小鹅瘟强毒在人工感染雏鹅体内侵染规律及对消化道菌群结构影响的分子解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹅细小病毒,又称小鹅瘟病毒(Goose Parvovirus,GPV),与人细小病毒HPV、牛细小病毒BPV、犬细小病毒CPV以及猪细小病毒PPV等同属于具有单股线状DNA的细小病毒属病毒的成员。目前世界许多饲养鹅及番鸭地区都有本病的发生,特别是在我国的一些省(市、自治区)的流行、传播速度快,发病率和死亡率较高,给养鹅业造成严重危害,带来重大的经济损失,是目前危害养鹅业的主要传染病之一。虽然已建立了针对GPV特异、敏感的PCR诊断方法,但传统PCR无法对病毒核酸进行准确的定量分析,而对病毒基因组的定量研究在病毒学中有着非常重要的意义,是研究病毒的组织细胞嗜性、致病机理及筛选有效抗病毒药物的有力工具。
     肠道菌群结构的变化对鹅细小病毒病的发生、发展和转归的影响是一个不容忽视的问题。本文采用不同的研究方法、从不同的角度对健康及感染小鹅瘟病毒雏鹅的消化道菌群结构进行分子解析,获得如下结果:
     1.本试验以小鹅瘟病毒CH_V强毒株为致病原、以7日龄雏鹅为实验动物,建立细小病毒病动物模型,在国内外首次采用TagMan MGB探针实时荧光定量PCR技术(FQ-PCR)扩增GPV强毒CH_V株的VP3基因,对不同感染途径病毒在体内的分布规律进行实时定量检测,了解其在鹅体内分布规律与鹅临床表现及病程发展的关系,为临床防治提供理论依据。结果表明:(1)优化的FQ-PCR方法可在2 h内实现对GPV的快速定量检测,最低检测限为28 copies/μL,是普通PCR灵敏度的1000倍。(2)口服4 h后雏鹅的食道既可检出GPV DNA,滴鼻感染4 h后雏鹅的气管可检出GPV DNA;注射感染4 h后除雏鹅的肠道、食管、气管、脑、肺外,其它组织均可检测出GPV DNA;12 h后各组织器官中都能检测到GPV DNA,2-9天逐渐达到高峰,之后逐渐减少;GPV DNA含量最多的是肝脏、脾、脑、哈德氏腺等器官。
     2.采用DGGE技术,对不同途径感染GPV的小鹅肠道菌群结构进行动态的分析,以期揭示肠道菌群结构在感染肠道病毒后的总体变化规律。结果表明:临床健康对照鹅肠道菌群结构相对稳定,PCR-DGGE条带数量以盲肠最多(13条),其次是直肠(12条)、空肠(11条)和回肠(11条),十二指肠最少(8条)。皮下感染鹅各肠段随着感染时间的延长,其PCR-DGGE条带数呈逐渐减少再慢慢恢复正常的趋势;口服感染鹅各肠段PCR-DGGE扩增条带数随着感染时间的延长,呈现先逐渐减少,再慢慢恢复正常的趋势:滴鼻感染鹅各肠道中菌群结构变化与其它两种感染途径引起的变化相似,只是时间延后;死亡鹅各肠段中PCR-DGGE条带数最少。表明鹅细小病毒感染鹅的途径与其致病力密切相关、与感染鹅肠道菌群结构我破坏程度密切相关。
     3.建立了鹅粪细菌的16S rDNA文库,从鹅粪的16S rDNA文库中获得了5个优势条带进行测序分析。BLAST分析结果显示,在鹅粪的5个优势菌群中,其中4种菌分别与大肠杆菌属、芽孢杆菌、乳酸杆菌、肠球菌成员有96%以上的同源性,而感染GPV后肠道优势菌群则增加了沙门氏杆菌,说明感染GPV后鹅肠道菌群发生了根本性的改变。
     4.ERIC-PCR是近年研究肠道菌群结构及种群变化的最新分子生物学技术之一,该方法直接根据样品ERIC条带的分布、数量和亮度等信息,分析肠道样品菌群的结构和种群的变化,具有快速、简洁,不依赖纯培养的特点。与其他方法相比,其灵敏度、可重复性和可靠性更好,且省时省力,我们采用ERIC-PCR技术,对不同途径感染GPV的小鹅肠道菌群结构进行动态的分析,以期揭示肠道菌群结构在感染肠道病毒后的总体变化规律。与DGGE检测结果相似:临床健康对照鹅肠道菌群结构相对稳定,ERIC-PCR条带数量以盲肠最多,其次是直肠、空肠和回肠,十二指肠最少。皮下感染鹅各肠段随着感染时间的延长,其ERIC-PCR条带数呈逐渐减少的趋势;口服感染鹅各肠段ERIC-PCR扩增条带数随着感染时间的延长,呈现先逐渐减少,再慢慢恢复正常的趋势;滴鼻感染鹅各肠道中菌群结构变化与口服组相似,只是时间延后;死亡鹅各肠段中ERIC-PCR条带数最少。表明鹅细小病毒感染鹅的途径与其致病力密切相关、与感染鹅肠道菌群的失调程度密切相关。
     5.关于鹅消化道正常菌群的动态分布、变化及鹅感染小鹅瘟病毒后其体内的正常菌群的动力学变化目前尚无系统性的研究资料,而且建立快速、准确、能够定量检测机体内一些正常菌群的检测方法对于辅助治疗小鹅瘟也是非常必要的。虽然ERIC-PCR、DGGE-PCR等指纹图谱技术能很好地分析消化道的菌群结构,但却不能将细菌的数量进行精确的测定。鉴于此,我们采用Taqman-MGB探针实时荧光定量PCR(FQ-PCR)检测技术,建立大肠杆菌属、双歧杆菌属、芽孢杆菌属和乳酸杆菌属的实时荧光定量PCR检测方法,对经感染小鹅瘟病毒鹅的消化道内正常菌群大肠杆菌、双歧杆菌、芽孢杆菌属及乳酸杆菌等鹅体内常见的特定菌群的数量变化规律进行研究,系统地分析鹅消化道这四种菌群的动态分布、变化,为正常菌群与机体的关系及对小鹅瘟发病机制的影响提供实验依据。结果表明:与正常对照鹅相比,不同途径感染鹅细小病毒CH_V强毒株鹅消化道内检测的四种细菌的基因组拷贝数均不同程度的发生了变化。其中大肠杆菌属细菌数量出现峰值的时间顺序为皮下组>口服组>滴鼻组;乳酸杆菌细菌整体含量高低顺序为滴鼻组>口服组>皮下组;其他二种细菌三个攻毒途径的变化趋势相近,但波动大小顺序为皮下组>口服组>滴鼻组。表明细菌失调程度与鹅细小病毒感染途径密切相关。
Goose Parvovirus,which also known as Gosling Plague Virus(Goose Parvovirus,GPV),is the causative agent of Gosling plague(GP),an acute,contagious,and fatal disease, variously known as Derzsy's disease.The virus was classified as an autonomous parvovirus belonging to the family parvovirdae and it was more closely related to the human parvovirus HPV,bovine parvovirus BPV,canine parvovirus CPV and porcine parvovirus PPV.While qualitative PCR was useful for laboratory diagnosis of GPV infection,it still had some problems,it had the processes of electrophoresis and dyeing which had the shortcomings such as time consuming and easy to contaminate,poor quantification and unsuitable for large-scale investigations.Moreover,the amount of virus in different tissues and cells,was very useful for exploring the nosogenesis,virus replication,host-virus interactions,tropism,and effective for screening anti-viral drug,it couldn't be determined by qualitative PCR
     It should not be ignored that the occurrence and development and turnover of GP with the changes in the structure of intestinal flora of goose.The following results were obtained by using different research methods and from different perspectives on health and infected GPV
     1.In this study,7-day-old goslings were chosen as animal model of the virus disease to research the pathogens of GPV CHv strain.To provide the theoretical basis of prevention and treatment of the disease and understanding the relationgship between the distribution of virus in vivo and the clinical manifestations and the development of the disease,the TagMan MGB probes were the first time used for real-time fluorescence quantitative-PCR (FQ - PCR) to amplificate the VP3 gene of GPV whth different routes of infection of the virus.The results showed that:(1) Optimize the FQ-PCR method can be achieved in 2 h for the rapid quantitative detection of GPV,the minimum detection limit was 28 copies /μL,are ordinary PCR sensitivity of 1000 times.(2) 4 h after oral administration of the esophagus can be detected gosling CH_V strain,4 h after intranasal infection of the trachea gosling CHV strain could be detected;injection 4 h after infection of the intestine in addition to Gosling,esophagus,trachea,brain,lung,other organizations can detect CHV strain;12 h after the different organs and tissue can be detected CHV strain,2 - 9 days gradually reached a peak,followed by gradually reduced;viral load Most of the liver, spleen,brain,Harderian gland and other organs.It is suggested that it should be based on different time of infection with different organizations which containning more virus when prepare or detect the antigen,it should be preferred with liver,spleen,brain,Harderian gland when do not know the exact time of infection.
     2.To reveal the overall regularity of the structure of intestinal flora in the gastro-intestinal virus and to analyze the dynamic of intestinal flora by the variation infection ways with GPV,DGGE technology was used based on the success of the quantitative detection of GPV.The results showed that:the structure of intestinal microflora was relatively stable in healthy control goslings,it is at most of the number of PCR-DGGE band with cecum, followed with the rectum,jejunum and ileum,and it is at least in duodenum.PCR-DGGE bands of hypodermically inoculated goslings gradually decreased and then gradually increased to normal with the extension of time after inoculation.PCR-DGGE bands of orally inoculated goslings decreased after inoculation and then gradually increased to normal.The changes of microbial community of nasally infected goslings were the same as other two inoculated way only delay the time.It was the least in dead goslings.The maladjusted degree of intestinal microbial community was correlative with the infected routes of GPV.
     3.The 16S rDNA library of goose fecal bacterial was set up based on successful analysis the overall situation of intestinal flora.Five major bands from 16S rDNA library of gosling feces were sequenced.It was revealed that four major bands which has more than 96% homology with Bacillus,Lactobacillus,Enterococcus members and coliform respectively by BLAST analysis,the dominant microorganisms in intestinal flora was increased with Salmonella after infected GPV and had fundamental changed.
     4.ERIC-PCR is one of the molecular biology techniques on study the change of structure and flora species in recent years.It has characteristic such as fast and simple and not rely on pure culture with the change of structure and the species of intestinal microflora in the sample by analysis directly from the information such as distribution and quantity and brightness of ERIC strip.Compared with other methods,it has the advantege such as sensitivity,better repeatability and reliability,and saving time and labor.ERIC-PCR was used to reveal the overall variation of the structure of intestinal bacteria flora in the gastro-intestinal virus with analysis of intestinal bacteria flora dynamic structures by different ways of GPV infection.With the similar to DGGE results:it is relatively stable of bacillus flora of clinical healthy controls goslings,The band numbers formed by ERIC-PCR of duodenum were the least and were the most of cecal,followed by the rectum, jejunum and ileum.ERIC-PCR bands of hypodermically inoculated goslings gradually decreased and then gradually increased to normal with the extension of time after inoculation.ERIC-PCR bands of orally inoculated goslings decreased after inoculation and then gradually increased to normal.The changes of microbial community of nasally infected goslings were the same as other two inoculated way only delay the time.It was the least in dead goslings.The maladjusted degree of intestinal microbial community was correlative with the infected routes of GPV and the study plays an important role to elucidate the pathogenesis of GPV infection.
     5.There is no systematic research data on the dynamics distribution and changes of normal flora in vivo of healthy goslings and infected with GPV.It is very necessary to set up the detection method which with the advantage of fast,accurate and quantitative detection to some normal flora for the adjuvant treatment of GP.ERIC-PCR or DGGE-PCR was a good fingerprint technique to analysis the structure of the flora but with the accurate number of bacteria.In view of this,Taqman-MGB probe real-time fluorescence quantitative PCR(FQ-PCR) was adopted for detect E.coli,Bifidobacterium genus Bacillus and Lactobacillus in normal gosling flora infected with GPV.The results indicated that the four kind of bacteria of all infected goslings with GPV were varying degrees of changing. The chronologicaol order of Escherichia coli's quantity crest value is hypodermically inoculated goslings>orally inoculated goslings>nasally inoculated goslings.The quantity of Lactobacillus is nasally inoculated goslings>orally inoculated goslings>hypodermically inoculated goslings.The dynamic changes of the other two kind of bacterium are also hypodermically inoculated goslings>orally inoculated goslings>nasally inoculated goslings.So the maladjusted degree of microbial community in respiratory tract was correlative with the infected routes.This study will provide valuable insight into fully understand the pathogenesis of GPV infection.
引文
1.方定一.小鹅瘟的介绍[J].中国畜牧兽医杂志.1962,8:19-20.
    2.Kaleta EF,Will H,Bernius E,Kruse W,Bolte AL.The serologic detection of virus-induced infections in the domestic goose[J].Tierarztl Prax Ausg G Grosstiere Nutztiere.1998,26:234-8.
    3.Brown KE,Green SW,Young NS.Goose Parvovirus-An Autonomous Member of the Dependovirus Genus?[J]Virology.1995,210:283-291.
    4.Takehara K,Nishio T,Hayashi Y,Kanda J,Sasaki M,Abe N,Hiraizumi M,Saito S,Yamada T,Haritani M.An outbreak of goose parvovirus infection in Japan[J].Vet Med Sci.1995,57:777-9.
    5.Schettler CH.Virus hepatitis of geese 3.properties of the causal agent[J].Avian Pathol.1973,2:179-193.
    6.Derzsy D.A viral disease of goslings.I.Epidemiological,clinical,pathological and aetiological studies[J].Acta Vet Acad Sci Hung.1967,17:443-8.
    7.Jansson DS,Feinstein R,Kardi V,Mato T,Palya V.Epidemiologic Investigation of an Outbreak of Goose Parvovirus Infection in Sweden[J].Avian Dis.1977,2:609-613.
    8.Zadori Z,Stefaancsik R,Rauch T.Analysis of Complete Nucleotide Sequence of Goose and Mucovy Duck Parvovriuses Indicates Common Ancestral Origin With Adeno-Associated Virus[J].Virology.1995,1:562-573.
    9.Siegl G,Bates RC,Berns KI,Carter BJ,Kelly DC,Kurstak E,Tattersall P.Characteristics and taxonomy of Parvoviridae[J].Intervirology.1985,23:61-73.
    10.C.H.Schettler.Virus hepatitis of geese Ⅱ.Host range of goose hepatitis virus[J].Avian Dis.1971,1:809-823.
    11.Kisary J..Interaction in replication between goose parvovirus strain B and duck plague herpes virus[J].Arch Virol.1979,1:81-88.
    12.Kisary.Handbook of parvovirus[M].Boca Raton.FL,1990.
    13.Claessens J A SCC,Mocket A P,et al.Molecular cloning and sequnce analysis of the genome of Chicken anaemia agent[J].J Gen Virol.1991,1:2003-2006.
    14.K.Berns,Parvoviridae:the viruses and their replication.In:B.Fields et al.Fundamental Virology,Lippincott-Raven;1996:1017-1041
    15.Lukashov VV,Goudsmit J.Evolutionary Relationships among Parvoviruses:Virus-Host Coevolution among Autonomous Primate Parvoviruses and Links between Adeno-Associated and Avian Parvoviruses[J].J Virol.2001,75:2729-2740.
    16.娄华,杨德威.番鸭细小病毒与鹅细小病毒的PCR鉴别诊断[J].中国预防兽医学报.2000,22:459-461.
    17.程由铨,林天龙,胡奇林等.雏番鸭细小病毒病病毒分离和鉴定[J].病毒学报.1993,3:228-235 病毒[J].中国预防兽医学报.2001,23:447-450.
    19.Mengeling WL,Paul PS,Bunn TO,Ridpath JF.Antigenic relationships among autonomous parvoviruses[J].J Gen Virol.1986,67:2839-2844.
    20.Kisary J,Derzsy D.Viral disease of Goslings.Ⅳ.Characterization of the causal agent in tissue culture system[J].Acta Vet Acad Sci Hung.1974,24:287-92.
    21.殷震,刘景华.动物病毒学[M]:北京:科学出版社,1997.
    22.田晋红,沙莎.一种增殖小鹅瘟病毒的方法[J].中国畜禽传染病.1996,1:26-28.
    23.甘孟侯.中国禽病学[M].中国农业出版社1999;7.
    24.Zadori Z,Erdei J,Nagy J,Kisary J.Characteristics of the genome of goose parvovirus[J].Avian Pathol.1994,23:359-364.
    25.Takehara K,Saitoh M,Kiyono M,Nakamura M.Distribution of attenuated goose parvoviruses in Muscovy ducklings[J].J Vet Med Sci.1998,60:341-4.
    26.Gough RE.Goose parvovirus infection[J].Diseases of Poultry 2003,11:161-179.
    27.Winteroll G.Fluorescent antibody studies on goose hepatitis[J].Proc Goose Dis Symp,Doom Netherlaus.1974,1:65-67.
    28.Gohgh RE,Spackman D,Collins MS.Isolation and characterization of a parvovirus from goslings[J].Vet Rec.1981,108:399-4430.
    29.Alexandrov M,Alexandrova R,Alexandrov I,Zacharieva S,Lasarova S,Doumanova L,Peshev R,Donev T.Fluorescent and electron-microscopy immunoassays employing polyclonal and monoclonal antibodies for detection of goose parvovirus infection[J].J Virol Meths.1999,79:21-32.
    30.邹叔和,李心坦.ABC-ELISA检测小鹅瘟的研究[J].动物检疫.1992;9:6-7.
    31.郑义华,李银,李锦春,刘宇卓,张敬峰,魏雪涛,杨子荣.间接ELISA检测小鹅瘟抗体反应条件的选择[J].江苏农业科学.2007,3:147-149
    32.霍峰,惠观涛.应用琼脂扩散法检测小鹅瘟抗原抗体[J].中国兽医杂志.2000,2:21-22.
    33.李新华.应用斑点酶联免疫吸附试验快速诊断小鹅瘟的研究[J].中国兽医科技.1998.28:21-22.
    34.Sirivan P,Obayashi M,Nakamura M,Tantaswasdi U,Takehara K.Detection of goose and Muscovy duck parvoviruses using polymerase chain reaction-restriction enzyme fragment length polymorphism analysis[J].Avian Dis.1998,42:133-139.
    35.布日额,王君伟,吴金花,邢明伟,韩先杰,高宏丽,李洪涛,刘兴华.应用PCR技术检测鹅细小病毒[J].畜牧与兽医.2003,6:8-10.
    36.黎敏,程安春,汪铭书,韩新锋,刘晓东,卢菲,车茜,陈孝跃.基因枪轰击不同剂量小鹅瘟病毒VP3基因疫苗在雏鹅体内的动态分布[J].畜牧兽医学报.2007,1:11.
    37.王明俊.兽医生物制品学[M].北京:中国农业出版社.1997;80:90.
    38.李洪彬,彬刘,力威,黄宁.抗小鹅瘟血清的制备和应用[J].黑龙江畜牧兽医.2000,3:34.
    39.黄奇昌,王红宁.抗小鹅瘟异源高免血清的研制和应用[J].四川农业大学学报.1997,15:99-101.
    40.周阳生,郑玉美.小鹅瘟系列化特异生物制剂的研究与应用[J].中国兽医杂志.1995.21:44-46.
    41.Brister JR,Muzyczka N.Rep-Mediated Nicking of the Adeno-Associated Virus Origin Requires Two Biochemical Activities,DNA Helicase Activity and Transesterifieation[J].J Virol.1999,73:9325.
    42.李雪梅 章金刚.鹅细小病毒国内分离株主要结构蛋白(VP2-VP3)基因的克隆和序列分析[J].动物科学与动物医学.2001,18:31-34.
    43.Carter BJ,Trempe JP,Mendelson E.[A]Adeno-associated virus gene expression and regulation.Handbook of parvoviruses.I.Boca Raton,Fla:CRC Press,Inc 1990:227-254.
    44.Bates RC,Snyder CE,Banerjee PT,Mitra S.Autonomous parvovirus LuⅢencapsidates equal amounts of plus and minus DNA strands[J].J Virol.1984;49:319.
    45.Cotmore SF,Tattersall P.Characterization and molecular cloning of a human parvovirus genome[J].Science.1984,226:1161-1165.
    46.布日额.GPV VP及NS基因克隆及其原核表达产物的研究和应用[D].预防兽医学.博士:东北农业大学,2005:8.
    47.Labow MA,Hermonat PL,Berns KI.Positive and negative autoregulation of the adeno-associated virus type 2 genome[J].J Virol.1986,60:251-258.
    48.Cassinotti P,Weitz M,Tratschin JD.Organization of the adeno-associated virus (AAV) capsid gene:mapping of a minor spliced mRNA coding for virus capsid protein 1[J].Virol.1988,167:176-84.
    49.章金刚,向华.禽细小病毒的分子生物学[J].中国兽医学报.1999,19:412-414.
    50.Deleu L,Pujol A,Faisst S,Rommelaere J.Activation of promoter P4 of the autonomous parvovirus minute virus of mice at early S phase is required for productive infection[J].J Virol.1999,73:3877-85.
    51.Anthony-Cahill S J,Benfield PA,Fairman R,Wasserman ZR,Brenner SL,Stafford WF,Altenbach C,Hubbell WL,DeGrado WF.Molecular characterization of helix-loop-helix peptides[J].Science.1992,255:979-983.
    52.Chang LS,Shi Y,Shenk T.Adeno-associated virus P5 promoter contains an adenovirus E1 A-inducible element and a binding site for the major late transcription factor[J].J Virol.1989,63:3479.
    53.Gu Z,Plaza S,Perros M,Cziepluch C,Rommelaere J,Cornelis JJ.NF-Y controls transcription of the minute virus of mice P4 promoter through interaction with an unusual binding site[J].J Virol.1995,69:239.
    54.ihineu-Ranta.M V,wang.D,Wendly.S,rish.C P.The VP1 N -terminal seqence of caine parvovirus[J].Virol.1998,1:3684-3694.
    55.Christensen J,Alexandersen S,Bloch B,Aasted B,Uttenthal A.Production of mink enteritis parvovirus empty capsids by expression in a baculovirus vector system:a recombinant vaccine for mink enteritis parvovirus in mink[J].J Gene Virol.1994,75:149-155.
    56.Tullis GE,Burger LR,Pintel DJ.The minor capsid protein VP1 of the autonomous parvovirus minute virus of mice is dispensable for encapsidation of progeny single-stranded DNA but is required for infectivity[J].J Virol.1993,67:131.
    57.Christensen J,Storgaard T,Bloch B,Alexandersen S,Aasted B.Expression of Aleutian mink disease parvovirus proteins in a baculovirus vector system[J].J Virol.1993,67:229.
    58. Saliki JT, Mizak B, Flore HP, Gettig RR, Burand JP, Carmichael LE, Wood HA, Parrish CR. Canine parvovirus empty capsids produced by expression in a baculovirus vector: use in analysis of viral properties and immunization of dogs[J]. J Gene Virol. 1992, 73:369-374.
    
    59. Kajigaya S, Fujii H, Field A, Anderson S, Rosenfeld S, Anderson LJ, Shimada T, Young NS. Self-assembled B19 parvovirus capsids, produced in a baculovirus system, are antigenically and immunogenically similar to native virions[J]. Proc Natl Acad Sci USA. 1991, 88:4646-4650.
    
    60. Le Gall-Recule G, Jestin V, Chagnaud P, Blanchard P, Jestin A. Expression of muscovy duck parvovirus capsid proteins (VP2 and VP3) in a baculovirus expression system and demonstration of immunity induced by the recombinant proteins[J]. J Gene Virol. 1996, 77:2159-2163.
    
    61. Vihinen-Ranta M, Kalela A, M?kinen P, Kakkola L, Marjom?ki V, Vuento M. Intracellular Route of Canine Parvovirus Entry[J]. J Virol. 1998, 72:802.
    
    62. Pujol A, Deleu L, Nuesch JP, Cziepluch C, Jauniaux JC, Rommelaere J. Inhibition of parvovirus minute virus of mice replication by a peptide involved in the oligomerization of nonstructural protein NS1[J]. J Virol. 1997, 71:7393-403.
    
    63. Niiesch JPF, Christensen J, Rommelaere J. Initiation of minute virus of mice DNA replication is regulated at the level of origin unwinding by atypical protein kinase C phosphorylation of NS1[J]. J Virol. 2001, 75:5730-5739.
    
    64. Cotmore SF, D'Abramo AM, Carbonell LF, Bratton J, Tattersall P. The NS2 Polypeptide of Parvovirus MVM Is Required for Capsid Assembly in Murine Cells[J]. Virology. 1997, 231:267-280.
    
    65. Ohshima T, Nakajima T, Oishi T, Imamoto N, Yoneda Y, Fukamizu A, Yagami K. CRM1 Mediates Nuclear Export of Nonstructural Protein 2 from Parvovirus Minute Virus of Mice[J]. Biochem Bioph Res Co. 1999,264:144-150.
    
    66. Smith DH, Ward P, Linden RM. Comparative Characterization of Rep Proteins from the Helper-Dependent Adeno-Associated Virus Type 2 and the Autonomous Goose Parvovirus[J]. J Virol. 1999, 73:2930.
    
    67. Dunne C, O'Mahony L, Murphy L, Thornton G, Morrissey D, O'Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O'Sullivan GC, Shanahan F, Collins JK. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings[J]. Am J Clin Nutr. 2001, 73:386S-392S.
    
    68. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut[J]. Appl Environ Microb. 1999, 65:4799-807.
    
    69. 何明清,程安春.动物微生态学[M].四川科学技术出版社,2004.
    
    70. Moore WE, Holdeman LV. Human fecal flora: the normal flora of 20 Japanese-Hawaiians[J]. Appl Environ Microb. 1974,27:961-79.
    
    71. Maxwell FJ, Duncan SH, Hold G, Stewart CS. Isolation, growth on prebiotics and probiotic potential of novel bifidobacteria from pigs[J]. Anaerobe. 2004; 10:33-39.
    
    72. Englekirk PG D-eJaDV[J]. Processing anaerobic isolates. Balmont, 1992.
    
    73. Kafarskaia LI, Volodin NN, Efimov BA, Afanas'ev SS, Shkoporov AN. Peculiarities of microbial colonization of the intestinal tract in newborns and pre-term infants in intensive care units[J].Vestn Ross Akad Med Nauk.2006,1:10-15.
    74.Audicana A,Perales I,Borrego JJ.Modification of kanamycin-esculin-azide agar to improve selectivity in the enumeration of fecal streptococci from water samples[J].Appl Environ Microb.1995,61:4178-83.
    75.Thitaram SN,Siragusa GR,Hinton A,Jr.Bifidobacterium-selective isolation and enumeration from chicken caeca by a modified oligosaccharide antibiotic-selective agar medium[J].Lett Appl Microbiol.2005,4I:355-60.
    76.Chierici R,Fanaro S,Saccomandi D,Vigi V.Advances in the modulation of the microbial ecology of the gut in early infancy[J].Acta Paediatr Suppl.2003,91:56-63.
    77.Tharmaraj N SN.Selective enumeration of Lactobacillus delbrueckii ssp.bulgaricus,Streptococcus thermophilus,Lactobacillus acidophilus,bifidobacteria,Lactobacillus casei,Lactobacillus rhamnosus,and propionibacteri[J]science.2003,86:2288-2296.
    78.Leuschner RG,Bew J,Simpson P,Ross PR,Stanton C.A collaborative study of a method for the enumeration of probiotic bifidobacteria in animal feed[J].Int J Food Microbiol.2003,83:161-70.
    79.Simpson PJ,Fitzgerald GF,Stanton C,Ross RP.The evaluation of a mupirocin-based selective medium for the enumeration of bifidobacteria from probiotic animal feed[J].J Microbiol Methods.2004,57:9-16.
    80.Bergey's Manual of Systematic Bacteriology[M],1986.
    81.蔡妙英.常见细菌系统鉴定手册[M].科学出版社,2001.
    82.陆承平.微生物学[M].农业出版社,2001.
    83.Matsuki T,Watanabe K,Fujimoto J,Kado Y,Takada T,Matsumoto K,Tanaka R.Quantitative PCR with 16S rRNA-Gene-Targeted Species-Specific Primers for Analysis of Human Intestinal Bifidobacteria[J].Appl Environ Microb.2004,70:167.
    84.姚玉川,王群英,王继德.临床肠道微生态的新进展[J].中国微生态学杂志.2004,16:63-64.
    85.Wang RF,Cao WW,Cerniglia CE.PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples[J].Appl Environ Microb.1996,62:1242.
    86.Amann RI,Ludwig W,Schleifer KH.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol Rev.1995,59:143.
    87.DJ OS.Methods of analysis o,the intestinal microflora[M].Horizon Scientific Press,1999.
    88.马迪根MT,马丁克JM,帕克J.微生物生物学[M].科学出版社,第八版2001.
    89.Kuritza AP,Salyers AA.Use of a species-specific DNA hybridization probe for enumerating Bacteroides vulgatus in human feces[J].Appl Environ Microb.1985,50:958-964.
    90.Holdeman LV C,EP,Moore WE.Anaerove laboratory manuanl Virginia[M] Polytechnic Institute and State University,1977.
    91.Franks AH,Harmsen HJM,Raangs GC,Jansen GJ,Schut F,Welling GW.Variations of Bacterial Populations in Human Feces Measured by Fluorescent In Situ Hybridization with Group-Specific 16S rRNA-Targeted Oligonucleotide Probes[J].Appl Environ Microb.1998,64:3336.
    92.胡开辉.微生物学实验[M].北京:中国林业出版社.2004.
    93.吕道俊,何明清.动物微生态方法学研究进展[M].中国农业大学出版社,2000.
    94.Siigur U,Tamm E,Torm S,Lutsar I,Salminen S,Midtvedt T.Effect of bacterial infection and administration of a probiotic on faecal short-chain fatty acids[J].Microbial Ecology in Health and Disease.1996,9:271-277.
    95.IR R.Metabolic profiles of intestinal flora.Japan Scientific Societies Press,1989.
    96.Jiang T,Savaiano DA.Modification of Colonic Fermentation by Bifidobacteria and pH In Vitro(Impact on Lactose Metabolism,Short-Chain Fatty Acid,and Lactate Production[J].Digestive Diseases and Sciences.1997,42:2370-2377.
    97.Delgado S,Suarez A,Otero L,Mayo B.Variation of microbiological and biochemical parameters in the faeces of two healthy people over a 15 day period[J].Eur J Nutr.2004,43:375-380.
    98.Ramare F,Hautefort I,Verhe F,Raibaud P,Iovanna J.Inactivation of tryptic activity by a human-derived strain of Bacteroides distasonis in the large intestines of gnotobiotic rats and mice[J].Appl Environ Microb.1996,62:1434-1436.
    99.Musser JM,Mattingly S J,Quentin R,Goudeau A,Selander RK.Identification of a high-virulence clone of type Ⅲ Streptococcus agalactiae(group B Streptococcus)causing invasive neonatal disease[J].P Natl Acad Sci USA.1989,86:4731-4735.
    100.Satokari RM,Vaughan EE,Smidt H,Saarela M,M?tt J,de Vos WM.Molecular Approaches for the Detection and Identification of Bifidobacteria and Lactobacilli in the Human Gastrointestinal Tract[J].Syst Appl Microbiol.2003,26:572-584.
    101.Wilson KH,Blitchington RB.Human colonic biota studied by ribosomal DNA sequence analysis[J].Appl Environ Microb.1996,62:2273.
    102.Kreader CA.Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein[J].App Environ Microb.1996,62:1102.
    103.Zuckerkandl E,Pauling L.Molecules as documents of evolutionary history[J].J Theor Biol.1965,8:357-66.
    104.Pace,N RS,D A,Lane,D,J The analysis of natural microbial populations by ribosomal RNA sequences[J].ASM News.1985,1:4-12.
    105.Woese CR.Bacterial evolution.Microbiological reviews[J].Baltimore.1987,51:221-271.
    106.Gogarten JP,H.Kibak,Rand Ditrich L.Evolution of the vacuolar H+-ATPase:implications far the origin of eukaryotes[J].P Natl Acad Sci USA.19891:6661-6665.
    107.Iwabe N,Kuma K,Hasegawa M,Osawa S,Miyata T.Evolutionary relationship of archaebacteria,eubacteria,and eukaryotes inferred from phylogenetic trees of duplicated genes[J].P Natl Acad Sci USA.1989,86:9355.
    108.Woese CR,Fox GE.Phylogenetic Structure of the Prokaryotic Domain:The Primary Kingdoms[J].P Natl Acad Sci USA.1977,74:5088-5090.
    109.Woese CR,Winker S,Gutell RR.Architecture of Ribosomal RNA:Constraints on the Sequence of" Tetra-Loops"[J].P Natl Acad Sci USA.1990,87:8467-8471.
    110.Fox GE,Stackebrandt E,Hespell RB,Gibson J,Maniloff J,Dyer TA,Wolfe RS,Balch WE,Tanner RS,Magrum LJ.The phylogeny of prokaryotes[J].Science.1980,209:457-463.
    111.图雅.虎粪细菌区系16SrDNA动态[D],2005.
    112.Langendijk PS,Schut F,Jansen GJ,Raangs GC,Kamphuis GR,Wilkinson MHF,Welling GW.Quantitative fluorescence in situ hybridization of Bifidobacterium spp.with genus-specific 16 S rRNA-targeted probes and its application in fecal samples[J].Appl Environ Microb.1995,61:3069-3075.
    113.http://www.ncbi.nlm.nih.gov/Genbank/index.html:http://www.ncbi.nlm.nih.gov/Ge nbank/index.html.What is GenBank.,(2006-11-11).
    114.Hugenholtz P,Goebel BM,Pace NR.Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity[J].J Bacteriol.1998,180:4765-4774.
    115.Pukall R SE.Exploring the hidden microbial diversity of the marine environment.Recent research developments in microbiology[J].Research Signpost India.1998,1:535-551.
    116.Pukall R PO,and Buntefull et al.High sequence diversity of Alteromonas macleodii-related cloned and cellular 16S rDNAs from a Mediterranean seawater mesocosm experiment[J].FEMS Microbiol Ecol.1998,1:335-344.
    117.Stackebrandt E RF.Partial and complete 16S rDNA sequences,their use in generation of 16S rDNA phylogenetic trees and their implications in molecular ecological studies[M].Academic Publishers,1995.
    118.傅君芬.16S-23SrDNA区间序列-一种分类及鉴别细菌的新方法[J].国外医学:流行病学.传染病学分册.1998,25:245-249.
    119.Weisburg WG,Barns SM,Pelletier DA,Lane DJ.16 S ribosomal DNA amplification for phylogenetic study[J].Journal of Bacteriology 1991;173:697-703.
    120.滕懿群.16S rRNA基因PCR对细菌感染的分子生物学研究[J].国外医学:流行病学.传染病学分册.1997,24:60-64.
    121.Olsen GJ,Woese CR,Overbeek R.The winds of(evolutionary) change:breathing new life into microbiology[J].J Bacteriol.1994,176:1.
    122.Tannock GW,Munro K,Harmsen HJM,Welling GW,Smart J,Gopal PK.Analysis of the Fecal Microflora of Human Subjects Consuming a Probiotic Product Containing Lactobacillus rhamnosus DR20[J].Appl Environ Microb.2000,66:2578.
    123.Goebel BM SE.Molecular analysis of the microbial diversity in a natural acidic environment[M].University Press,University of Chile,1996.
    124.DeLong EF,Wickham GS,Pace NR.Phylogenetic stains:ribosomal RNA-based probes for the identification of single cells[J].Science.1989,243:1360-1363.
    125.Woese CR,Kandler O,Wheelis ML.Towards a Natural System of Organisms:Proposal for the Domains Archaea,Bacteria,and Eucarya[J].P Natl Acad Sci USA.1990,87:4576.
    126. Zoetendal EG, Akkermans ADL, De Vos WM. Temperature Gradient Gel Electrophoresis Analysis of 16S rRNA from Human Fecal Samples Reveals Stable and Host-Specific Communities of Active Bacteria[J]. Appl Environ Microb. 1998, 64:3854.
    
    127. K T, RI A, T N. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries[J]. FEMS microbiol Ecol. 1999, 1:159-169.
    
    128. Ohkuma M, Kudo T. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus[J]. Appl Environ Microb. 1996, 62:461.
    
    129. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K. Culture-Independent Analysis of Gut Bacteria: the Pig Gastrointestinal Tract Microbiota Revisited[J]. Appl Environ Microb. 2002, 68:673.
    
    130. Lan PTN, Hayashi H, Sakamoto M, Benno Y. Phylogenetic Analysis of Cecal Microbiota in Chicken by the Use of 16S rDNA Clone Libraries[J]. Microbiol Immunol. 2002,46:371-382.
    
    131. Mikkelsen LL, Bendixen C, Jakobsen M, Jensen BB. Enumeration of Bifidobacteria in Gastrointestinal Samples from Piglets[J]. Appl Environ Microbiol. 2003, 69:654.
    
    132. Favier CF, Vaughan EE, De Vos WM, Akkermans ADL. Molecular Monitoring of Succession of Bacterial Communities in Human Neonates[J]. Appl Environ Microb. 2002, 68:219.
    
    133. Rheims H, Sproer C, Rainey FA, Stackebrandt E. Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in different environments and geographical locations[J]. Microbiol. 1996, 142:2863-2870.
    
    134. Rheims H, Felske A, Seufert S, Stackebrandt E. Molecular monitoring of an uncultured group of the class Actinobacteria in two terrestrial environments[J]. J Microbiol Methods. 1999,36:65-75.
    
    135. Ogasawara N, Nakai S, Yoshikawa H. Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin[J]. DNA Res. 1994, 1:1-14.
    
    136. Bowman JP, McCuaig RD. Biodiversity, Community Structural Shifts, and Biogeography of Prokaryotes within Antarctic Continental Shelf Sediment[J]. Appl Environ Microb. 2003, 69:2463.
    
    137. Schlesner H. The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other Planctomycetales from various aquatic habitats using dilute media[J]. Syst appl microb. 1994, 17:135-145.
    
    138. Woolcock PR, Jestin V, Shivaprasad HL, Zwingelstein F, Arnauld C, McFarland MD, Pedersen JC, Senne DA. Evidence of Muscovy duck parvovirus in Muscovy ducklings in California[J]. Vet Rec. 2000, 146:68-72.
    
    139. Suzuki MT, Rappe MS, Haimberger ZW, Winfield H, Adair N, Stroebel J, Giovannoni SJ. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample[J]. Appl Environ Microb. 1997, 63:983-989.
    
    140. Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, Oyaizu H, Tanaka R. Development of 16S rRNA-Gene-Targeted Group-Specific Primers for the Detection and Identification of Predominant Bacteria in Human Feces[J]. Appl Environ Microb. 2002,68:5445.
    
    141. Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R. Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Human Feces[J]. Appl Environ Microb. 2004,70:7220.
    
    142. Molander A, Lundquist P, Papapanou PN, Dahlen G, Reit C. A protocol for polymerase chain reaction detection of Enterococcus faecalis and Enterococcus faecium from the root canal[J]. Int Endod J. 2002,35:1.
    
    143. Uzuka R HK, D Hasegawa et al. Rapid diagnosis of bacterial meningitis by using multi- plex PCR and real time PCR[J]. Pediatr Int. 2004,46:551-554.
    
    144. Nadkami MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set[J]. Microbiol.2002, 148:257-266.
    
    145. Fortin NY, Mulchandani A, Chen W. Use of Real-Time Polymerase Chain Reaction and Molecular Beacons for the Detection of Escherichia coli O157: H7. [J] Anal Biochem. 2001,289:281-288.
    
    146. Huijsdens XW, Linskens RK, Mak M, Meuwissen SGM, Vandenbroucke-Grauls C, Savelkoul PHM. Quantification of Bacteria Adherent to Gastrointestinal Mucosa by Real-Time PCR[J]. J Clinical Microbiol. 2002,40:4423.
    
    147. Leblond-Bourget N, Philippe H, Mangin I, Decaris B. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter-and intraspecific Bifidobacterium phylogeny[J]. Int J Syst Evol Micr. 1996,46:102-111.
    
    148. Yu Z, Mohn WW. Bacterial Diversity and Community Structure in an Aerated Lagoon Revealed by Ribosomal Intergenic Spacer Analyses and 16S Ribosomal DNA Sequencing[J]. Appl Environ Microb. 2001, 67:1565.
    
    149. Ahmad S, Al-Mahmeed M, Khan ZU. Characterization of Trichosporon species isolated from clinical specimens in Kuwait[J]. J Med Microbiol. 2005, 54:639-646.
    
    150. Naser SM, Hagen KE, Vancanneyt M, Cleenwerck I, Swings J, Tompkins TA. Lactobacillus suntoryeus Cachat and Priest 2005 is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919) Bergey et al. 1925 (Approved Lists 1980) [J]. Volume 56: Soc General Microbiol, 2006, 1:355-360.
    
    151. Gugger M, Molica R, Le Berre B, Dufour P, Bernard C, Humbert JF. Genetic Diversity of Cylindrospermopsis Strains (Cyanobacteria) Isolated from Four Continents[J]. Appl Environ Microb. 2005, 71:1097.
    
    152. Hewson I, Fuhrman JA. Richness and Diversity of Bacterioplankton Species along an Estuarine Gradient in Moreton Bay, Australia[J]. Appl Environ Microb. 2004, 70:3425.
    
    153. Pitcher DG, Windsor D, Windsor H, Bradbury JM, Yavari C, Jensen JS, Ling C, Webster D. Mycoplasma amphoriforme sp. nov., isolated from a patient with chronic bronchopneumonia[J]. Soc General Microbiol. 2005, 1:2589-2594.
    
    154. Barry T, Colleran G, Glennon M, Dunican LK, Gannon F. The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria appears in PCR[J]. Genome Res. 1991, 1:51-56.
    155. Nechwatal J MK. Pythium litorale sp. nov, a new species from the littoral of Lake Constance, Germany[J]. FEMS Microbiol Lett JT. 2006,255:96-101.
    
    156. Gutell RR, Larsen N, Woese CR. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective[J]. Microbiol Rev. 1994, 58:10.
    
    157. Garcia-Martmez J, Martinez-Murcia A, Ant6n AI, Rodriguez-Valera F. Comparison of the small 16S to 23S intergenic spacer region (ISR) of the rRNA operons of some Escherichia coli strains of the ECOR collection and E. coli K-12[J]. J Bacteriol. 1996, 178:6374.
    
    158. Pages V, Koffel-Schwartz N, Fuchs RPP. recX, a new SOS gene that is co-transcribed with the recA gene in Escherichia coli[J]. DNA Repair. 2003, 2:273-284.
    
    159. Roca AI, Cox MM. RecA protein: structure, function, and role in recombinational DNA repair[J]. Prog Nucleic Acid Res Mol Biol. 1997, 56:129-223.
    
    160. Clark AJ, Sandier SJ. Homologous Genetic Recombination: The Pieces Begin to Fall into Place[J]. Crit Rev Microbiol. 1994, 20:125-142.
    
    161. Little JW. Autodigestion of lexA and phage lambda repressors[J]. P Natl Acad Sci USA. 1984,81:1375.
    
    162. Hamood AN, Pettis GS, Parker CD, McIntosh MA. Isolation and characterization of the Vibrio cholerae recA gene[J]. J Bacteriol. 1986, 167:375.
    
    163. Goldberg I, Mekalanos JJ. Effect of a recA mutation on cholera toxin gene amplification and deletion events[J]. J Bacteriol. 1986, 165:723.
    
    164. Karlin S, Weinstock GM, Brendel V. Bacterial classifications derived from recA protein sequence comparisons[J]. J Bacteriol. 1995, 177:6881.
    
    165. Thompson CC, Thompson FL, Vandemeulebroecke K, Hoste B, Dawyndt P, Swings J. Use of recA as an alternative phylogenetic marker in the family Vibrionaceae[J]. Soc General Microbiol. 2004, 1:919-924.
    
    166. Rossi F, Dellaglio F, Torriani S. Evaluation of recA gene as a phylogenetic marker in the classification of dairy propionibacteria[J]. Syst Appl Microbiol. 2006, 29:463-469.
    
    167. Tolmachov O, Palaszewski I, Bigger B, Coutelle C. RecET driven chromosomal gene targeting to generate a RecA deficient Escherichia coli strain for Cre mediated production of minicircle DNA[J]. BMC Biotechnology. 2006, 6:17.
    
    168. Scholz HC TH, Dahouk SA et al. Genotyping of Ochrobactrum anthropi by recA-based comparative sequence, PCR-RFLP, and 16S rRNA gene analysis[J]. FEMS Microbiol Lett JT. 2006,257:7-16.
    
    169. Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary Relationships of Three New Species of Enterobacteriaceae Living as Symbionts of Aphids and Other Insects[J]. Appl Environ Microb. 2005, 71:3302.
    
    170. Aritomi T, Sekizuka T, Imamaki R, Murayama O, Millar BC, Moore JE, Matsuda M. First restriction and genetic mapping of the genomic DNA of urease-positive thermophilic campylobacters (UPTC), and small restriction fragment sequencing[J]. Br J Biomed Sci. 2006, 63:63-7.
    
    171. Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Holldobler B. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes[J]. P Natl Acad Sci USA. 2003, 100:9388.
    
    172. Torriani S, Felis GE, Dellaglio F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA Gene Sequence Analysis and Multiplex PCR Assay with recA Gene-Derived Primers[J]. Appl Environ Microb. 2001, 67:3450.
    
    173. La Scola B, Gundi V, Khamis A, Raoult D. Sequencing of the rpoB Gene and Flanking Spacers for Molecular Identification of Acinetobacter Species[J], J Clin Microbiol. 2006,44:827.
    
    174. http://www.ncbi.nlm.nih.gOv/Genbank/index.html:http://www.ncbi.nlm.nih.gov/Genbank/index.html.
    
    175. Cormier G, Muller MC, L'Haridon R. Selective enumeration of Bacteroides vulgatus and B. distasonis organisms in the predominant human fecal flora by using monoclonal antibodies[J]. Appl Environ Microb. 1996,62:735.
    
    176. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J]. Science(Washington). 1995;270:467-470.
    
    177. Mangin I, Bourget N, Simonet JM, Decaris B. Selection of species-specific DNA probes which detect strain restriction polymorphism in four Bifidobacterium species[J]. Res Microbiol. 1995, 146:59-71.
    
    178. F, WickhamGS, PaceNR DE. Phylogenetic stains:ribosomal RNA-based probes for the identification of single microbial cell[J]. Science. 1989, 1:5554-5563.
    
    179. Goerke C, Bayer MG, Wolz C. Quantification of Bacterial Transcripts during Infection Using Competitive Reverse Transcription-PCR (RT-PCR) and LightCycler RT-PCR[J]. Clinical and Vaccine Immunology 2001,8:279.
    
    180. Asfie M YTH. Characterization of the goldfish fecal microflora by the fluorescent in situ hybridization method[J] Fisheries sci. 2000,69:21-26.
    
    181. Procop GW, Oliveira K, Wilson D. Rapid identification of staphylococcus aureus directly from Blood cultures by fluorescence in situ hybridization with petide nucleic acid probes [J]. J Clin Microbiol. 2002,40:247.
    
    182. Raskin L, Rittmann BE, Stahl DA. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms[J]. Appl Environ Microb. 1996, 62:3847-3857.
    
    183. Cangelosi G, and WH Brabant. Depletion of pre-16S rRNA in starved Escherichia coli cells[J]. Bacteriol. 1997,1:4457-4463.
    
    184. Oerther DB, Pernthaler J, Schramm A, Amann R, Raskin L. Monitoring Precursor 16S rRNAs of Acinetobacter spp. in Activated Sludge Wastewater Treatment Systems[J]. Appl Environ Microb. 2000,66:2154.
    
    185. Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH. Phylogenetic analysis and in situ identification of bacteria in activated sIudge[J]. Appl Environ Microb. 1997, 63:2884.
    
    186. Romling U, Grothues D, Heuer T, Tummler B. Physical genome analysis of bacteria[J]. Electrophoresis. 1992, 13:626-31.
    187. Villard L, Maurin F, Borges E, Lacheretz A, Richard Y, Kodjo A. Performance of Random Amplified Polymorphic DNA (RAPD) analysis and Pulsed Field Gel Electrophoresis (PFGE) for the characterisation of Staphylococcus xylosus strains[J]. Rev Med Vet-toulouse. 2003, 154:47-50.
    
    188. Blanco MM, Gibello A, Vela AI, Moreno MA, Dominguez L, Fernandez-Garayzabal JF. PCR detection and PFGE DNA macrorestriction analyses of clinical isolates of Pseudomonas anguilliseptica from winter disease outbreaks in sea bream Sparus aurata[J]. Dis Aquat Organ. 2002, 50:19-27.
    
    189. Jang SJ, Han HL, Lee SH, Ryu SY, Chaulagain BP, Moon YL, Kim DH, Jeong OY, Shin JH, Moon DS. PFGE-Based Epidemiological Study of an Outbreak of Candida tropicalis Candiduria: The Importance of Medical Waste as a Reservoir of Nosocomial Infection[J]. Jpn. J. Infect. Dis 2005, 58:263-267.
    
    190. Martin C, Ichou MA, Massicot P, Goudeau A, Quentin R. Genetic diversity of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis revealed by restriction fragment length polymorphism of the rRNA gene region[J]. J Clin Microbiol. 1995,33:1461-1466.
    
    191. Grattard F. Differentiation of Pseudomonas aeruginosa strains by ribotyping: high discriminatory power by using a single restriction endonuclease[J]. Soc General Microbiol. 1994,1:275-281.
    
    192. Odierno L, Calvinho L, Traverssa P, Lasagno M, Bogni C, Reinoso E. Conventional Identification of Streptococcus uberis Isolated from Bovine Mastitis in Argentinean Dairy Herds[J]. J Dairy Sci. 2006, 89:3886.
    
    193. Gonzalez A, Moreno Y, Gonzalez R, Hernandez J, Ferrus MA. Development of a Simple and Rapid Method Based on Polymerase Chain Reaction-Based Restriction Fragment Length Polymorphism Analysis to Differentiate Helicobacter, Campylobacter, and Arcobacter Species[J]. Curr Microbiol. 2006, 53:416-421.
    
    194. Suomalainen LR, Kunttu H, Valtonen ET, Hirvelae-Koski V, Tiirola M. Molecular diversity and growth features of Flavobacterium columnare strains isolated in Finland[J]. Dis Aquat Organ. 2006, 70:55-61.
    
    195. Ciesielski S C-KA, Pokoj T et al. Molecular detection and diversity of medium-chain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge[J]. Appl Microbiol JT. 2006, 101:190-199.
    
    196. Hjort K, Lembke A, Speksnijder A, Smalla K, Jansson JK. Community Structure of Actively Growing Bacterial Populations in Plant Pathogen Suppressive Soil[J]. Microbial Ecology. 2007, 53:399-413.
    
    197. Masco L, Huys G, De Brandt E, Temmerman R, Swings J. Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria[J]. Int J Food Microbiol. 2005, 102:221-230.
    
    198. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J]. P Natl Acad Sci USA. 1989, 86:2766.
    
    199. Chachkhiani M, Dabert P, Abzianidze T, Partskhaladze G, Tsiklauri L, Dudauri T, Godon JJ. 16S rDNA characterisation of bacterial and archaeal communities during start-up of anaerobic thermophilic digestion of cattle manure[J]. Bioresource Technol. 2004, 93:227-232.
    
    200. Mai V, Colbert LH, Perkins SN, Schatzkin A, Hursting SD. Intestinal microbiota: a potential diet-responsive prevention target in ApcMin mice[J]. Mol Carcinog. 2007, 46:42-8.
    
    201. Qu Y, Zhou J, Wang J, Song Z, Xing L, Fu X. Bioaugmentation of Bromoamine Acid Degradation with Sphingomonas xenophaga QYY and DNA Fingerprint Analysis of Augmented Systems[J]. Biodegradation. 2006,17:83-91.
    
    202. GJ S, RG L. Anovel repeated DNA located in the intergenic regions of bacterial chromosomes[J]. Nucleic Acids Res. 1990,18:6503-6508.
    
    203. CS H, CF H, PM S. ERIC sequences: a novel family of repetitive element in the genome of Escherichia coli,Salmonella typhimurium and other enterobacteria[J]. Mol Microbiol. 1991, 5:825-834.
    
    204. Versalovic, T.Koeuth J. Distribution of repetitive DNAsequences in eubacteria and application to fingerprinting of bacterial genome[J]. Nuucleic Acids Res. 1991, 19:6823-6831.
    
    205. Kumar AD, Sarma BJR, Mishra SK, Rao AS, Gupta BR. Characterization of chicken origin Escherichia coli isolates by enterobacterial repetitive intergenic consensus PCR[J]. Indian Journal of Poultry Science. 2003,38:195-200.
    
    206. Jung H, Park S, Seo H, Kim Y, Cho J, Park S, Song D, Kim K. Differentiation of Four Major Gram-negative Foodborne Pathogenic Bacterial Genera by Using ERIC-PCR Genomic Fingerprinting[J]. Korean J Food Sci Tech. 2005, 37:1005.
    
    207. Halatsi K, Oikonomou,I,Lambiri,M et al. PCR detection of Salmonella spp. using primers targeting the quorum sensing gene sdiA[J] FEMS Microbiol Lett. 2006, 259:201-207.
    
    208. Mcburney W MM, Munro K,et al. PCR/DGGE and 16S rRNA gene library analysis of the colonic microbiota of HLA-B27/beta 2-microglobulin transgenic rats[J]. Lett Appl Microbiol. 2006,42:165-171.
    
    209. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology[J]. Anton Leeuw int JG. 1998, 73:127-141.
    
    210. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Appl Environ Microb. 1993, 59:695.
    
    211. Fischer SG, Lerman LS. DNA Fragments Differing by Single Base-Pair Substitutions are Separated in Denaturing Gradient Gels: Correspondence with Melting Theory[J]. P Natl Acad Sci USA. 1983, 80:1579-1583.
    
    212. Vanhoutte T, De Preter V, De Brandt E, Verbeke K, Swings J, Huys G Molecular Monitoring of the Fecal Microbiota of Healthy Human Subjects during Administration of Lactulose and Saccharomyces boulardii[J]. Appl Environ Microb. 2006, 72:5990-5997.
    
    213. Li MY, Zhou GH, Xu XL, Li CB, Zhu WY. Changes of bacterial diversity and main flora in chilled pork during storage using PCR-DGGE[J]. Food Microbiol. 2006, 23:607-611.
    214.S F,M M,L R.Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis[J].Int J Food Microbiol.2003,82:59-79.
    215.Mangin I,A S,F M.Characterization of human intestinal bifidobacteria using competitive PCR and PCR-TTGE[J].FEMS microbiol ecol.2006,55:28-37.
    216.Nielsen DS,M?ller PL,Rosenfeldt V,P?rregaard A,Michaelsen KF,Jakobsen M.Case Study of the Distribution of Mucosa-Associated Bifidobacterium Species,Lactobacillus Species,and Other Lactic Acid Bacteria in the Human Colon[J].Appl Environ Microb.2003,69:7545.
    217.Klump H,Burkart W.Calorimetric measurements of the transition enthalpy of DNA in aqueous urea solutions[J].Biochim Biophys Acta.1977,475:601-4.
    218.Johnson JL.Isolation and purification of nucleic acids[J].Nucleic Acid Techniques in Bacterial Systematics.1991,1:1-19.
    219.Zoetendal EG,Ben-Amor K,Akkermans ADL,Abee T,de Vos WM.DNA Isolation Protocols Affect the Detection Limit of PCRApproaches of Bacteria in Samples from the HumanGastrointestinal Tract[J].Syst Appl Microbiol.2001,24:405-410.
    220.Zoetendal EG,Akkermans ADL,Akkermans-van Vliet WM,de Visser J,de Vos WM.The Host Genotype Affects the Bacterial Community in the Human Gastronintestinal Tract[J].Microbial Ecology in Health and Disease.2001,13:129-134.
    221.SR K,WY Z,BA W.Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA[J].FEM Microbiol.Ecol.2003,1:225-235.
    222.图雅,朱伟云,陆承平.用于虎粪微生物区系分予生态学研究的核酸提取方法的筛选[J].农业生物技术学报.2005,13:544-545.
    223.张保卫,魏辅文,李明,吕晓平.大熊猫和小熊猫粪便DNA提取的简易方法[J]动物学报.2004,50:452-458.
    224.Wang GC,Wang Y.The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species[J].Microbiol.1996,142:1107-1114.
    225.Maidak BL,Cole JR,Lilburn TG.The RDP-11(ribosome database project)[J].Nucleic Acids Res.2001,29:173-174.
    226.曹亚.实用分子生物学操作指南[M].北京:人民卫生出版社,2003.
    227.吴多桂,林栖凤.红树DNA的十六烷基三甲基溴化铵法提取及其随机扩增多态DNA反应[J].中国生物化学与分子生物学报.1999,15:67-70.
    228.姜静.分子生物学实验原理与技术[M].哈尔滨:东北林业大学出版社,2003.
    229.Baskaran N,Kandpal RP,Bhargava AK,Glynn MW,Bale A,Weissman SM.Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content[J].Genome Res.1996,6:633.
    230.Hugenholtz P,Huber T.Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases[J].Soc General Microbiol.2003,1:289-293.
    231.Tanner MA,Goebel BM,Dojka MA,Pace NR.Specific Ribosomal DNA Sequences from Diverse Environmental Settings Correlate with Experimental Contaminants[J].Appl Environ Microb.1998,64:3110.
    232.Suzuki MT,Giovannoni SJ.Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR[J].Appl Environ Microb.1996,62:625.
    233.Reysenbach AL,Giver LJ,Wickham GS,Pace NR.Differential amplification of rRNA genes by polymerase chain reaction[J].Appl Environ Microb.1992,58:3417.
    234.Polz MF,Cavanaugh CM.Bias in Template-to-Product Ratios in Multitemplate PCR[J].Appl Environ Microb.1998,64:3724.
    235.刘进元,常智杰,赵广荣.分子生物学实验指导[M].北京:清华大学出版社,2002.
    236.Rainey FA W-RN-L,and Janssen et al.Clostridium paradoxum DSM 7308T contains multiple 168 rRNA genes with heterogeneous intervening sequences[J].Microbiol.1996,1:2087-2095.
    237.Fisher BL OG,Larsen N et al.The Ribosomal Database Project(RDP)[J].Nucleic Acids Res.1996,1:82-85.
    238.Stackebrandt E PR,and Ulrichs R et al.Analysis of 16S rDNA clone libraries:Part of the big picture[A],In Methods of Microbial Community Analysis Microbial Biosystems:New Frontiers Proceedings of the 8th International Symposium on Microbial Ecology Bell CR,Halifax,Canada.
    239.Stackebrandt E,Goebel BM.Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J].Int J Syst Evol Micr.1994,44:846-849.
    240.阎锡海,罗茂春,李焰.生物进化树中的模糊问题浅论[J].青海师范大学学报:自然科学版.2005,1:81-84.
    241.郝柏林.生物信息学[J].中国科学院院刊.2000,15:260-264.
    242.吕宝忠,钟扬,高莉萍.分子进化与系统发育[M].北京:高等教育出版社,2002.
    243.[美]根井正利,[美]库马著.分子进化与系统发育[M].高等教育出版社,2002.
    244.PHA S.Analysis and interpretation of sequence data for bacterial systematic ahe view of a numerical taxonist[J].Syst.Appl.Microbiol.1989,1:15-31.
    245.B PFaA.Modern bacterial taxonomy[M].Chapman and Hall,1993.
    246.李斌,何红波,李义兵.基于DNA序列LZ复杂性距离的系统进化树重构[J].高技术通讯.2006,16:506-510.
    247.Ludwig W,Schleifer KH.Bacterial phylogeny based on 16S and 23S rRNA sequence analysis[J].FEMS Microbiol Rev.1994,15:155-173.
    248.Goodfellow M,O'Donnell AG.Roots of bacterial systematics[M].Handbook of New Bacterial Systematics.1993,1:3-54.
    249.Wayne LG,Brenner D J,Colwell RR,Grimont PAD,Kandler O,Krichevsky MI,Moore LH,Moore WEC,Murray RGE,Stackebrandt E.Report of the ad hoc committee on reconciliation of approaches to bacterial systematics[J],hat J Syst Bacteriol.1987,37:463-464.
    250.Simpson JM,McCracken VJ,White BA,Gaskins HR,Mackie RI.Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota[J].J Microbiol Meth.1999,36:167-179.
    251.M D,C B,R C.16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates[J].J Clin Microbiol.2000,1:3623 -3630
    252.Bowman JP,McCammon SA,Skerratt JH.Methylosphaera hansonii gen.nov.,sp. nov.,a psychrophilic,group Ⅰ methanotroph from Antarctic marine-salinity,meromictic lakes[J].Microbiol.1997,143:1451-1459.
    253.Sheffield VC,Cox DR,Lerman LS,Myers RM.Attachment of a 40-base-pair G+C-rich sequence(GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes[J].P Natl Acad Sci USA.1989,86:232.
    254.http://www.biophys.uni-duesseldorf.de/local/POLAND/poland.html.
    255.Nubel U,Engelen B,Felske A,Snaidr J,Wieshuber A,Amann RI,Ludwig W,Backhaus H.Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis[J].J Bacteriol.1996;178:5636-43.
    256.Dryden SC,Kaplan S.Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides[J].Nucleic Acids Res.1990,18:7267-7277.
    257.Akkermans ADL,Elsas JD,Bruijn F.Molecular Microbial Ecology Manual[M].Springer,2001.
    258.朱伟云,姚文,毛胜勇.变性梯度凝胶电泳法研究断奶仔猪粪样细菌区系变化[J].微生物学报.2003,43:503-508.
    259.Simpson JM,McCracken VJ,Gaskins HR,Mackie RI.Denaturing Gradient Gel Electrophoresis Analysis of 16S Ribosomal DNA Amplicons To Monitor Changes in Fecal Bacterial Populations of Weaning Pigs after Introduction of Lactobacillus reuteri Strain MM53[J].Appl Environ Microb.2000,66:4705.
    260.Meroth CB,Walter J,Hertel C,Brandt MJ,Hammes WP.Monitoring the Bacterial Population Dynamics in Sourdough Fermentation Processes by Using PCR-Denaturing Gradient Gel Electrophoresis[J].Appl Environ Microb.2003,69:475.
    261.Torsvik V,Daae FL,Sandaa RA,Ovreas L.Novel techniques for analysing microbial diversity in natural and perturbed environments[J].J Biotechnol.1998,64:53-62.
    262.Speksnijder A,Kowalchuk GA,De Jong S,Kline E,Stephen JR,Laanbroek HJ.Microvariation Artifacts Introduced by PCR and Cloning of Closely Related 16S rRNA Gene Sequences[J].Appl Environ Microb.2001,67:469.
    263.Klappenbach JA,Saxman PR,Cole JR,Schmidt TM.rrndb:the Ribosomal RNA Operon Copy Number Database[J].Nucl Acids Res.2001,29:181-184.
    264.F DMF,ACE,S R.Use of analysis for identification of nitrogen-fixing Paenibacillus Species as an alternative to the 16S rRNA gene[J].Lett Appl Microbiol.2004,1:34-40.
    265.T V,E T,G M.Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs[J].FEMS microbiol Ecol.1997,1:279-285.
    266.Yu Z,Morrison M.Comparisons of Different Hypervariable Regions of rrs Genes for Use in Fingerprinting of Microbial Communities by PCR-Denaturing Gradient Gel Electrophoresis[J].Appl Environ Microb.2004,70:4800-4806.
    267.Kisand V,Wikner J.Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences[J].J Microbiol Meth 2003, 54:183-191.
    268.Sekiguehi Y,Takahashi H,Kamagata Y,Ohashi A,Harada H.In Situ Detection,Isolation,and Physiological Properties of a Thin Filamentous Microorganism Abundant in Methanogenic Granular Sludges:a Novel Isolate Affiliated with a Clone Cluster,the Green Non-Sulfur Bacteria,Subdivision I[J].Appl Environ Microb.2001,67:5740.
    269.L HG,A SE,S RM.Characterization of bacterial communities associated with toxic and non-toxic dinoflagellates:Alexandrium spp.and Scrippsiella troehoidea[J].FEM S M icrobiol Ecol.2001,37:161-173.
    270.陈守春.定量PCR技术研究概述[J].国外医学流行病学传染病学分册.1998,25:231-232.
    271.王梁燕.实时定量PCR技术及其应用[J].细胞生物学杂志.2004,26:62-67.
    272.Birch L,L.archard C,C.Parkes H.Evaluation of Lab Chip Tm technology for grno analysis in food[J].Food Control.2001,1:535-540.
    273.黄东东.转基因食品的定量PCR检测方法[J].食品科技.2005,1:63-65.
    274.Sohni Y,Kanjilal S,Kapur V.Cloning and development of synthetic internal amplification control for Bacillus anthracis real-time polymerase chain reaction assays[J].Diagn Micr Infec Dis.2008,61:471-475
    275.Decaro N,Martella V,Elia G,Desario C,Campolo M,Lorusso E,Loredan M,Colaianni,Lorusso A,Buonavoglia C.Tissue distribution of the antigenic variants of canine parvovirus type 2 in dogs[J].Vet Microbiol.2007,121:39-44
    276.Markey B,Wan C,Hanger J,Phillips C,Timms P.Use of quantitative real-time PCR to monitor the shedding and treatment of chlamydiae in the koala (Phascolarctos cinereus)[J].Vet Microbiol.2007,120:334-342
    277.K T,T N,Y H.An outbreak of goose parvovirus infection in Japan[J].Vet Med Sci JT.1995,57:777-779.
    278.P HJ,R JJ,E GR.Goose parvovirus in England and Wales[J].Vet Rec JT.2004,155:127.
    279.D G,V C,B C.Isolation and identification of goose parvovirus in the UK[J].Vet Rec JT.2005,156:424.
    280.王永坤,郑玉美.小鹅瘟病毒特性及防治的研究[M].In首届海峡两岸禽病防治研讨会论文专辑,台湾,香华园出版社,1995.
    281.徐丽美,丰杨.利用多重PCR同时检测WSSV和MBV两种对虾病毒的研究[J].高技术通讯.2005,15:101-104.
    282.S G,M A,C R.Application of real-time PCR for testing antiviral compounds against Lassa virus[J].SARS coronavirus and Ebola virus in vitro.2004,63:3.
    283.C F,J N,G G.Evaluation of antiviral activity against human herpesvirus 8(HHV-8)and Epstein-Barr virus(EBV) by a quantitative real-time PCR assay[J].Antiviral Res.2004,62:1121-1123.
    284.黎敏.小鹅瘟病毒VP3基因疫苗在免疫雏鹅体内动态分布及表达规律的研究[D].硕士:四川农业大学,2008:15.
    285.Ke GM,Cheng H,Ke L,Ji W,Chulu J,Liao M,Chang T,Liu H.Development of a quantitative Light Cycler real-time RT-PCR for detection of avian reovirus[J].J Virol Methods.2006,1:6-13.
    286.黄诚,程安春,汪铭书.鹅细小病毒强毒PCR检测方法的建立[J].中国兽医科技.2004,34:54-60.
    287.秦定益,冯太兰,葛存芳.小鹅瘟琼扩抗原的制备与应用[J].中国家禽.2003,25:23.
    288.K T,M S,M K.Distribution of attenuated goose parvoviruses in Muscovy ducklings[J].Vet Med Sci JT.1998,60:341-344
    289.胡桂学,逄博,高凤山,柏亚铎,李天松,高光.小鹅瘟PCR诊断方法的建立和初步应用[J].经济动物学报.2003,2:50-53.
    290.刘允坤,孙修勤,黄捷,张进兴.牙鲆淋巴囊肿病的PCR诊断方法研究[J].高技术通讯.2002,11:87-89.
    291.陈信忠,龚艳清,王军.实时荧光定量RT-PCR检测石斑鱼病毒性神经坏死病[J].高技术通讯.2006,16:431-434.
    292.M V-R,D W,S WW.The VP1 N-terminal sequence canine parvovirus affects nuclear transport of capsids and efficient cell[J].Virol.2002,4:1884 - 1891.
    293.Z Z,R S,T R.Analysis of the complete nuclectide sequences of goose parvovirus and muscovy duckparvovirus indicates common ancestral origin with adeno-associated virus[J].Virol.1995,562-573.
    294.张守峰,扈荣良.通过自制PCR试剂盒确诊雏鹅细小病毒感染[J].中国兽医学报.2004,24:537-538.
    295.K LC,T Y,M N.Detection of goose parvovirus genome by polymerase chain reaction:distribution of goose parvovirus in muscovy ducklings[J].Virus Res.1996,42:167-172.
    296.R IM,A KMAHN.An Immunocytochemical study on the sequential tissue distribution of duck plague virus[J].Avian Pathol.1995,1:189-194.
    297.Koivula TT,Juvonen R,Haikara A,Suihko ML.Characterization of the brewery spoilage bacterium Obesumbacterium proteus by automated ribotyping and development of PCR methods for its biotype 1[J].J App Microbiol.2006,100:398-406.
    298.Hendrickx B,Junca H,Vosahlova J,Lindner A,R(u|¨)egg I,Bucheli-Witschel M,Faber F,Egli T,Mau M,Schl(o|¨)mann M.Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation:Distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site[J].J Microbiol Meth.2006,64:250-265.
    299.Bona?ti C,Parayre S,Irlinger F.Novel extraction strategy of ribosomal RNA and genomic DNA from cheese for PCR-based investigations[J].Int J Food Microbiol.2006,107:171-179.
    300.Settanni L,Valmorri S,van Sinderen D,Suzzi G,Paparella A,Corsetti A.Combination of Multiplex PCR and PCR-Denaturing Gradient Gel Electrophoresis for Monitoring Common Sourdough-Associated Lactobacillus Species[J].Appl Environ Microbo 2006,72:3793-3796.
    301.Suzuki K,Sami M,Iijima K,Ozaki K,Yamashita H.Characterization of horA and its flanking regions of Pediococcus damnosus ABBC478 and development of more specific and sensitive horA PCR method[J].Lett Applied Microbiol.2006,42:392-399.
    302.Brusetti L,Borin S,Mora D,Rizzi A,Raddadi N,Sorlini C,Daffonchio D.Usefulness of length heterogeneity-PCR for monitoring lactic acid bacteria succession during maize ensiling[J].FEMS Micro Ecol.2006,56:154-164.
    303.马悦欣.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用[J].生态学报.2003.23:1561-1569.
    304.Possemiers S,Verthe K,Uyttendaele S,Verstraete W.PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem[J].FEMS Micro Ecol.2004,49:495-507.
    305.Dubois JW,Hill S,England LS,Edge T,Masson L,Trevors JT,Brousseau R.The development of a DNA microarray-based assay for the characterization of commercially formulated microbial products[J].J Microbiol Meth.2004,58:251-262.
    306.Cocolin L,Manzano M,Rebecca S,Comi G.Monitoring of Yeast Population Changes during a Continuous Wine Fermentation by Molecular Methods[J].Am Enol Viticult.2002,53:24-27.
    307.Fujimoto C,Maeda H,Kokeguchi S,Takashiba S,Nishimura F,Arai H,Fukui K,Murayama Y.Application of denaturing gradient gel electrophoresis(DGGE) to the analysis of microbial communities of subgingival plaque[J].J Periodontal Res.2003,38:440-445.
    308.倪学勤,Joshua Gong,Hal Yu,曾东,Shayan Sharif,周小秋.采用PCR-DGGE 技术分析蛋鸡肠道细菌种群结构及多样性[J].畜牧兽医学报.2008,7:955-961.
    309.Muyzer G,Teske A,Wirsen CO,Jannasch HW.Phylogenetic relationships ofThiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments[J].Arch Microbiol.1995,164:165-172.
    310.刘健华,陈杖榴,李云,俞道进,肠道菌群多样性变性梯度凝胶电泳分析法的建立[J].中国兽医科技.2005,6:445-449
    311.Huws SA,Edwards JE,Kim EJ,Scollan ND.Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems[J].J Microbiol Meth.2007,70:565-569.
    312.JZ,B M,T JM.DNA recovery from soils of diverse composition[J].Appl Environ M icrobiol.1996,2:316-322.
    313.Sanguinetti CJ,Dias Neto E,Simpson AJ.Rapid silver staining and recovery of PCR products separated on polyacrylamide gels[J].Biotechniques.1994,17:914-21.
    314.FS N.Branched DNA signal amplification for direct quantitation of nucleic acid sequences in clinical specimens[J]..Adv Clin Chem.1998:201-3.5.
    315.李文强,张改生,汪奎,牛娜,潘栋梁.小麦线粒体DNA的高效提取方法[J].HEREDITAS(Beijing).2007;6:775.
    316.W TCV.Interference of humic acids and DNA extracted ddirecily from soil in detection and transformation of recombinant DNA frombacteria and yeast[J].Appl Environ M icrobiol.1993,2657-265.
    317.周伟.基于PCR-DGGE方法的集约化土壤细菌遗传多样性分析[D].硕士.郑州:郑州大学,2007:30-35.
    318.黄留玉.PcR最新技术原理、方法及应用[M].化学工业出版社,2005.
    319.Don RH,Cox PT,Wainwright BJ,Baker K,Mattick JS.'Touchdown' PCR to circumvent spurious priming during gene amplification[J]Nucl Acids Res.1991,19:40089.
    320.RI A,W L,KH S.Phologenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol.Rev.1995,143-169.
    321.A S,J D,RIM.Molecular diversity and phylogeny of human colonic bacteria[M],In Atlantic Canada Society for Microbial Ecology,Halifax,Canada,1999.
    322.李明才,何韶衡.一种高效、快速的大肠杆菌感受态细胞制备及质粒转化方法[J].汕头大学医学院学报.2005;18,228-231.
    323.徐克前.分子生物学检验技术实验指导[M].人民卫生出版社,2003.
    324.JR C,B C,T M.The Ribosomal Database Project(RDP-I1):previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy[J].Nucleic Acids Res Jan.2003,31:442-443.
    325.杨小燕.家鸭人工感染鸭瘟强毒株的动态分布、黏膜免疫及对肠道菌群的影响[D].博士.四川农业大学,2005:36-49.
    326.Gillings M,Holley M,Microbiol.Repetitive element PCR fingerprinting(rep-PCR)using enterobacterial repetitive intergenic consensus(ERIC) primers is not necessarily directed at ERIC elements[J].Lett Appl.1997,25:17-21.
    327.Giovanni GDD,Watrud LS,Seidler R J,Widmer F.Comparison of Parental and Transgenic Alfalfa Rhizosphere Bacterial Communities Using Biolog GN Metabolic Fingerprinting and Enterobacterial Repetitive Intergenic Consensus Sequence-PCR(ERIC-PCR)[J].Microb Ecol.1999,37:129-139.
    328.张素辉.FQ-PCR检测DPV强毒人工感染鸭消化及呼吸道双歧(芽胞)杆菌和肠球菌数量变化规律研究[D].硕士:四川农业大学,2006:13-19.
    329.葛忠原.DPV弱毒免疫鸭的肠道和呼吸道类杆菌、葡萄球菌、大肠杆菌、弯曲杆菌数量变化规律的研究[D].硕士.四川农业大学,2006:24-26;28-31.
    330.姚混.肉仔鸡后肠道主要正常菌群组成及其演替规律的研究[D].硕士.北京:中国农业大学,2006:5-40.
    331.康白.微生态学[M].大连:大连出版社,1988:2-246.
    332.郭兴华.益生菌基础与应用[M].北京:北京科学技术出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700