2):305~308.
    [46]. Stoica P, Li J, Xie Y. On probing signal design for MIMO radar. IEEE Transaction on signal processing,2007,55(8):4151~4161.
    [47]. San A G, Fuhrmann D R. Beampattern synthesis for wideband MIMO radar systems. Proceedings of First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico,2005:105~108.
    [48]. Li J, Xu L Z, Stoica P, Forsythe K W, Bliss D W. Range compression and waveform optimization for MIMO radar: A cramer-rao bound based study. IEEE Transactions on Signal Processing,2008,56(1):218~232.
    [49]. Lehmann N H, Fishier E, Haimovich A M, et al. Evaluation of transmit diversity in MIMO radar direction finding. IEEE Transactions Signal Processing,2007,55(5): 2215~2225.
    [50]. Lehmann N H, Haimovich A M, Blum R S, Cimini L J. High resolution capabilities of MIMO radar. Proceedings of 40th Asilomar Conference on Signals, Systems, and Computers,2006:25~30.
    [51]. Wilcox D, Sellathurai M, Ratnarajah T. A Comparison of MIMO and phase array radar with the application of MUSIC. Proceedings of 41st Asilomar Conference on Signals, Systems, and Computers,2007:1529~1533.
    [52]. Chen D F, Chen B X. Angle estimation using ESPRIT in MIMO radar. Electronic Letters,2008,44(12):770~771.
    [53]. Godrich H, Haimovich A M, Blum R S. Cramer-Rao bound on target localization estimation in MIMO Radar Systems. Proceedings of 42nd Annual Conference on Information Sciences and Systems,2008:134~139.
    [54]. He Q, Blum R S, Godrich H, and Haimovich A M. Cramer-Rao bound for target velocity estimation in MIMO radar with widely separated antennas. Proceedings of 42nd Annual Conference on Information Sciences and Systems,2008:123~127.
    [55]. Tabrikian J. Barankin bounds for target localization by MIMO radars. Proceedings of Workshop Adaptive Sensor Array Processing, Waltham, MA,2006:278~281.
    [56]. Bekkerman I, Tabrikian J. Target detection and localization using MIMO Radars and sonars. IEEE Transactions on Signal Processing,2006,54(10):3873~3883.
    [57]. Tabrikian J, Bekkerman I. Transmission diversity smoothing for multi-target localization. Proceedings of International Conference on Acoustics, Speech, Signal, Philadelphia, PA, United States,2005(4):1041~1044.
    [58]. San A G, Fuhrmann D R, Robey F C. MIMO radar ambiguity functions. Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, United States,2006:36~40.
    [59]. San Antonio G, Fuhrmann D R, Robey F C. MIMO radar ambiguity functions. IEEE Journal on Selected Topics in Signal Processing,2007,1(1):167~177.
    [60]. Xu L Z, Li, J. Iterative generalized-likelihood ratio test for MIMO radar. IEEE Transaction on Signal Processing,2007,55(6):2375~2385.
    [61]. Xu L Z, Li J, Stoica P. Adaptive techniques for MIMO radar. Proceedings of 4th IEEE Sensor Array and Multichannel Signal Processing Workshop, Waltham,MA, United States, 2006:258~262.
    [62]. Xu L Z, Li J, Stoica P. Radar imaging via adaptive MIMO techniques. Proceedings of 14th European Signal Processing Conference (EUSIPCO'06), Florence, Italy,2006
    [63]. Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution, in Proceeding of 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov.2003(1):54~59.
    [64]. Forsythe K W, Bliss D W, Fawcett G S. Multiple-Input Multiple-Output (MIMO) radar: Performance issues. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers.2004(1):310~315.
    [65]. Chen C Y, Vaidyanathan P P. Beamforming issues in modern MIMO Radars with Doppler. Proceedings of 40th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, United States,2006:41~45.
    [66]. Chen C Y, Vaidyanathan P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions. IEEE Transaction on Signal Processing,2008, 56(2):623~635.
    [67]. Mecca V F, Dinesh R, Krolik J L. MIMO radar space-time adaptive processing for multipath clutter mitigation. Proceedings of 4th IEEE Sensor Array and Multichannel Signal Processing Workshop, Waltham, MA, United States,2006:249~253.
    [68]. Mecca V F, Krolik J L. Slow-time MIMO-STAP with improved power efficiency. Proceedings of 41st Asilomar Conference on Signals, Systems and Computers.Pacific Grove, CA, United States,2007:202~206.
    [69]. Fishier E, Haimovich A, Blum R, et al. Performance of MIMO radar systems: Advantages of angular diversity. Proceedings of 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, United States 2004 (1):305~309.
    [70]. Fishier E, Haimovich A, Blum R, et al. Spatial diversity in radars-Models and detection performance. IEEE Transaction on Signal Processing,2006,54(3):823~838.
    [71]. Du C, Thompson J S, Petillot Y. Predicted detection performance of MIMO radar. IEEE Signal Processing Letters,2008,15:83~86.
    [72]. Sheikhi A, Zamani A, Norouzi Y. Model-based adaptive target detection inclutter using MIMO radar. Proceedings of CIE International Conference of Radar, Shanghai, China 2006(1):57~60.
    [73]. Sheikhi A, Zamani A. Adaptive target detection in clutter using MIMO radar. Proceedings of 2nd Microwave and Radar Week in Poland-International Radar Symposium, Krakow, Poland May 2006:1~4.
    [74]. Sheikhi A, Zamani A. Coherent detection for MIMO radars. Proceedings of IEEE 2007 Radar Conference, Waltham, MA, United States 2007:302~307.
    [75]. Sheikhi A, Zamani A. Temporal coherent adaptive target detection for mufti-input mufti-output radars in clutter. IET Radar, Sonar and Navigation,2008,2(2):86~96.
    [76]. Sammartino P F, Baker C J, Griffiths H D. MIMO radar performance in clutter environment. Proceeding of IEEE Radar Conference, Oct.2006:16~19.
    [77]. Sammartino P F, Baker C J, Griffiths H D. Adaptive MIMO radar system in clutter. Proceeding of IEEE Radar Conference, Apr.2007:276~281.
    [78]. Sammartino P F. Target model effects on MIMO radar performance. IEEE International conference on Acustics, Speech, Signal Processing,2005,4:1041~1044.
    [79]. Maio A D, Lops M. Design principles of MIMO radar detectors. IEEE Transaction on Aerospace and Electronic Systems,2007,43(3):886~898.
    [80].戴喜增,彭应宁,汤俊.MIMO雷达检测性能.清华大学学报(自然科学版),2007,47(1):88-91.
    [81].戴喜增,许稼,彭应宁,夏香根.FD-MIMO距离高分辨雷达及其旁瓣抑制.电子与信息学报,2008,30(9):2033-2037.
    [82].汤俊,伍勇,彭应宁,王秀坛MIMO雷达检测性能和系统配置研究.中国科学(F辑:信息科学),2009,39(7):776-781.
    [83].汤俊,伍勇,彭应宁,王秀坛.MIMO雷达对空域Rician起伏目标检测性能研究.中国科学(F辑:信息科学),2009,39(8):866-874.
    [84].何子述,韩春林,刘波MIMO雷达概念及其技术特点分析.电子学报,2005,33(12A):2441-2445
    [85].曾建奎,何子述.慢起伏目标的多输入多输出雷达检测性能分析.电波科学学报,2008,23(1):158-161.
    [86].赵光辉,陈伯孝,朱守平.基于SIAR体制的单基地MIMO雷达方向综合及测角性能分析.中国科学(E辑:技术科学),2009,39(1):181-192.
    [87].杨明磊,陈伯孝,张守宏,高昭昭.多载频FMCW在MIMO雷达中的应用研究.电子学报,2008,36(12):2351-2356.
    [88].曲毅,廖桂生,朱圣棋,李军MIMO雷达的目标运动方向及速度估计.西安电子科技大学学报,2008,35(5):781-784.
    [89]. Yan H D, Li J, Liao G S. Multitarget identification and localization using bistatic MIMO radar systems. EURASIP Journal on Advances in Signal Processing,2008 (2008) 10.1155/2008/283483 (Article ID 283483,8pp).
    [90].夏威,何子述.APES算法在MIMO雷达参数估计中的稳健性研究.电子学报,2008,36(9):1804-1809.
    [91].朱宇涛,郁文贤,粟毅.一种基于MIMO技术的ISAR成像方法.电子学报,2009,37(9):1885-1894.
    [92].王敦勇,马晓岩,袁俊泉,王党卫.两种基于MIMO雷达体制的鲁棒CFAR检测器.电子与信息学报,2009,31(3):596-600.
    [93].许红波,王怀军,陆珉,粟毅.一种新的MIMO雷达DOA估计方法.国防科技大学学报,2009,31(3):92-96
    [94].关键,黄勇.Gauss色噪声中MIMO分布孔径雷达检测性能分析.中国科学(F辑:信息科学),2009,39(3):363-369.
    [95].肖文书.MIMO雷达中的信号检测.电子学报,2010,38(3):626-631.
    [96]. Skolnik M I. Radar handbook(3rd ed.). New York:McGraw-Hill,2008.
    [97]. Levanon N and Mozeson E. Radar signals. New Jersey: John Wiley & Sons, Inc. 2004.
    [98]. Levanon N. Multifrequency radar signals. Proceedings of IEEE International Radar Conference, Alexandria, VA,2000:683~688.
    [99]. Levanon N. Multifrequency complementary phase-coded radar signal. IEE Proceedings of Radar Sonar Navigation,2000,147(6):276-284.
    [100]. Levanon N. Train of diverse multifrequency radar pulses. Proceedings of IEEE International Radar Conference, Atlanta, GA,2001:93~98.
    [101]. Levanon N, Mozeson E. Multicarrier radar signal-pulse train and CW. IEEE Transaction on Aerospace and Electronic Systems,2002,38(2):707~720.
    [102]. Mozeson E, Lev anon N. Multicarrier radar signals with low peak-to-mean envelope power ratio. IEE Proceedings of Radar Sonar Navigation,2003,150(2):71~77.
    [103]. Donnet B J, Longstaff I D. Combining MIMO Radar with OFDM Communications. Proceeding of 3rd European Radar Conference,2006:37~40.
    [104]. Sverdlik H B, Levanon N. Family of multicarrier bi-phase radar signals represented by ternary arrays. IEEE Transaction on Aerospace and Electronic Systems, 2006,42(3):933-953.
    [105]. Costas J P. A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties. Proceedings of the IEEE,1984,72 (8):996~1009.
    [106]. 李建雷.频率编码脉冲信号研究.成都:电子科技大学,2007
    [107]. Holland J H. Genetic algorithms. Scientific American,1992,267(4):44~50
    [108]. 玄光男,程润伟.遗传算法与工程优化.北京:清华大学出版社.2004.
    [109]. 周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社.1999.
    [110]. Zhang Y, Wang J. Improved design of DFCW for MIMO radar. Electronics letters, 2009,45(5):285~286
    [111]. 黄晓宇,沈福民.一种新的跳频脉冲信号的运动补偿方法.现代雷达,2003,vol.25(8):20-22.
    [112]. 位寅生,刘永坦,许荣庆.准随机跳频信号的二维处理.电子学报,2003,vol.31(6):801-804.
    [113]. 赵国庆.雷达对抗原理.西安:西安电子科技大学出版社.1999.
    [114]. 张永顺,童宁宁,赵国庆.雷达电子战原理.北京:国防工业出版社.2006.
    [115]. Weinstein S B, Ebert P M. Data transmission by frequency division multiplexing using the discrete Fourier transform. IEEE Transactions on Communication,1971, 19(5):628~634.
    [116]. Bingham J A C. Multicarrier modulation for data transmission:an idea whose time has come. IEEE Communication Magazine,1990,28(5):5~14.
    [117]. Edfors O, Sandell M. et al. An introduction to orthogonal-frequency division multiplexing. Multiplexing, Lulea, Sweden: Lulea Tekniska Universitet,1996.
    [118]. Brennan L E, Mallet J D and Reed L S. Adaptive arrays in airborne MTI radar. IEEE Transaction on Antennas and Propagation,1976,24(5):607~615.
    [119]. Gershman A B, Turchin V L and Zverev V A. Experimental results of localization of moving underwater signal by adaptive beamforming. IEEE Transaction on Signal Processing,1995,43(10):2249~2257.
    [120]. Gorodetskaya E Y, Malekhanov A L and Sazontov A G, et al. Deep-water acoustic coherence at long ranges:Theoretical prediction and effects on large-array signal processing. IEEE Journal of Oceanic Engineering,1999,24(2):156~171.
    [121]. Gershman A B, Nemeth E, Bohme J F. Experimental performance of adaptive beamforming in a sonar environment with a towed array and moving interfering sources. IEEE Transaction on Signal Processing,2000,48(1):246-250.
    [122]. Kameda Y, Ohga J. Adaptive microphone-array system for noise reduction. The Journal of the Acoustical Society of America,1984,76(S1):84~88.
    [123]. Godara L C. Application of antenna arrays to mobile communications part II: beamforming and direction-of-arrival considerations. Proceedings of IEEE.1997, 85(8):1195~1245.
    [124]. Rapapport T S. Smart Antennas:Adaptive Arrays, Algorithms, and Wireless Position Location. Piscataway, New Jersey: IEEE,1998.
    [125]. Special issue on adaptive arrays. IEEE Transactions on Antennas and Propagation, Vol.12, Mar.1964.
    [126]. Special issue on adaptive arrays. IEEE Transactions on Antennas and Propagation, Vol.24, Sep.1976.
    [127]. Special issue on adaptive arrays. IEEE Transactions on Antennas and Propagation, Vol.34, Mar.1986.
    [128]. Mary J D. A selected bibliograpy on adaptive antenna arrays. IEEE Transaction on Aerospace and Electronic Systems,1986,22(6):781~788.
    [129]. Frost O L. An algorithm for linearly constrained adaptive array processing. Proceedings of IEEE,1972,60(8):926~935.
    [130]. Widrow B, Mantey P E, Griffiths L J, et al. Adaptive antenna systems. Proceedings of IEEE,1967,55(12):2413~2159.
    [131]. Gabriel W F. Adaptive arrays-an introduction. Proceedings of IEEE,1976, 64(2):239~272.
    [132]. Mailous R J. Phased array theory and technology. Proceedings of IEEE,1982, 70(3):246~291.
    [133]. Van V B D, Buckley K M. Beamforming:a versatile approach to spatial filtering. IEEE Aerospace and Electronic Systems Magazine,1987,5(2):4~24.
    [134]. Monzingo R A, Miller T W. Introduction to adaptive arrrays. John Wiley and Sons Inc.,1980.
    [135].郑志东,张剑云.MIMO雷达波束方向图及其旁瓣抑制方法.系统工程与电子 技术,2010,32(2):287-290.
    [136]. Capon J. High-resolution frequency-wavenumber spectrum analysis. Proceedings of IEEE,1972,60(8):1408~1418.
    [137]. Cox H, Zeskind R M, Owen M M. Robust adaptive beamforming. IEEE Transaction on Acoust, Speech, Signal Processing,1987,35(10):1365~1376.
    [138]. Carlson B D. Covariance-matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transaction on Aerospace and Electionic Systems,1988, 24(4):397~401.
    [139]. Aittomaki T and Koivunen V. Low-complexity method for transmit beamforming in MIMO radars. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI,2007 (2):305~308.
    [140]. Ackroyd M H, Ghani E. Optimum mismatched filter for sidelobe Suppression. IEEE Transaction on Aerospace and Electionic Systems,1973,9(2):214~218.
    [141]. Rohling H, Plagge W. Mismatched-filter design for periodical binary phased signals. IEEE Transaction on Aerospace and Electionic Systems,1989,25(6):890~896
    [142]. Griep K R, Ritcey J A, Burlingame J J. Poly-phase codes and optimal filters for multiple user ranging. IEEE Transaction on Aerospace and Electionic Systems,1995, 31(2):752~767
    [143]. Song S M, Kim W M, Park D, et al. Estimation theoretic approach for radar pulse compression processing and its optimal codes. Electronic Letters,2000,36(3): 250~252
    [144]. Levanon N. Cross-correlation long binary signals with longer mismatched filters. IEE Proceedings Radar Sonar Navigation,2005,152(6):377~382.
    [145]. Lewis B L, Kretschmer F F. Linear frequency modulation derived polyphase pulse compression codes. IEEE Transactions on Aerospace and Electronic Systems,1982, 18(5):637~641.
    [146]. Treitel S, Robinson E A. The design of high-resolusion digital filters. IEEE Transactions on Geoscience Electronics,1966,4(1):25~38.
    [147]. Blinchikoff H J. Range sidelobe reduction for the quadriphase codes. IEEE Transactions on Aerospace and Electronic Systems,1996,32(2):711~718.
    [148]. Blunt S D and Gerlach K. Adaptive compression via MMSE estimation. IEEE Transactions on Aerospace and Electronic Systems,2006,42(2):572~583.
    [149]. Shannon D B and Karl G. A novel pulse compression scheme based on minimum mean-square error reiteration. Proceedings of the International Radar Conference 2003: 349-353.
    [150]. Shannon D B and Karl G. A generalized formulation for adaptive pulse compression of multi-static radar. IEEE 4th Workshop on Sensor Array and Multichannel Processing, Massachusetts USA,2006:349~353.
    [151]. Shannon D B and Karl G. Multi-static adaptive pulse compression. IEEE Transaction on Aerospace and Electronic Systems,2006,42(3):891~903.
    [152]. Blunt S D and Gerlach K. Adaptive pulse compression. IEEE Radar Conference, Pennsylvania USA,2004:271~276.
    [153]. Shinriki M and Hamada K. Multi-range-resolution radar using inverse filter. IET Radar Sonar Navigation,2008,2(6):410~418.
    [154]. Shinriki M, Takase H, Susaki H. Pulse Compression for a simple pulse. IEEE Transaction on Aerospace and Electronic Systems,2008,44(4):1623~1629.
    [155]. 徐庆,徐继麟,黄香馥.一种脉冲压缩信号旁瓣抑制方法.系统工程与电子技术,2001,23(5):60-62.
    [156]. Kay S M. Fundamentals of statistical signal processing: estimation theory. New Jersey: Prentice-Hall,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700