大长径比固体火箭发动机点火瞬态过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用理论分析和数值仿真方法对大长径比固体火箭发动机点火瞬态过程进行了系统研究。
     理论分析着重研究了点火燃气与推进剂表面传热及推进剂内瞬态热传导规律。针对侧壁多孔管式点火装置,基于相似性分析,采用门格勒变换方法将点火燃气与药柱内孔表面传热问题转化为射流撞击平面传热问题,由此推导得到点火燃气射流与推进剂表面间传热系数表达式。理论分析表明,抛物型经典傅立叶热传导定律无法准确描述瞬态传热过程。通过分析研究点火瞬态过程中推进剂内部急速热传导存在的非傅立叶效应,推导得到具有双曲性质的固体推进剂瞬态热传导方程。设计试验测量得到推进剂热松弛时间,经与热作用时间比较验证了固体推进剂瞬态传热过程中的非傅立叶效应。
     在点火装置自由喷射点火试验观测基础上,考虑大长径比固体火箭发动机点火装置存在的发火延迟与药块点燃过程,对点火质量流率预示模型进行修正,效果良好。集点火装置、燃烧室和喷管于一体,建立了大长径比固体火箭发动机点火瞬态过程一维、二维和三维非定常流动仿真模型,数值计算结果与试验结果具有良好一致性,间接验证了仿真模型与计算软件的正确性。根据一维仿真结果建立了推进剂表面火焰传播过程与燃烧室升压速率的对应关系;根据二维仿真结果讨论了提高点火药量利用率的途径;根据三维仿真结果对点火瞬态过程中尾部翼槽内火焰传播过程进行了深入分析。研究表明,火焰传播结束时刻对应于燃烧室升压速率极大值,尾部翼槽内火焰传播过程不连续。
     从微分形式非线性粘弹性本构方程出发,分析了推进剂对点火过程瞬态载荷的响应特性,对非均匀载荷下药柱结构完整性进行了初步分析。
     采用蒙特卡罗方法分析了点火装置性能散布及其影响因素;引入均匀设计方法分析了大长径比固体火箭发动机点火瞬态过程性能散布规律,由此提出降低点火瞬态过程性能散布的途径。
     本文研究成果为解决大长径比固体火箭发动机点火装置设计、点火特性分析及点火过程性能散布控制等众多工程实际问题提供理论依据与分析工具,具有重要理论意义和工程应用价值。
This dissertation integrates theoretical analysis and numerical simulation method to investigate the ignition transient process of large aspect ratio solid rocket motors.Theoretical analysis emphasizes on heat transfer both inside propellant and between igniter exhaust and internal grain surface. For igniter device with side holes, by adopting Manglar Transform and with achievements in heat transfer study on jet impinging on plane, formula of heat transfer coefficient for igniter exhaust impinging on internal grain surface is obtained.Mathematic analysis demonstrates that classic Fourier heat transfer formula can not properly describe such wave propagation phenomena as transient heat transfer inside propellant. After affirming the existence of non-Fourier effect, the hyperbolic equation suited for describing rapidity heat transfer process inside propellant is obtained. Experiment is designed to measure heat relaxation time. Comparison with heat action time validates above analysis.To found basis of numerical simulation, the igniter mass flow rate predication model is first modified to consider such effect as ignition delay and burning process occurred in igniter device for large aspect ratio solid rocket motors.The mathematical models suited for 1-D,2-D and 3-D unsteady flow simulation during ignite transient process of large aspect ratio solid rocket motors are constructed repectively. Corresponding software is accomplished. Comparison between simulation and experiment result verify the correctness of both mathematical model and simulation program.1-D simulation results are adopted to construct the relationship between pressure rise rate and flame spreading process along propellant surface; Appropriate step to enhance efficiency of ignition charge is discussed based on 2-D simulation results and flame spreading process in fin slots is analyzed with 3-D simulation results. The study indicates that the end of flame spread over grain surface corresponds to max value of pressure rise rate and the flame is not continuous in fin slots.Response characteristic of solid propellant to sudden load is studied based on differential nonlinear viscoelasticity constructural equation during ignition transient process. Structure integrity of propellant is also analyzed.Monte Carlo method is adopted to study performance dispersion of igniter device. After introducing Uniformity Design Method, the performance dispersion during ignition transient process is investigated. Measures to depress dispersion band are also discussed.
    The research work of this dissertation not only brings forward new viewpoint for theoretic study such as heat transfer analysis, but also provides foundation for solving such engineering problem as ignite device design, ignite performance dispersion control and ignite characteristic analysis. The achievements will have significant effect on both theoretic study and engineering practice.
引文
[1] Lal, M., Huggins, J. D., Oljaca, M., Lubarsky, E., Shcherbik, D., Bibik., A., Menon, S., and Zinn, B. T. Large Solid Propulsion for space launchers - Market overview and general trends[R],AIAA 2003-4963.
    [2] Kim H. Parker, William J. Most and Martin Summerfield,.The Ignition Transient in Solid Propellant Rocket Motors[R].AFSOR 69-1392TR.
    [3] A. Ciucci.,Winfred A. Foster, Jr.,Rhonald M. Jenkins. Experimental Investigation of the Flow Field in the Head-End Star Slot Section of a Solid Rocket Motor[R].AIAA 91-2427.
    [4] M.A. Eagar, G.D. Luke. and L.W. stockham. Ignition Transient Modeling for the Space Shuttle Advanced Solid Rocket Motor[R]. AIAA 93-2062.
    [5] A. Ciucci, W.A. Foster, Jr.,and R.M. Jenkins. Results of an Experimental Investigation of the Flow Field in the Hed-End Star Slot Section of a Solid Rocket Motor[R].AIAA 92-3048.
    [6] A. Ciucci, Rhonald M. Jenkins. Analysis of Ignition and Flame Spreading in the Space Shuttle Head-End Star[R]. AIAA 92-3272.
    [7] P. Alavilli, J. Buckmaster, T. L. Jackson, and M. Short. Ignition-Transient Modeling for Solid Propellant Rocket Motors[R].AIAA 2000-3567.
    [8] Rozanski, J. D. SHARPID-IT A Computer Code For Simulating Ignition Transients Using A One-Dimensional Flow Field[R]. Thiokol TWR-40255, March 1990.
    [9] 顾诵芬,史超礼.世界航天发展史[M].河南科学技术出版社.郑州,2000.
    [10] Conover, G.H.,Jr. Cold-Flow Studies of Igniter Plume Flow Fields and Heat rransfer[R].NGr-01-003-800. June 1984.
    [11] A. Ciucci, Rhonald M. Jenkins, etc. Numerical Analysis of Ignition Transients in Solid Rocket Motors[R]. AIAA 91-2426.
    [12] Ciucci A et al. Analysis of ignition and flame spreading in the space shuttle headend star grain[R]. AIAA 93-2310.
    [13] Seung Wook Baek. etc. Numerica] Analysis of Ignition Transient in an Axisymmetric Solid Rocket Motor Equipped with Rear Ignition System[R].AIAA 97-2715.
    [14] In Hyun Cho, Seung Wook Baek. Numerical Simulation of Axisymmetric Solid Rocket Motor Ignition Transient With Radiation Effect[R]. Journal Propulsion. Vol. 16, No. 4.
    [15] Fisher, P. E. An Investigation of Igniter Plume Heat Transfer to Solid Propellant[D]. MS Thesis, Auburn University, August 1985.
    [16] Gary Daniel Luke. A Study of the Ignition Transient in Large Aspect Ratio Solid Rocket Motors[D]. University of California, 1996.
    [17] Keith, F. Principles of Heat Transfer[M], 2nd Edition, International Textbook Co., 1965.
    [18] J. W. Weber and M. Q. Brewster. Radiant Ignition of Solid Propellants[R]. AIAA 2002-3752.
    [19] Kuo, K. K. Kokal, R. A. Flame-spreading phenomena in the fin-slot region of a solid rocket motor[R] .AIAA 94-2311.
    [20] Kuo, K. K., et al . Heat Transfer Measurements and Correlation for the Fin-Slot Region of a Solid Rocket Motor. AIAA 94-2310.
    [21] G. D. Luke, M. A. Eaga., H. A. Dwyer. Ignition Transient Model for Large Aspect Ratio Solid Rocket Motors[R]. AIAA 96-3273.
    [22] S.D.Bai., Samuel S.Han and B. A. Pardue. 2D Axisymmtric Analysis of SRM Ignition Transient[olssonR]. AIAA 93-2311.
    [23] Jasper Lal, etc . Prediction of Ignition Transients in Solid Rocket Motors Employing Canted Pyrogen Igniters[J]. Journal of Propulsion and Power. Vol 6. No 3. 1990, pp344-345.
    [24] Rhonald M. Jenkins, Winfred A. Foster, Jr., and Lora S. Wirth. Numerical Analysis of Unsteady Multiple Jet Plume Interactions[J]. Applied Mathematics and Computation, 79, 1996.
    [25] Holger. Martin. Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, Advances in Heat Transfer[M], Vol 13,1977.
    [26] Yongmann M Chung, Kai H Luo. Unsteady Heat Transfer Analysis of An Impinging Jet[J]. Journal of Heat Transfer, Dec 2002, Vol 124.
    [27] E. C. Mladin, D. A. Zumbrunnen. Local convective heat transfer to submerged pulsating jets[J]. Internat. J. Heat Mass Transfer, 40 ,1997.
    [28] Heinz Herwig,, Horst Mocikat, Thomas Gurtler, Stefan Goppert,. Heat Transfer Due to Unsteadily Impinging Jets[J]. International Journal of
     Thermal Sciences, 43,2004.
    [29] Chyu M K, Hsing Y C. Heat transfer contributions of pins and endwall in pin-fin arrays: Effects of thermal boundary condition modeling[J]. ASME J. of Turbomachinery, 1999,4.
    [30] X. Li, J.L. Gaddis, r. Wang,. Mist/steam cooling by a row of impinging jets[J]. International Journal of Heat and Mass Transfer, 46,2003.
    [31] Dong-Ho Rhee, Pil-Hyun Yoon, Hyung Hee Cho. Local heat/mass transfer and flow characteristics of array impinging jets with effusion holes ejecting spent air[J].International Journal of Heat and Mass Transfer, 46,2003.
    [32] Desoto S.,Friedman H A. Flame Spreading and Ignition Transients in solid grain rocket[J]. AIAA J 1965,3.
    [33] McAlevy. R.F,.and Summerfield, M.,Results of Shock Tube Ignition Studies on Composite Solid Propellants[R].Progress in Solid Propellants. Edited by M. Summefield, Vol 1.1960.
    [34] McAlevy, R.F., Cowan, P.L.,and Summerfield, M. TheMechanismof Ignition of Composite Solid Propellants By Hot Gases[R],Solid Propellant Rocket Research, Vol. 1, New York 1960.
    [35] Baumeister, K.J.,and Hamill, T.D. Hyperbolic Heat Conduction Equation-a Solution for the Semi-lnfinite Body Problem[J].Journal of Heat Transfer, Vol. 91, No 4,1969.
    [36] Baumeister, K.J.,and Hamill, T.D. Hyperbolic Heat Conduction Equation-a Solution for the Semi-Infinite Body Problem[J].Journal of Heat Transfer, Vol. 93, No 2,1971.
    [37] Kaminski, W. Hyperbolic Heat Conduction Equation for Materials with a Nonhomogeneous Inner Structure[J].Journal of Heat Transfer, August 1990, Vol. 112.
    [38] W. Roetzel, N. Putra, S.K. Das. Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure[J].International Journal of Thermal Sciences, 42 (2003).
    [39] Mitra, K.S, Kumar. etc. Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat[R].Transactions of the ASME, Vol. 117, August 1995.
    [40] Paul J. Antaki. Importance of NonFourier Heat Conduction in Solid-Phase Reactions[J].Combustion and Flame, 112.1998.
    [41] 姜任秋 等.快速瞬态高强度加热微小尺度内的热传导的研究[J].能源技术,No.4,2000.
    [42] 姜任秋 著.热传导、质扩散与动量传递中的瞬态冲击效应[M].北京:科学出版社,1997.
    [43] Kuo-Chi Liu, Hart-Taw Chen. Numerical analysis for the hyperbolic heat conduction problem under a pulsed surface disturbance[J]. Applied Mathematics and Computation (2004).
    [44] D.W. Tang, N. Araki. Non-fourier heat condution behavior in finite mediums under pulse surface heating[J]. Materials Science and Engineering A292,2000.
    [45] Hsin-Sen Chua, etc. Non-Fourier heat conduction with radiation in an absorbing, emitting, and isotropically scattering medium[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 73,2002.
    [46] 张九如.由量子物理理论和量子统计力学计算金属中热传导的速度[J].鞍山钢铁学院学报,Vol.24,No.4,2001.
    [47] Ching-Chuan Yen, Chih-Yang Wu. Modelling hyperbolic heat conduction in a nite medium with periodic thermal disturbance and surface radiation. [J] Applied Mathematical Modelling 27 (2003).
    [48] L.H. Liu, etc. Non-Fourier effects on transient temperature response in semitransparent medium caused by laser pulse[J].International Journal of Heat and Mass Transfer(44),2001.
    [49] 张浙,刘登瀛.超急速传热是球体内非稳态热传导的非傅立叶效应[J].工程热物理学报,Vol.19,No.5,1998.
    [50] Salita, M. Rocket Propellant Ignition: A Workshop Report[R]. Proceedings of the 22rid JANRAF Combustion Meeting, Vol. 1 1985.
    [51] Vellacott, R.J.,Caveny, L.H. A Computer Program for Solid Propellant Rocket Motor Design and Ballistics Analysis[R].ARS Preprint No. 2315-62,1962.
    [52] Caveny, L.H. Extension to Analysis Ignition Transients of Segmented Solid Rocket Boosters[R].Final Report, NASA CR-150632,1978.
    [53] Richard H. Sforzini and Hugh L. Fellows Jr. Prediction of Ignition Transients in Solid-Propellant Rocket Motors[J]. J.S.R Vol 7 No. 5 1970.
    [54] Sforzini, R.H. Extension of a Simplified Computer Program for Analysis of Solid-Propellant Rocket Motors[J].Journal of Spacecraft and Rockets, Vol. 7, No. 5, May 1970.
    [55] Peretz, A., et. al. Start Transient of Solid-Propellant -Rocket Motor with High Internal Gas Velocities[J].AIAA Journal Vol 11, No 12, Dec 1973
    [56] Caveny, L.H. and K.K. Kuo, Ignition Transients of Large Segmented Solid Rocket Boosters[R].NASA CR-150162,1976.
    [57] 蹇泽群,何洪庆.固体火箭发动机启动瞬变过程预示研究[J].宇航学报,4,1982,10.
    [58] Samuel. S. Han. Ignition Transient Analysis of Solid Rocket Motor[R]. N92-15864.
    [59] Byron A. Pardue, Samuel S. Han. Ignition Transient Analysis of a Solid Rocket Motor Using a One Dimensional Two Fluid Model[R]. AIAA 92-3277.
    [60] Samuel s. Han. lgnition Transient Analysis of Solid Rocket Motor[R]. N91-18985.
    [61] L. d'Agostino. L Biagioni, G. Lamberti. An Ignition Transient Model for Solid Propellant Rocket Motors[R]. AIAA 2001-3449.
    [62] Maurizio Di Giacinto and Ferruccio Serraglia. Modeling of Solid Motor Start-up[R].AIAA 2001-3448.
    [63] V.R. Sanal Kumer, et al. Studies on Ignition Transient of Solid Rocket Motors With Non- uniform Ports[R]. AIAA 2000-3701.
    [64] G. Le Tanrer The Flowfiled of Solid Rocket Motor During Ignition Transient [R]. AIAA 82-1062.
    [65] Ciucci, A. Numerical investigation of the flow field in the head-end, star grain section of a solid rocket motor during ignition transients[D]. Auburn Univeersity, 1991.
    [66] Huseman, P. CFD Analysis of SRM and SRMU Ignition[R]. AIAA Large Booster Conference (Monterey),10/94.
    [67] V.R.S. Kumar etc. studies on heat flux distribution in solid rocket motors with non-uniform port[R].AIAA 2003-4959.
    [68] V.R. Sanal Kumar and C. Unnikrishnan etc. Effect of Flame Spread Mechanism on Starting Transients of Solid Rocket Motors[R]. AIAA 2001-3854.
    [69] V. R. Sanal Kumar and C. Unnikrishnan. Ignition Delay and Unsteady Temperature Effects on Ignition Peak of Solid Rockets[R]. AIAA 2002-3754.
    [70] C. Unnikrishnan and V.R. Sanal Kumar. Internal Flow Simulation of Solid Rockets using an Unsteady Navier Stokes Solver[R] .AIAA 2001—3450.
    [71] V. R. Sanal Kumar and C. Unnikrishnan. Effect of Flame Spread Mechanism on Starting Transients of Solid Rocket Motors[R].AIAA 98-3842
    [72] Chang, I.S., Patel, N.R., and Yang, S.H. Titan IV SRMUAnomaly and Redesign Analyses[R]. 30th Joint Propulsion Conference (Indianapolis), 6/94.
    [73] W.A. Johnston. Solid Rocket Motor Internal Flow During Ignition[J]. Journal of Propulsiong and Power, Vol 11. No 3. May-June 1995.
    [74] Tong-Miin Liou Wan-Yih Lien. Numerical Simulation of injection-driven flows in a two-dimensional nozzleless solid rocket motor[J]. Journal of Propulsion & Power, Vol 11. No4 July-August1995.
    [75] 叶定友,单建胜.大力神—4改进型固体助推器爆炸原因分析及启示[J].固体火箭技术,1994,3.
    [76] 宋明德,王敬超.固体火箭发动机压强曲线上升段预示的一种实用方法[J].固体火箭技术,1994,3
    [77] 宋明德,蹇泽群,王敬超,叶定友.固体火箭发动机点火过程内流场的二维预示.宇航学报,1993,10,第四期.
    [78] 宋明德 译,叶定友 校.航天飞机固体火箭发动机内流场[R].AIAA 88—3184
    [79] 余贞勇.固体火箭发动机翼槽内火焰传播机理研究[D].西北工业大学,2000,3.
    [80] 余贞勇,田维平.翼槽内燃气填充过程的数值模拟[R].中国宇航学会固体火箭推进专业委员会第二十届年会,湖南,张家界.2003,9.
    [81] 余贞勇,甘晓松.小型固体发动机尾部药型对点火升压过程的影响[J].固体火箭技术,Vol.25 No.3 2002.
    [82] 余贞勇.翼柱型装药发动机点火升压过程计算[J].固体火箭技术,Vol.23No.3 2000.
    [83] 刘君,张为华.某型号固体火箭发动机点火过程的数值模拟[J].固体火箭技术,2000,4.
    [84] 陈军涛,蹇泽群,陈林泉.固体火箭发动机点火瞬时内流场轴对称数值分析[J].固体火箭技术,Vol.27,No.3,2004.
    [85] Gary D. Luke.,Harry A. Dwyer,.Current States of the Development of an Ignition Transient Model for Solid Rocket Motors[R].N92-32246.
    [86] P. Le Helley. 3D Turbulent Navier-Stokes Similations of Ignition Transients in Solid Rocket Motors[R]. AIAA 98-3843.
    [87] I.D. Parsons, P. Alavilli, etc. Coupled Simulations of Solid Rocket Motors[R]. AIAA 2000-3456.
    [88] R. Fiedler, X. Jiao, etc. Coupled Fluid-structure 3-d Solid Rocket Motor Simulations[R]. AIAA-2001-3954.
    [89] D. E. Coats, J. C. French, S. S. Dunn, D. R. Berker. Improvements to the Solid Performance Program (SPP)[R]. AIAA-2003-4504.
    [90] Coats, D. E., Dang, A. D., and Dunn, S. S. Nozzleless Performance Program, NPP 97[R]. software and Engineering Associates, Inc., Carson City, NV, 1997.
    [91] J. C. T. Wang. Modern SRM Ignition Transient Modeling (part 5) : Prospective Developments in CFD Simulation[R]. AIAA 2001-3447.
    [92] J. C. T. Wang, S. H. Yang etc. Coupled Transient Flowfield and Propellant Deformation Analysis for the Titan IV 7-segment Solid Rocket Motor [R]. AIAA 94-3285.
    [93] J. C. T. Wang, E. M. Landsbaum, A. B. Cozart, S. A. Frolik, I. Lee . Recent Progress in SRM Ignition Transient Modeling[R]. AIAA-2003-5115.
    [94] K. C. Tang and M. Q. Brewster Dynamic Combustion of AP Composite Propellants: Ignition Pressure Spike[R]. AIAA 2001 -4502.
    [95] Heath, M. Whole-system Simulation of Solid Rockets Is Goal of ASCI Center at Illinois. SIAM News Volume31, No. 4, May 1998.
    [96] James M. Pickard. Critical Ignition Temperature[R]. Thermochimica Acta 392-392 2000.
    [97] Desoto, S. and Friedman, H. A. Flame-Spreading and Ignition Transients in Solid Grain Propellant Rocket Motors[R]. AIAA Prepirnt No 64-126.
    [98] Paul, B. E., et al. Propellant Surface Flame Propagation in Rocket Motors[R]. AIAA 64-125.
    [99] Jensen,G.E.,et al. Ignition and Ignition Propagation in Solid Propellant Motors[R]. AIAA 66-677.
    [100] Parker, K. H., et al.The Ignition Transients in Solid Rocket Grain Propellants[R]. AIAA 64-126.
    [101] Summerfield,M., et al. Starting Thrust Transients of Solid Propellant Rocket Motors[R]. Aerospace and Mechanical Sciences Report 796, Feb, 1966.
    [102] Parker, K. H., Most, W. J., and Summerfield, M. The Ignition Transient in Solid Propellant Rocket Motor[R]. Astronautica Acta, Vol. 12, No. 4, July-Aug,
     1966.
    [103] McAlevy, R.C. Flame Spreading Over the Surface of Ignition Solid Rocket Propellants and Propellant Ingredientsl[J].AIAA Journal, Vol. 5,1967.
    [104] Mitchell, R.C.,et al. Flame Spread on Solid Propellant[R].AIAA 64-128.
    [105] Zhang Fusheng. etc. An Application of High Speed Photography to the Real Ignition course of Composite Propellants[R]. SPIE Vol 1032, High Speed Photography and Photonic 1988.
    [106] 倪平鹏.固体火箭发动机火焰传播试验研究与理论分析[D].北京 北京工业学院,1989.
    [107] 王慧,蹇泽群,王华,允敏.大后翼与主流相互作用的模拟点火试验[J].推进技术,Vol 18 No 3 Jun.1997.
    [108] Hicks, Bruce. L. Theory of Ignition Considered as a Thermal Reaction. [J] .Chem. Phys.,Vol. 22, no. 3, Mar, 1954.
    [109] Summerfield, M.; et. al. The Shock Tube as a Tool for Solid Propellant Ignition Research[J]. Jet Propulsion, July 1958.
    [110] Summerfield M, A Critical Review of Recent Research on the Mechanism of Ignition of solid Rocket Propellants[R]. Report 661, Princeton Univ, Aug. 26.1963.
    [111] Anderson, R. Brown, R. ;Ehompson, G.; and Ebeling, R. Theroy of Hypergolic Ignition of Solid Propellants[R]. Paper 63-514 presented at AIAA Heterogeneous Combustion Conference, Dec. 13,1963.
    [112] H.H. Jr. Bradley. A Unified Theory of Solid Propellant Ignition[R],AD 785231.
    [113] A.K. Kulkarni, M. Kumar and K.N. Kuo, A Comprehensive Ignition Model for Compsoite Solid CPropellants[R].lSth JANNAF Combustion Meeting, Vol 3,1981.
    [114] M. Kumar, J.E. Wills, etc. A Comprehensive Model for AP -Based Compsoite Propellant Ignition[J]. AIAA J.,Vol. 22, No. 4.1984.
    [115] K.A. Bhaskaran, etc. Analysis of Metallised Propellant Ignition Process under Conductive Heating[J].Defence Science Journal, Vol 48, No3, July 1998.
    [116] Mehmet Ali AK, Hiiseyin Vural. Gas Phase Ignition of Solid Rocket Motors[R].AIAA 99-2495.
    [117] R.K Kumar, C.E. Hermance. Role of Gas-Phase Reactions During Radiative Ignition of Solid Propellants[J] .Combustion Science and Technology, 4, 1972.
    [118] YongJoo Lee, Ching-Jen Tang and Thomas A. Litzinger. A Study of the Chemical and Physical Processes Governing C02 Laser-Induced Pyrolysis and Combustion of RDX[J]. Combustion and Flame, 117:600-628(1999)
    [119] Y.-C. Liau.,E.S. Kim.,and V. Yang. A Comprehensive Analysis of Laser-Induced Ignition of RDX Monopropellant[J]. Combustion and Flame, 126:1680-1698(2001).
    [120] NASA Space Vehicle Design Criteria:Solid Propellant Grain Design and Internal Ballistics[R].NASA SP-8076. March 1972.
    [121] 李世鹏,张平.短脉冲发动机瞬态点火特性分析[R].第二十三届学术交流会议文集.
    [122] Salita, M. Verification of Spatial and Temporal Pressure Distributions in Segmented Solid Rocket Motors[R]. AIAA 89-0298.
    [123] Steven P. Purcell.,Weldon L. Daines. etc. Simulation of the Pressure Gradient in a Segmented Solid Rocket Motor During the Ignition Transient[R].AIAA 92-3812.
    [124] Johnston, W.A. A numerical Procedure for the Analysis of the Internal Flow in a solid Rocket Motor During the Ignition Transient period[R], AIAA 91-1655.
    [125] W.A. Johnston and J.W. Murdock. Flow-Structural Interaction Inside a Solid Rocket During Ignition Transient[R].AIAA 94-3286.
    [126] W.A. Johnston. Flow-Structural Analysis of the Ariane 5 Solid Rocket Motor During Ignition Transient[R].AIAA 96-0653.
    [127] Shiang-Woei Chyuan. Dynamic Analysis of Solid Propellant Grains Subjected to Ignition Pressurization loading[J]. Journal of Sound and Vibration, 268(2003).
    [128] Shiang-Woei Chyuan. Studies of Poisson' s Ratio Variation for Solid Propellant Grains Under Ignition Pressure Loading[J].International Journal of Pressure Vessels and Piping, 80 (2003).
    [129] S. Y. HO. High Strain-Rate Impact Studies of Predamaged Rocket Propellants Characterization of Damage Using a Cumulative Damage Failure Criterion[J]. Combustion and Flame, 104: 524-534 (1996).
    [130] K. Renganathan, B. Nageswara Rao, M.K. Jana. Failure pressure estimations on a solid propellant rocket motor with a circular perforated grain[J]. International Journal of Pressure Vessel and Piping, 76, 1999.
    [131] M.R. Lajczok. Effective Propellant Modulus Approach for Solid Rocket Motor Ignition Structural Analysis[J].Computer and Structures, Vol. 56. Nol, 1995.
    [132] 蒙上阳.XX型号空一空导弹发动机结构完整性评估[D].国防科技大学,长沙.2001.
    [133] 沈怀荣.固体推进剂的粘弹性损伤分析及有关理论探讨[D].国防科技大学,长沙.1985.
    [134] White. J.L. Finite elements in linear viscoelasticity[R].Proc. Of 2nd. Conf. On Matric Method in struc. Mech. Sci, 10, 1968.
    [135] Zienkiewicz. O.C, Watson. M, King. I.P.A numerical method of viscoelastic stress analyses[J]. Int. J. Mech. Sci. ,10, 1968.
    [136] Strinatha. H.R, Lewis. R.W.A finite element method for thermovicoelastic analysis of plane problems[J]. Computer Methods in Apll. Mech, 25,1981, IAA-05-p0705.
    [137] 李庆中译.Winfred A. Foster Jr.航天飞机的两个固体火箭发动机的推力不平衡[R].AIAA 81-1610.
    [138] 张平,李世鹏,刘玉群.点火药量对微型脉冲推力器内弹道性能的影响[J].航空动力学报,第18卷,第1期.2003年2月.
    [139] 裴锦华.无人机双发固体火箭助推器同步性研究[J].飞行力学,Vol 17,No.1.Mar 1999.
    [140] NASA Space Vehicle Design Criteria:Solid Rocket Motor Performance Analysis and Prediction[R].NASA SP-8039, May, 1971.
    [141] NASA Space Vehicle Design Criteria:Solid Rocket Motor Igniters[R].NASA SP-8051. March, 1971.
    [142] 陈汝训 主编.固体火箭发动机设计与研究(下)[M].宇航出版社,北京.1992.
    [143] E.E.M. Olsson, L.M. Ahrne, A.C. Tragardh. Flow and heat transfer from multiple slot air jets impinging on circular cylinders[J]. Journal of Food Engineering, 2004.
    [144] 赵学瑞,廖其奠.粘性流体力学[M] 机械工业出版社 北京 1983.
    [145] 刘惠枝,舒宏纪 编.边界层理论[M].人民交通出版社,北京,1991.
    [146] Keith, F. Principles of Heat Transfer[M], 2nd Edition, International Textbook Co. , 1965.
    [147] R Hughes. Space Shuttle Flight Support Motor No. 1 (FSM-1) Final Test Report [R]. N91-16064/8.
    [148] Clarke E. Hermance. Approximate Solution Method for the Hyperbolic Heat Equation[J]. Journal of Propulsion, Vol 15. No 6.
    [149] 梁昆淼编.数学物理方法[M].人民教育出版社,北京,1978.
    [150] 伊萨琴科等著,王丰等译,传热学[M].高等教育出版社,北京,1987.
    [151] 徐云生,过增元.半导体击穿过程的热分析[J].工程热物理学报,Vol 13,No 1,1993.
    [152] M. Honner. Heat Waves Simulation[J], Computers and Mathematics with Applications, 38, 1999.
    [153] 张浙,刘登赢.非傅里叶热传导研究进展[J].力学进展.Vol.30.No.3.Aug,2000.
    [154] 蔡体敏主编.固体火箭发动机工作过程的数值分析[M].西北工业大学出版社,西安,1991.
    [155] 董师颜,张兆良编著.固体火箭发动机原理[M].北京理工大学出版社,北京,1996.
    [156] 方丁酉,张为华,杨涛编著.固体火箭发动机内弹道学[M].国防科技大学出版社,长沙,1997.
    [157] 王承尧,王正华,杨晓辉编著.计算流体力学及其并行算法[M].国防科技大学出版社,长沙,2000.
    [158] 叶万举编.固体火箭发动机瞬变过程理论基础.国防科技大学讲义,1982.
    [159] 李逢春编.固体火箭发动机点火理论.西北工业大学讲义,1984.
    [160] P. Crimmins, M. Cousineau, C. Rogers and V. Shell. The 260—The Largest Solid Rocket Motor Ever Tested[R], AIAA 2000—3690.
    [161] 胡广书编著.数字信号处理[M].清华大学出版社,北京,1997.
    [162] 蹇毅.固体发动机点火过程的影响因素分析[R].中国宇航学会固体火箭推进剂专业委员会第二十一届年会论文集,2004,10.苏州.
    [163] 唐志平,田兰桥,朱兆祥,王礼立.高应变率下环氧树脂的力学性能研究[J],第二届全国爆炸力学会议文集,1981,4.
    [164] 贺兴书.机械振动学[M],上海交通大学出版社,1989,4.
    [165] 蒙上阳,唐国金,雷勇军,张海联.Burgers模型的参数获取方法[J].固体火箭技术.2003,26(2).
    [166] Sook-Ying Ho. High Strain-Rate Constitutive Models for Solid Rocket Propellants[J], Journal of Propulsion and Power, Vol 18 No 5 September-October 2002.z
    [167] B. M. Rasmussen, etc. A Theoretical Pressure-driven Response Function for Composite Solid Propellants[R]. JANNAF, 98, 7.
    [168] Lajczok, M. R. , Martin Marietta. Solid Rocket Motor Ignition Transient Structural Analysis[R]. ABAQUS Users' Conference, Newport, RI, June 1994.
    [169] 金治明,李永乐编.概率论与数理统计[M].国防科技大学出版社,长沙,1997.
    [170] 方开泰,马长兴著.正交与均匀试验设计[M].科学出版社,北京,2001.
    [171] 徐春光,刘君.激波绕射狭缝的发展过程研究[J].固体火箭技术,2003.26 (1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700