脉冲变压器磁芯测试系统研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为开关电源重要组成部分的脉冲变压器磁芯,其性能的优劣与开关电源的性能密切相关。与电参数测量相比,磁参数测量要复杂的多。由于生产工艺所限,目前市场上可得到的脉冲变压器磁芯性能一致性很难得到保证。困惑开关电源生产企业的磁芯一致性问题还未得到很好地解决,能够满足开关电源生产企业对磁芯筛选需求的脉冲变压器磁芯测试仪还不多见。本论文工作设计了一款能够测量脉冲变压器磁芯参数的磁性能测量系统,可用于企业对磁芯产品的筛选。
     论文分析了国内外动态磁性测量仪器的现状和发展趋势,从动态磁性测量的基本原理出发,阐述了脉冲变压器磁芯测试系统的设计方法。系统由交流程控励磁电源、数据采集电路、数据传输电路和上位机软件组成。交流程控励磁电源由可调信号源和高频功率放大器组成,功能是使磁芯达到饱和,其中:可调信号源采用AD9851 DDS芯片和AD8400数字电位器组成,高频功率放大器采用2SA1930/2SC5171高频中功率对管和2SA1943/2SC5200高频大功率对管组成;数据采集电路由FPGA和TLC5540高速A/D转换器组成,实现对H路和B路信号的采样及对采样数据的存储;数据传输电路由FPGA和USB微处理器组成,完成把采集到的数据传输到PC机的缓冲区;上位机软件采用LabVIEW编程,实现对采集到的数据进行处理,并通过USB微处理器输出控制信号用以控制交流程控励磁电源。
     根据企业对开关电源使用频率的要求,所设定的系统测试频率范围为10kHz-200kHz,输出的励磁电流范围为0.05A~4A,能够单匝测量磁芯参数,可以满足一般灯具用开关电源磁芯测试要求;系统采用数值积分代替传统的硬件积分,简化了电路,避免了硬件积分相移难以控制的缺点。所设计的系统能够快速、准确地测量出磁芯的最大磁感应强度B_m,最大磁场强度H_m,剩余磁感应强度B_r,矫顽力H_c,幅值磁导率μ_α和矩形比B_r/ B_m等磁芯参数,能够在PC机上绘制出磁滞回线。
     论文给出了测试过程中遇到的问题及其解决方法。系统对标准的MnZn铁氧体磁芯进行实际测试,并将测试数据与日本岩崎通讯株式会社的SY8232B-H回线测试仪的测试结果进行比对,结果表明该系统达到了预期的设计目标。
As an important component of switching power supply, the performance of pulse transformer magnetic core is closely related to the one of switching power supply. Comparing with the measurement of electrical parameters, the magnetic parameter measurement is more complicated. As the limitation of technology, the pulse transformer core in current market has difficulty in consistency, which is a big problem to the manufacturers, and the pulse transformer core tester which can meet the requirements of magnetic core screening is also uncommon. In this paper, a magnetic measurement system is designed to measure the magnetic core parameters of the pulse transformer, and can be used in enterprises for the screening of magnetic core products.
     The paper analyzes the status quo and development trend of dynamic magnetic measurement instrument at home and abroad, which describes the design method of intelligent testing system of pulse transformer core based on the basic principle of dynamic magnetic measurement. The system consists of AC programmable excitation power, data acquisition circuit, data transmission circuit and host computer software component. AC programmable excitation power consists of the adjustable signal source and the high-frequency power amplifier, whose function is to allow core saturated. Adjustable signal source adopts AD9851 DDS chip and AD8400 digital potentiometer and high-frequency power amplifier adopts high- frequency and middle-power pair tubes 2SA1930/2SC5171 and high- frequency and high-power pair tubes 2SA1943/2SC5200. Data acquisition circuit is composed of FPGA and TLC5540 high-speed A/D converter, whose achievement is to realize signal sampling and data storage of H Road and B Road. Data transmission circuit consists of FPGA and USB microprocessor, which transfers the collected data to PC-Buffer. Host computer software is programmed with LabVIEW, which realizes the process of the collected data and through the USB microprocessor outputting controlling signals to control the AC programmable excitation power.
     According to the requirement of usage frequency in enterprises, the settled frequency scope of system testing is between 10kHZ to 200kHZ, and the scope of outgoing magnetizing current is between 0.05A to 4A, which can measure the magnetic core paremeters in single turn, and also meet the requirement of general lighting devices of measuring by switching power supply magnetic core.; the system adopts digital integration to replace the traditional hardware integration, not only simplifies the circuit to avoid the phase-shift of hardware integration difficult to control, but also improves the testing accuracy and speed. The designed system can test maximum magnetic induction intensity B_m, maximum magnetic field strength H_m, remnant magnetization B_r, coercive force H_c, Amplitude Permeabilityμ_αand squareness ratio B_r/B_m, and be able to draw out the hysteresis loop on the PC.
     The paper gives the problems of testing process and their solutions. The system tests MnZn ferrite ring, and the test results compares with the testing data of Japanese Iwasaki Corporation SY8232B-H loop tester, whose result shows that the system achieves the desired goal.
引文
[1]彭龙,张怀武.我国软磁铁氧体产业发展与未来[J].新材料产业,2007,1:40.
    [2]翁兴园.前景广阔的中国软磁铁氧体产业[J].产业论坛,2003,113:27.
    [3]李东风,贾振斌,魏雨.软磁铁氧体的发展历程与展望[J].化工时刊,2002,8:12.
    [4]翁兴园.中国软磁铁氧体产业发展面临的风险和挑战[J].新材料产业,2007,7:45.
    [5]李曙光.浅谈推动我国绿色照明工程的措施[J].应用能源技术,2003(3):5-7.
    [6]梅文余.动态磁性测量[M].北京:机械工业出版社,1985:28-58.
    [7]周世昌.软磁铁氧体磁性测量技术及其发展[J].磁性材料及器件,1998,6:18-21.
    [8]夏学存,池灵友.磁性材料综合性能动态测量系统的设计和实现[J].中国照明电器,2008,9:4-6.
    [9]陆大川.磁性测量[M].北京:电子工业出版社,1995:3-4,116-117,130.
    [10]张国峰.软磁环磁滞迴线测试系统的设计[D].杭州:杭州电子科技大学,2005:14-16.
    [11]唐统一.电磁测量[M].北京:清华大学出版社,1997:77-86.
    [12]张世远.磁性材料基础[M].北京:科学出版社,1988:15-30.
    [13] Takaaki Yamamoto,Yoshihiro Ohya. Single Sheet tester for Measuring Core Losses and Permeabilitiesin a Silicon Steel Sheet[J]. IEEE Trans. on Magn,1974,June,Vo1.10,No.2: 157-159.
    [14]宋玉升.磁性材料及器件测量[M].北京:电子工业出版社,1984:71-127.
    [15]孙晓华,任稳柱.基于虚拟仪器技术的磁特性自动测试仪的研制[J].高压电器,2004,2:101-103.
    [16]马淑华,赵一丁,汪晋宽.基于虚拟仪器的纳米晶磁环动态参数测试系统[J].仪器仪表学报,2008,4:860-863.
    [17]张志高,王立新,候瑞芬,邓卓,瞿清昌.动态磁性能测试仪的研究[J].现代测量与实验室管理,2004,3:18-20.
    [18]张晓兵,陈福朝,尹涵春.磁滞回线测试系统的改进[J].电子器件,2000,4:276-279.
    [19]张国峰,秦会斌,郑梁,史东强.软磁环磁滞回线测量中的定标[J].自动化与仪器仪表,2005,2:29-30,33.
    [20]庄建红,陈鑫.虚拟仪器技术的软磁材料动态磁性测量系统[J].北京机械工业学院学报,2007,3:37-38.
    [21]孙庆辉,张礼勇,兰天.基于虚拟仪器技术的软磁材料磁测试仪[J].电测与仪表,2004,3:11-13.
    [22]熊卫民,吴运新,沈华龙.基于AD9851和PC机的正弦波信号源的实现[J].现代电子技术,2008,1:44.
    [23]郭勇,肖明清,谭靖,王学奇.DDS芯片AD9851及其应用[J].电子技术,2001,2:54,55-56.
    [24]陈永泰,刘雪燕.AD9851与AT89C51在信号源中的应用[J].世界电子元器件,2004,7:63-65.
    [25]王光明,沈国际.程控增益放大器的实现方法[J].电子工程师,2002,28(4):58-60.
    [26]刘晨霞,傅玉田.基于数字电位器AD8402的程控增益系统[J].科学技术与工程,2007,1:1458-1461.
    [27]王志敏,孟桥,顾奇龙.一种用于磁性测量的高压宽带功率放大器的设计[J].仪器仪表与分析监测,2008,1:13-15.
    [28]肖景和,赵健.高保真音响电路与家庭影院音响系统[M].北京:人民邮电出版社,2000,1:17-19,252-253,275.
    [29]周宗善.倒达林顿输出级无负反馈功放[J].无线电与电视,1998,6:46-47.
    [30] http://www. FPGA.com
    [31] http://zhidao.baidu.com/question/22780431.html
    [32] http://hi.baidu.com/peiandz/blog/item/a62c01815e4b19dbbc3e1ebc.html
    [33]罗杰.Verilog HDL与数字ASIC设计基础[M].武汉:华中科技大学出版社,2008:168.
    [34]温华.基于FPGA的USB2.0控制芯片设计与实现[D].四川:西南交通大学,2004:42-50.
    [35]薛园园,赵建领. USB应用开发实例详解[M].北京:人民邮电出版社,2009:4-5.
    [36]钱峰.EZ-USB FX2单片机原理、编程及应用[M].北京:北京航空航天大学出版社,2006:148-170.
    [37]中国源创力科技.USB2.0–CY7C68013A–128S使用说明[EB/CD].http://www.chinaycl.com,2005-8-2.
    [38] Jan Axelson.USB Complete:Everything You Need to Develop Custom USB Peripherals[J].Madison,WI:Lakeview Research,2005:127-132.
    [39]薛园园. USB应用开发技术大全[M].北京:人民邮电出版社,2007:434-438,202.
    [40] WANG jian,WAN xu,ZHANG hong-fei.FPGA and USB based control board for quantum random number generator[J].OPTOELECTRONICS LETTERS,September 2009,Vol.5 No.5.
    [41] Mike Gordon.The semantic of Verilog HDL[A].P roc Tench A nnual IEEE Sympo sium on Logic in Computer Science[C].IEEE Computer Society Press,1995:136-145.
    [42]王传新.FPGA设计基础[M].北京:高等教育出版社,2007,9:122-135.
    [43]蒋金涛,杨鸣.USB2_0控制器EZ_USB_FX2的性能特点及其数据传输实现[J].计算机工程与应用,2005,11:94-97.
    [44]林愿,吴淑泉,冼志妙.USB2_0控制器CY7C68013的接口设计实现[J].国外电子元器件,2004,12:13-16.
    [45]廖传书,黄道斌,孙旦均,李素芬.LabVIEW与USB的直接数据通信[J].现代电子技术,2007,20:4-5.
    [46]余志荣,杨莉.基于NI-VISA与LabVIEW的USB接口应用设计[J].单片机与嵌入式系统应用,2007,1:66-67.
    [47] National Instrument.How to use NI-VISA to control USB Device[EB/OL].http://ni.com/visa.
    [48] Pau Molinas-Mata.Electron resonances and Savitzky-Golay methods:How can the tunneling current be properly calculated[J].Computer physics communications,2000,132.
    [49]胡仁喜,王恒海,齐东明.LabVIEW8.2.1虚拟仪器实例指导教程[M].北京:机械工业出版社,2008,1:174-175.
    [50]侯国屏,王坤,叶齐鑫.LabVIEW7.1编程与虚拟仪器技术[M].北京:清华大学出版社,2005,2:323-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700