轻型车转向TCS控制算法及液压控制测试系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车的主动安全性已经越来越受到汽车消费者和各大汽车厂商的重视。牵引力控制系统TCS(Traction Control System)通过控制车轮纵向滑移率使汽车获得最佳的纵向动力学性能。当在车辆转向或行驶在分离路面上时,驱动轮过度滑转不但会使驱动性能变差,而且地面对车辆产生附加的横摆力矩,对操纵稳定性有很大的影响,同时也增加了控制的难度。
     本文结以某越野汽车为研究对象,在MATLAB/SIMLINK建立汽车驱动转向动力学模型,建立了离线仿真模拟平台。提出牵引力控制策略,使用油门位置控制和驱动轮制动方法,完成了牵引力控制算法研究。完成了牵引力控制算法离线仿真研究。在基于Matlab xPC Target平台的TCS硬件在环试验台完成试验。本文采用的控制策略和控制算法抑制了驱动轮过度滑转,提高车辆的动力性能和操纵稳定性能。最后,提出液压制动系统方案和液压测试实验台的方案。
More and more consumers and automobile manufactures have been paying more attention to automotive active safety system. TCS(traction control system), get the optimum vertical danymics performance by controling wheel verticle sliding rates. The driving wheel will excessive slip easily when the automobile begins to start,accelerate,or climb on the road with weak attachment coefficient ,which will deteriorate the attached conditions between tyre and road surface and also will have bad impact on driving performance maneuvering performance and stability of vehicles. When the vehcles steering or driving in the seperation road, the excessive slip driving wheel not only reduce driving performance,but also produce additional yaw torque,and that have big influence in manevering perfofmance,at the same time increase the difficult of control.
     The dynamic characteristics of hydraulic brake system is the essential step in the studying-process of hydraulic system design and developing hydraulic brake products.It also had directly affects on braking process,so control logic design must be based on the dynamic characteristics of hydraulic brake system. However,it is difficult to establish mathematical modeling and inaccurate. All these facts showed that experimental study is the directly method in hydraulic brake system design and analysis.
     There are five parts in this paper:
     1. Automobile driving-steering dynamic model
     It established automobile driving-steering dynamic model,this model sets mathematical model for engine,transmission,tire and brakes etc.A seven dof whole car model is builted by Matlab/Simulink software will satisfy the simulation of different road input, vehicles start, accelerate, drive straight,steer etc.,and simulate control effects of traction control system logic.
     2. Traction control strategy and control algorithm study
     Identify control target of driving steer conditions: By balancing the dynamic performance of the vehicles,it will assure the vehicles with good control stability. It proposes strategy of throttle control based on yaw angular velocity and driving wheel brake control based on slip rate.And also proposes speed eatimation based on steering wheel;nominal yaw angular velocity calculation;throttle control judge and driving wheel brake judge methods and so on;it designs PI incremental throttle control and PID,fuzzyPID driving wheel brake control strategy.
     3. Offline simulation study of traction control algorithm
     It conducted offline simulation agaist steer contditions traction control in low attachment homogeneous road;comparative analysis agaist the results of throttle control, driving wheel brake control and joint control in this paper,which are based on determined test model parameters.The results show that:by using control strategy and control algorithm can effective inhibit driving wheel excessive slip and improve vehcles dynamic performance and stability of manipulation.It verificates correctness and reliability of algorithm for straight driving simulation in separation road, the questions yaw and driving wheel excessive slip have been contrlled effectively,dynamic performance and stability of manipulation of vehcles have been improved significantly.
     4. TCS hardware-in-the-loop test
     TCS hardware-in-the-loop test was builted basing on MATLAB/xPC Target platform,including sensor, actuator,experimental platform and signal rocessing site.It conducted TCS hardware-in-the-loop test against different driving conditions in TCS hardware-in-the-loop test-bed.the results show that TCS have effective inhibition with driving wheel excessive slip,improving vehcles dynamic performance and stability of manipulation.
     5. Hydraulic brake system programme and hydraulic test-bed programme
     It propses hydraulic brake system programme that have TCS function on the basis of test models,it determines hydraulic parts selection. It proposes hydraulic tast-bed overrall structureof the programme, at the same time,it selects test-bed parts model. Hydraulic brake system is in the process of being built.
     This paper established vehcle driving-steering dynamic model and offline simulation platform in MATLAB/SIMULINK for a linght vehcle.It praposes traction control strategy;it designs control system with different control method;traction control strategy study and traction control strategy offline simulation study is finished. On this basis,it proposes hydraulic brake system programme and hydraulic test-bed programme.
引文
[1] 张成宝,丁玉兰,吴光强.汽车牵引力控制系统(TCS)研究[J].人类工效学报,1999,5(3):25-28.
    [2] 张成宝,吴光强,丁玉兰,刘岩.汽车驱动防滑的控制方法研究[J].汽车工程,2000(5):324-328.
    [3] 赵建.轻型越野汽车牵引力制动力控制系统研究[D].长春:吉林大学,2007.
    [4] 庄继德.汽车电子控制系统工程[M].北京理工大学出版社,1998.
    [5] 孟嗣宗,庄一方.现代汽车电子控制[M].北京理工大学出版社,1996
    [6] 司利增.汽车防滑控制系统—ABS与ASR.人民交通出版社[M],1996.
    [7] 程军,瞿宏敏. 分离附着系数路况下防抱制动控制的研究. 试验与研究. 1996(1):8-31.
    [8] 李静. 4×4越野汽车牵引力控制策略与控制算法研究. [D]. 长春:吉林大学 2003.
    [9] 司利增, 王忠会. 驱动防滑转控制途径及原则分析[J]. 西安公路交通大学学报. 1998,1(1):55-58
    [10] 张明星,宋健,赵六奇等. 汽车驱动防滑控制系统的干预模式[J]. 公路交通科技. 2001, 18(3)
    [11] H. Decker, R. Emig, and H.Schramm. Traction Control (ASR) for Commercial Vehicles, a Further Step towards Safety on Our Roads[C]. SAE papers, No.872272
    [12] E. G hring, Stuttgart. The Daimler-Benz Winter Center “Rovainiemi”-A Prerequisite for Experimental Development[C] SAE Papers, No.890038 O
    [13] T. Yoshimura, H. Uchida, H. Nasu, Hinoand R. Ueno. Traction force control of an electric vehicle in 2WS-4WD mode using fuzzy reasoning. Int J of Vehicle Design, vol15, no.5, 1997.
    [14] Youssef A. Ghoneim, William c.lin, David M. Integrated chassis control system to enhance vehicle stability[J]. Int, J of Vehicle Design, 2000(23)
    [15] A. B. Will and C.S.H ZAK. Antilock brake system modeling and fuzzy control[J]. Int, J of Vehicle Design., 2000(24)
    [16] Hiroaki Kataoka, Hideo Sado, Shin-Ichiro Sakai, and Yoichi Hori. Optimal Slip Estimation for Traction Control System of Electric Vehicle Based on Fuzzy Inference[J]. Electrical Engineering in Japan, 2001, (35)1
    [17] 程军. 防抱制动系统不同控制方法的模拟研究[J]. 汽车技术, 1998, 8
    [18] 赵志国, 方宗德, 李杰. 防抱制动系统参数自适应滑模变结构控制器的研究[J]. 机械科学与技术, 2002, 21(1)
    [19] 赵志国, 方宗德, 傅卫平, 胡飞. 防抱制动系统滑模状态观测和控制系统仿真[J]. 计算机仿真, 2002, 19(1)
    [20] Georg F. Mauer, Gard F. Gissinger, Yann Chamaillard. Fuzzy logic continuous and quantizing control of an ABS braking system[C]. SAE paper No.940830
    [21] Josef Mack, Scott Clark, Derek F. Hodgson, and etc. ABS/TCS and brake technology developments[C]. SAE Special paper No.1018
    [22] Y. Chamaillard, G. L. Gissinger, C. Menard. Braking regulation of a vehicle, application and comparison of control algorithms of unstable or pseudo-stable fast systems[C]. SAE paper 940837
    [23] Ka C. Cheok, Francis B. Hoogterp, Walter K. Fales, and etc. Fuzzy logic approach to traction control design[C]. SAE paper 960957
    [24] Josef Mack, Teresa A. Hundley, Derek F. Hodgson, and etc. Current and future developments in ABS/TCS and brake technology[C]. SAE Special paper No.1142
    [25] Kim Lyon, Matthias Philipp, Erwin Grommes. Traction control for a Formula 1 race car, conceptual design, algorithm development, and calibration methodology[C]. SAE paper 942475
    [26] Heinrich Huchtkoetter, Heinz Klein. The effect of various limited-slip differentials in front-wheel drive vehicles on handling and traction[C]. SAE paper 960717
    [27] Robert K. Holzworth, Kenneth A. May. Analysis of traction control systems augmented by limited slip differentials[C]. SAE paper 940831
    [28] R Kazemi, M. Kabganian, M.R.Modir Zaare. A new sliding mode controller for four-wheel anti-lock braking system (ABS)[C]. SAE paper No.2000-01-1639.
    [29] 张成宝, 丁玉兰, 吴光强, 刘岩. 变结构方法在汽车驱动防滑中的应用[J]. 同济大学学报, 1999, 27(5)
    [30] 张代胜,李伟. 基于滑移率的汽车防抱模糊控制方法与仿真[J]. 农业机械学报, 2002, 33(2)
    [31] 苟凯英, 程军. 基于MATLAB仿真环境实现防抱制动控制逻辑[J]. 测控技术, 2002, 21(1)
    [32] 莫友声,朱荣,李思恩,沈莉. 汽车ABS模糊神经网络控制系统[J]. 上海交通大学学报. 1999, 33(5): 570-573.
    [33] 郭孔辉 丁海 涛刘溧 汽车ABS混合仿真试验台的开发与研究[J].中国机械工程第11卷 第12期 2000年12月
    [34] Helmu1 Fenne1,Sascha Mahr,Rudiger Sehleysing.Transputer-based Real·time Simulator- A High Performance Tool for ABS and TCS Development[J]. SAE Paper 920643。
    [35] lee Jc. Hardware-in-theloop simulation for ABS[J].SAE paper 980244
    [36] 孔 磊 ,宋 健 多功能液压ABS混和仿真试验台设计研究[J].公路交通科技 第23卷 第10期 2003 年10月
    [37] M.米奇克.汽车动力学[M].北京:机械工业出版社,1971.
    [38] 喻凡.汽车系统动力学[M].北京:机械工业出版社,2005.
    [39] 薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [40] 王沫然.Simulink4建模及动态仿真[M].北京:电子工业出版社,2002.
    [41] 张志涌.精通matlab6.5版[M].北京:北京航空航天大学出版社,2003.
    [42] 清源计算机工作室.MATLAB6.0基础及应用[M].北京:机械工业出版社,2001.
    [43] 王德平,郭孔辉,宗长富.车辆动力学稳定性控制的理论研究[J].汽车工程 ,2000,22(1):7-9.
    [44] 王德平,郭孔辉,宗长富.车辆动力学稳定性控制的仿真研究[J].汽车技术,1999,(2):8-10.
    [45] 程军 著. 汽车防抱死制动系统的理论与实践[M]. 北京理工大学出版社,1999年
    [46] Doguff, H., Fancher, P.S. and Segel, L. An analysis of tyre traction properties and their influence on vehicle dynamic performance[J]. SAE Paper No.700377
    [47] Edge C. Yeh, G.C. Day. A parametric study of anti-skid brake systems using Poincaré map concept, International Journal of Vehicle Design[J], 1992(13)
    [48] Suh, M.W., Chung, J.H., Seok, C.S., Kim, Y.J. Hardware-in-the-loop simulation for ABS based on PC. International Journal of Vehicle Design[J], 2000(24)
    [49] Gwanghun Gim, Patiyz .E. Nikracesh. An Analytical Model of Pneumatics Tyres for Vehicle Dynamic Simulations. Part 1:Pure Slips,International Journal of Vehicle Design[J], 1990, 11(6)
    [50] Gwanghun Gim, Patiyz .E. Nikracesh. An Analytical Model of Pneumatics Tyres for Vehicle Dynamic Simulations. Part 2:Comprehensive Slips, International Journal of Vehicle Design[J], 1991, 12(1)
    [51] Gwanghun Gim, Patiyz .E. Nikracesh. An Analytical Model of Pneumatics Tyres for Vehicle Dynamic Simulations[J]. Part 3:Validation Against Experimental Data, International Journal of Vehicle Design, 1991, 12(2)
    [52] 瞿宏敏, 程军. 汽车动力学模拟中的轮胎模型述评[J]. 汽车技术, 1996(7)
    [53] 郭应时, 魏朗. 汽车轮胎理论模型的分析[J]. 西安公路交通大学学报. 1998, 18(2)
    [54] E.Silani, S.M.Savaresi, S.Bittanti, A.visconti, and F.Farachi. "the Concept of Performance-Oriented Yaw-Control Systems:Vehicle Model and Analysis"[C]. SAE Paper No.2002-01-1585 . 2002.
    [55] Taehyun Shim and Donald Margolis. "Using mu Feedforward for Vehicle Stability Enhancement"[C]. SAE Paper No.2000-01-1634 . 2004
    [56] E.Silani, S.M.Savaresi, S.Bittanti, A.visconti, and F.Farachi. "the Concept of Performance-Oriented Yaw-Control Systems:Vehicle Model and Analysis"[C]. SAE Paper No.2002-01-1585 . 2002.
    [57] Alfred Sigl and Herbert Demel. ABS-Traction, State of the Art and Some Prospects[C]. SAE papers, No.900204
    [58] 程军, 袁金光 王西山. 汽车防滑控制的研究[J]. 汽车工程, 1997, (19)2
    [59] 金英,潘再平.脉宽调制控制方法研究[J].科技通报,2005,21(1):30-32.
    [60] 刘忠.液压脉冲宽度调制技术的应用研究[J].机械与电子,2006(4):38-40.
    [61] 刘忠,龙国健,褚福磊,杨国平.基于高速开关电磁阀技术的压力控制系统设计[J].液压与气动,2003(3):13-15
    [62] 朱冰.基于PWM的轻型越野车TCS驱动轮制动控制研究 [D].长春:吉林大学,2007年4月
    [63] 边明远,陈思忠.汽车驱动防滑控制系统的研究[J].武汉汽车工业大学学报,2000,22(6): 42-45.
    [64] 程军,徐光辉,崔继波.一种新型的车辆速度及加速度测量方法[J].汽车研究与开发,1999(3):41-43
    [65] Hongtei Eric Tseng, Behrouz Ashrafi, Todd Allen Brown, and Darrel Recker. "The Development of Vehicle Stability Control at Ford"[J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS VOL.4 NO.3. 1999.
    [66] 郭孔辉 著. 汽车操纵动力学[M]. 吉林科学技术出版社,1991年。
    [67] 丁海涛 “轮胎附着极限下汽车稳定性控制仿真研究” [D],吉林大学博士学位论文,2003年 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700