测度链上脉冲系统的稳定性及控制问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为统一连续和离散分析学,Stefan Hilger于1988年在其博士论文中建立了测度链理论.测度链上的动力系统理论为人们同时研究连续和离散系统提供了统一的框架.提到动力系统,现实世界中许多物理过程会在离散时刻遭受状态的突变,通过脉冲微分方程建立的模型可有效地反映此类物理现象的本质.近年来,脉冲微分系统理论得到了广泛的研究.从建模的角度来看,通过可以综合连续和离散时间空间的动力系统为此类状态突变的物理过程建立数学模型更具现实意义.
     本文研究测度链上脉冲系统的稳定性及控制问题.主要目标分别是分析测度链上线性时变脉冲系统的状态能控能观性,建立测度链上有无时滞脉冲系统的稳定性准则,并将所得结论和解决问题所用的方法应用于实际中.本文的主要内容包括以下四个部分.
     第二章考虑测度链上线性时变脉冲系统的能控能观性.通过参数变异法建立了测度链上线性时变脉冲系统解的表达形式,该结论在本节中起着重要作用.分别建立了该类脉冲系统状态能控能观的充分和必要条件.所得结论用于讨论相应的时不变脉冲系统的能控能观性.结果显示当测度链退化为实数空间时,我们的结论包含现有文献中关于连续脉冲系统的能控能观性结论,并且包含现有测度链上线性系统的能控能观性的结论.
     第三章研究了测度链上非线性脉冲系统的双测度稳定性.通过测度链上的数学归纳法建立了新的比较定理,并且利用其通过比较方法建立了测度链上脉冲系统双测度稳定的充分条件.所得结论用于研究具体的一类测度链上脉冲系统的渐近稳定性.在本章的第二部分,利用Lyapunov直接方法得到了测度链上脉冲系统的(h0,h)-(一致)稳定性、(h0,h)-(一致)渐近稳定性和(h0:h)-不稳定性准则.通过算例验证了所得结论的有效性.
     在第四章,研究了测度链上非线性脉冲泛函系统的指数稳定性.为了建立一般测度链上脉冲泛函系统的指数稳定性准则,首先考虑了离散脉冲时滞系统的指数稳定性问题.通过Lyapunov-Razumikhin方法建立了离散脉冲时滞系统的全局指数稳定性准则.然后,通过Lyapunov泛函方法获得了离散脉冲时滞系统指数稳定的充分条件.由所得离散系统的相关结论和研究方法,建立了测度链上脉冲泛函系统的指数稳定性准则.得到了两个Razumikhin-型全局指数稳定的结论,其中一个结论为无脉冲扰动的泛函系统保持指数稳定性提供了充分条件,另一结论则可用来作为设计脉冲控制器稳定泛函系统的充分条件.所得结论用来研究测度链上具体几类非线性脉冲时滞系统的指数稳定性问题.最后,本章通过Lyapunov泛函方法研究了测度链上脉冲泛函系统的指数稳定性.所得结论分别说明,可以通过选择合适的脉冲控制实现不稳定系统的指数稳定性,脉冲控制可以有效地控制稳定系统实现其指数稳定,以及动态性能良好的脉冲系统可以抵抗何种强度的脉冲扰动.最后,通过数值仿真实验验证了所得结论.
     在第五章,上述所得的稳定性结论应用于具体的几类控制问题.首先,设计了一致及非一致非线性脉冲控制器来稳定连续和离散混沌系统.具作者所知,离散时滞复杂动态网络的脉冲指数同步问题首次在本文中进行了研究.通过第四章所得Razumikhin-型的稳定性结论,设计了脉冲控制器实现离散时滞复杂动态网络的指数同步.最后,提出了测度链上复杂动态网络模型,并设计了一类混合脉冲控制器实现测度链上线性和一类非线性复杂动态网络与目标状态的一致.结果显示通过对网络的一小部分节点施加脉冲控制即可有效地实现测度链上动态网络与目标状态的一致.本章所得结论均通过数值仿真实例进行了验证.
Stefan Hilger introduced the theory of time scales in his PhD thesis in1988in order to unify the continuous and discrete analysis. The theory of dynamic systems on time scales provides us a framework to study the continuous and discrete system simultaneously. In terms of dynamic systems, various physical processes undergo abrupt changes of their states at discrete moments, this kind of systems can be modeled by impulsive differential equations. Recently, the theory of impulsive systems has been investigated extensively. From the modeling point of view, it is perhaps more reasonable to model evolution process subjected to impulsive perturbations by a dynamic system which incorporates both continuous and discrete time space, namely impulsive systems on time scales.
     Stability and control problems of impulsive systems on time scales are inves-tigated. The objectives of this thesis are to analyze the state controllability and observability of linear impulsive time-varying systems on time scales, to estab-lish stability criteria for nonlinear impulsive systems with and without delay on time scales, and to apply the theory and method to real-world applications. The contents of this thesis consist of four parts which are listed as follows.
     Chapter2considers controllability and observability of linear impulsive time-varying systems on time scales. By employing the method of parameter variation, the form of corresponding system's solution is obtained, which plays an important role in this chapter. Sufficient and necessary conditions are established for the linear impulsive time-varying systems on time scales, respectively. These results are then used to discuss the systems'time-invariant counterparts. It is shown that when the time scale reduce to the real numbers, our results contains the existing results about the linear impulsive continuous systems, and some other results about linear systems without impulses on time scales can be our results' special cases.
     In Chapter3, stability in terms of two measures is investigated for the non-linear impulsive systems on time scales. A new comparison result is obtained by using the mathematical induction method on time scales, which is used to establish the sufficient conditions for the (h0,h)-stability of nonlinear impulsive systems on time scales by comparison method. The asymptotic stability of a class of nonlinear impulsive systems on time scales is discussed by using the obtained (h0, h)-stability criteria. In the second part of this chapter, we use Lyapunov direct method to study stability in terms of two measures for nonlinear impulsive systems on time scales.(h0,h)-(uniform) stability,(h0,h)-(uniform) asymptotic stability,(h0,h)-nstability criteria are established, respectively. Some examples are also discussed to illustrate our theoretical results.
     Exponential stability problem is considered in Chapter4about nonlinear impulsive functional systems. In order to establish exponential stability criteria for impulsive functional systems on general time scales, the exponential stability problem of impulsive discrete delay systems is concerned. By using Lyapunov-Razumikhin method, the global exponential stability criteria are obtained. Then, Lyapunov functional method is employed to construct sufficient conditions about the exponential stability for impulsive discrete delay systems. Inspired by the results obtained about discrete systems and the method used, the exponential stability criteria about impulsive functional systems on time scales are estab-lished. Two Razumikhin-type global exponential stability results are derived, one of which provides sufficient conditions for maintaining the global exponential sta-bility property of the trivial solution of the functional system without impulsive perturbations, while another of which can be used to impulsively stabilize func-tional systems. These results are also used to discuss the stability problem of some special cases of nonlinear impulsive systems on time scales. The last part of this chapter proposes the Lyapunov functional method in the content of impulsive exponential stabilization of functional systems. Several results are constructed to show that an unstable system can be exponentially stabilized by appropriate se-quence of impulses, impulses can contribute to make a stable system exponentially stable, and to what extent can a well-behaved system preserve its stability prop-erties under impulsive perturbations, respectively. Some examples with numerical simulations are exploited to demonstrate the effectiveness of our results.
     In Chapter5, several applications of the results obtained in previous parts are concerned. Uniform and nonuniform impulsive controllers are designed to sta-bilize the continuous and discrete chaos systems. As far as the author knows, the impulsive synchronization problem of discrete delay complex dynamic networks is firstly considered in this thesis. By using the Razumikhin-type stability re- sults derived in Chapter4, the impulsive controller is constructed to realize the exponential synchronization of the discrete delay complex dynamic networks. Fi-nally, the complex dynamic networks on time scales is introduced and a hybrid impulsive controller is designed to consensus the networks on time scales to the objective states. It is shown that the state-coupled networks on time scales can be effectively forced to the goal trajectory by adding impulsive control to a small pro-portion of the networks'nodes. Numerical examples and simulations are presented throughout this chapter to illustrate the results.
引文
[1]S. Hilger, Ein Maβkettenkalkul mit Anwendung auf Zentrumsmannig-faltigkeiten[D], PhD. Thesis, Universitot Wiirzburg,1988 (in German).
    [2]S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus[J], Results Math.,1990,18:18-56.
    [3]R.P. Agarwal, M. Bohner, Basic calculus on time scales and some of it's applications[J], Resultate der Math.,1999,35(1-2):3-22.
    [4]M. Bohner, R.P. Agarwal. Quadratic functionate for second order matrix equations on time scales[J], Nonlinear Anal.,1998,33(7):675-692.
    [5]M. Bohner, R.P. Agarwal, Wong P.J.Y., Sturm-Liouville eigenvalue problems on time scales [J], Appl. Math. Comput.,1999,99(2-3):53-166.
    [6]M. Bohner, A. Peterson, Dynamic Equation on Time Scales, An Introduction with Applications[M], Birkhauser, Boston,2001.
    [7]F.M. Atici, D.C. Biles, A. Lebedinsky, An applications of time scales on economics[J], Math. Comput. Modelling,2006,43(7-8):718-726.
    [8]M. Bohner, A. Peterson, Advances in Dynamic Equation on Time Seales[M], Birkhauser. Boston,2003.
    [9]M.A. Jones, B. Song, D.M. Thomas, Controlling wound healing through de-bridement[J], Math. Comput. Modelling,2004,40(9-10):1057-1064.
    [10]P. Meakin, Models for material failure and deformation [J], Science,1991, 252(5003):226-234.
    [11]V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic Systems on Measure Chains[M], Kluwer Academic Publishers, Boston,1996.
    [12]D.R. Anderson, Solutions to second-order three-point problems on time scales[J], J. Differ. Equations Appl.,2002,8(8):673-688.
    [13]D.R. Anderson, R. Avery, J. Henderson, Existence of solutions for a one-dimensional p- Laplacian on time scales[J], J. Difference Equ. Appl.,2004, 10(10):889-896.
    [14]F.M. Atici, G.Sh Guseinov., On Green's functions and positive solutions for boundary value problems on time scales[J], J. Comput. Appl. Math.,2002, 141(1-2):75-99.
    [15]B. Aulbach, L. Neidhart, Integration on measure chains[C], In Proeeedings of the Sixth International Conference on Difference Equations, CRC. BoeaRa-ton, FL,2004,239-252.
    [16]T. Card, J. Hofacker, Asymptotic behavior of natural growth on time scales[J], Dynamic Syst. Appl.,2002,13(1-2):1-148.
    [17]C. Huang, F. Xi, H. Huo, Solutions of Second-Order Half-Linear Dynamic and applications on Time Scales[J]. International journal of differential Equations, 2003.8:217-229.
    [18]W. Li,X. Liu, Eigenvalue problems for second-order nonlinear dynamic equa-tions on time scales [J], J. Math. Anal. Appl.,2006,318(2):578-592.
    [19]W. Li, H. Sun, Positive solutions for seeond-order m-point boundary value problems on time scales [J], Aeta Math.Sin.,2006,22(6):1797-1804.
    [20]W. Li, X. Fan, C. Zhong, Monotone solutions of second order nonlinear dif-ferential equations[J], Appl. Math. Lett.,2000,13(3):65-70.
    [21]H. Lu, D. O'Rgan, C. Zhong, Multiple positive solutions for the one-dimen-sional singular p-Laplacian [J], Appl. Math. Comput.,2002,133(2-3):407-42.
    [22]Y. Liu, W. Ge, Twin poitive solutions of boundary value problems for finite difference equations with p-Laplacian[J],J. Math. Anal. Appl.,2003,278(2): 551-561.
    [23]陈启宏,张凡,郭凯旋,微分方程与边值问题[M],机械工业出版社,2005.
    [24]R.I. Averyt J. Henderson, Existence of three positive pseudo-symmetric so-lutions for a one-dimensional p-Laplacian[J], J. Math. Anal. Appl.,2003, 277(2):395-404.
    [25]P. Wang, Z. Zhan, Stability in terms of two measures of dynamic system on time scales[J], Comput. Math. Appl.,2012,218(9):4717-4725.
    [26]P. Agarwal, Difference equations and inequalities[M], Marcel Dekker, New York,1992.
    [27]W. Hahn, Stability of motion[M], Springer-Verlag, New York,1967.
    [28]C. Potzsche, S. Siegmund, F. Wirth, A spectral chatacterization of expo-nential stability for linear time-invariant systems on time scales[J], Discrete Contin. Dyn. Syst.,2003,9:1223-1241.
    [29]T. Gard, J. Hoffacker, Asymptotic behavior of natural growth on time scales[J], Dynam. Systems Appl.,2003,12:131-147.
    [30]S.K. Choi, N.J. Koo, D.M. Im,h-Stability for linear dynamic equations on time scales[J], J. Math. Anal. Appl.,2006,324(1):707-720.
    [31]S.K. Choi, Y.H. Goo, N.J. Koo,h-Stability of dynamic equations on time scales with nonregressivity[J], Abstr. Appl. Anal.,2008(2008), Article ID 632473,13 pages.
    [32]S.K. Choi, N.J. Koo, On the stability of linear dynamic systems on time scales[J], J. Difference Equ. Appl.,2009,15(2):167-183.
    [33]N. Du, L.H. Tien, On the exponential stability of dynamic equations on time scales[J], J. Math. Anal. Appl.,2007,331(2):1159-1174.
    [34]T.S. Doan, A. Kalauch, S. Siegmund, Exponential stability of linear time-invariant systems on time scales [J], Nonlinear dynamics and Systems Theory, 2009,9(1):37-50.
    [35]A.C. Peterson, Y.N. Raffoul, Exponetial stability of dynamic equations on time scalcs[J], Advances in Differential Equations,2005,2(2005):133-144.
    [36]P.E. Kloeden, A. Zmorzynska, Lyapunov functions for linear nonautonomous dynamical equations on time scales[J], Advances in Differential Equations, Volume 2006, Article ID 69106, Pages 1-10.
    [37]S.K. Choi, D.M, Im. N.J. Koo, Stability of linear dynamic systems on time scales[J], Advances in Differential Equations, Volume 2008, Article ID 670203, 12 pages.
    [38]A. Liu, Boundedness and exponential stability of solutions to dynamic equa-tions on time scales[J], Electonic Journal of Differential Equations,2006,2: 1-14.
    [39]J.J. DaCunha, Stability for time varying linear dynamic systems on time scales[J], J. Comput. Appl. Math.,2005,176(2):181-410.
    [40]J.J. DaCunha, Instability results for slowly time varying linear dynamic sys-tems on time scales[J], J. Math., Anal. Appl.,2007,328(2):1278-1289.
    [41]J. Hoffacker, C.C. Tisdell, Stability an Instability for dynamic equations on time scales[J], Comput. Math. Appl.,2005,49(9-10):1327-1334.
    [42]H. Wu, Z. Zhou, Stability for first order delay dynamic equations on time scales[J], Comput. Math. Appl.,2007,53(12):1820-1833.
    [43]W. Zhong, W. Lin, J. Ruan, The generalized invariance principle for dynamic equations on time scales [J], Appl. Math. Comput.,2007,184(2):557-565.
    [44]V.D. Mil'man, A.D. Myshkis, On the stability of motion in nonlinear me-chanics[J], J. Sib. Math.,1960,233-237.
    [45]V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of impulsive dif-ferential eqations, Series in modern applied mathemaitcs[M], Singapore and Teaneck:World Scientific,1989.
    [46]V. Lakshmikantham, A.S. Vatsala, Hybrid systems on time scales [J], J. Com-put. Appl. Math.,2002,141(1-2):227-235.
    [47]Y. Ma, J. Sun, Stability criteria of delay impulsive systems on time scales [J], Nonlinear Anal.,2007,67(4):1181-1189.
    [48]Y. Ma, J. Sun, Stability criteria of impulsive systems on time scales [J], J. Comput. Appl. Math.,2008,213(2):400-407.
    [49]马亚军,孙继涛,一般时间尺度上时滞脉冲系统双测度稳定性[J],数学学报,2008,51(4):755-760.
    [50]Y. Ma. J. Sun, Uniform eventual Lipschitz stability of impulsive systems on time scales[J], Appl. Math. Comput.,2009,211(1):246-250.
    [51]P. Wang, M. Wu, Practical φ0- stability of impulsive dynamic systems on time scales [J], Appl. Math. Lett.,2007,20(6):651-658.
    [52]P. Wang, M. Wu, On the φ0- stability of impulsive dynamic system on time scales [J], Electonic Journal of Differential Equations,2005,128:1-7.
    [53]P. Wang, X. Liu, New comparison principle and stability criteria for impulsive hybrid systems on time scales[J], Nonlinear Anal.,2006,7(5):1096-1103.
    [54]P. Wang, X. Liu, Practical stability of impulsive hybrid differential systems in terms of two measures on time scales[J], Nonlinear Anal.,2006,65(11): 2035-2042.
    [55]P. Wang, X. Liu, φ0- Stability of hybrid impulsive dynamic systems on time scales[J], J. Math. Anal. Appl.,2007,334(2):1220-1231.
    [56]Z. Guan, T. Qian, X. Yu, On controllability and observability for a class of impulsive systems [J], Systems & Control Letters,2002,47(3):247-257.
    [57]Z. Guan, T. Qian, X. Yu, Controllability and observability of linear time-varying impulsive systems [J], IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications,2002,49(8):1198-1208.
    [58]G. Xie, L. Wang, Necessary and sufficient conditions for controllability and observability of switched impulsive control systems [J], IEEE Transactions on Automatic Control,2004.49(6):960-966.
    [59]G. Xie, L. Wang, Controllability and observability of a class of linear impulsive systems[J], J. Math. Anal. Appl.,2005,304(1):336-355.
    [60]B. Liu, H.J. Marquez, Controllability and observability for a class of con-trolled switching impulsive systems [J], IEEE Transactions on Automatic Con-trol,2008,53(10):2360-2366.
    [61]S. Zhao, J. Sun, Controllability and observability for a class of time-varying impulsive systems[J]. Nonlinear Analysis:Real World Applications,2009, 10(3):1370-1380.
    [62]S. Zhao. J. Sun. Controllability and observability for impulsive systems in complex fields[J], Nonlinear Analysis:Real World Applications,2010,11(3): 1513-1521.
    [63]S. Zhao, J. Sun, Controllability and observability for time-varying switched impulsive controlled systems[J], Int. J. Robust Nonlinear Control,2010, 20(12):1313-1325.
    [64]S. Zhao, J. Sun, Controllability for a class of linear time-varying impulsive systems with time delay in control input [J], IEEE Transactions on Automatic Control,2011.56(2):395-399.
    [65]S. Ji, G. Li, M. Wang. Controllability of impulsive differential systems with nonlocal conditions [J], Applied Mathematics and Computation.2011, 217(16):6981-6989.
    [66]V. Lupulescua. A. Younus. Controllability and observability for a class of time-varying impulsive systems on time scales[J], Electronic Journal of Qual-itative Theory of Differential Equations,2011,95:1-30.
    [67]V. Lupulescua, A. Younus, Controllability and observability for a class of lin-ear impulsive dynamic systems on time scales[J], Math. Comput. Modelling, 2011,54(5-6):1300-1310.
    [68]Z. Bartosiewicz, E. Piotrowska. M. Wyrwas, Stability, stabilization and ob-servers of linear control systems on time scales[C], Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans. LA, USA.2007, 12-14.
    [69]J.M. Davis, I. Gravagne, B. Jackson, R.J. Marks. State feedback stabiliza-tion of linear time-varying systems on time scales[C],42nd South Eastern Symposium on System Theory, Tyler, TX, USA.2010,7-9.
    [70]I. Gravagne, E. Johns, J.M. Davis, Switched linear systems on time scales with relaxed commutativity constraints[C],43rd South Eastern Symposium on System Theory, Auburn, AL, USA,2011,43-48.
    [71]Z. Bartosiewicz, E. Pawluszewic, Realizations of nonlinear control systems on time scales[J], IEEE Transactions on Automatic Control,2008,53(2):571-575.
    [72]廖晓昕,稳定性的数学理论及应用(第二版)M],武汉:华中师范大学出版社,2006.
    [73]A.M. Samoilenko, X.A. Peretyuk, Impulsive differential equations[M], Singa-pore:World Scientific,1995.
    [74]傅希林,闫宝强,刘衍胜,脉冲微分系统引论[M],北京:科学出版社,2005.
    [75]傅希林,非线性脉冲微分系统[M],北京:科学出版社,2008.
    [76]A.A. Movchan, Stability of processes with respect to two matrices[J], Prik. Mat. Meh.,1960,24:988-1001.
    [77]L. Salvadori, Some contributions to asymptotic stability theory[J], Ann. Soc. Sci. Bruxelles,1974,88:183-194.
    [78]V. Lakshmikantham, X. Liu, Stability analysis in terms of two measures[M], Singapore:World Scientific,1993.
    [79]S.G. Hristova, Stability on a cone in terms of two measures for impulsive dif-ferential equations with "supremum"[J], Applied Mathematics Letters,2010, 23(5):508-511.
    [80]S.G. Hristova, Integral stability in terms of two measures for impulsive func-tional differential equations [J], Mathematical and Computer Modelling,2010, 51(1-2):100-108.
    [81]B. Ahmad, Stability in terms of two measures for perturbed impulsive de-lay integro-differential equations[J], Applied Mathematics and Computation, 2009,214(1):83-89.
    [82]P. Wang, M. Wu, Y. Wu, Practical stability in terms of two measures for discrete hybrid systems[J], Nonlinear Analysis:Hybrid Systems,2008,2(1): 58-64.
    [83]X. Liu, Q. Wang, On stability in terms of two measures for impulsive systems of functional differential equations[J]. J. Math. Anal. Appl.,2007,326(1): 252-265.
    [84]P. Wang, S. Tian, P. Zhao, Stability in terms of two measures for differ-ence equations [J], Applied Mathematics and Computation,2006,182(2): 1309-1315.
    [85]X. Liu, X. Fu, Stability criteria in terms of two measures for discrete sys-tems[J], Computers Math. Applic.,1998,36(11-12):327-337.
    [86]A. Li, X. Song, Stability and boundedness of nonlinear impulsive systems in terms of two measures via perturbing Lyapunov functions[J]. J. Math. Anal. Appl.,2011,375(1):276-283.
    [87]J. Sun, Y. Zhang, Q. Wu, Less conservative conditions for asymptotic stability of impulsive control systems [J]. IEEE Trans. Automat. Contr.,2008,48(5): 829-831.
    [88]V. Lakshmikantham, X. Liu, Stability criteria for impulsive differential equa-tions in terms of two measures[J], J. Math. Anal. Appl.,1989,137(2):591-604.
    [89]J.K. Hale, S.M.V. Lunel, Introduction to functional differential equations[M], New York:Springer-Verlag,1993.
    [90]V.B. Kolmanovskii, V.R. Nosov, Stability of functional differential equa-tions[M], London:Academic Press,1986.
    [91]G. Ballinger, X. Liu, Practical stability of impulsive delay differential equa-tions and applications to control problems, in:Optimization Methods and Applications[M], Dordrecht:Kluwer Academic,2001.
    [92]X. Liu, Stability results for impulsive differential systems with applica-tions to population growth models [J], Dynam. Stability Systems 1994,9(2): 163-174.
    [93]T.P. Chen, Global exponential stability of delayed Hopfield neural net-works[J], Neural Networks,2001,14(8):977-980.
    [94]I.M. Stamova, G.T. Stamov, Lyapunov-Razumikhin method for impulsive functional equations and applications to the population dynamics[J], J. Com-put. Appl. Math.,2001,130(1-2):163-171.
    [95]B. Liu, H.J. Marquez, Razumikhin-type stability theorems for discrete delay systems[J], Automatica,2007,43(7):1219-1225.
    [96]J. P. Richard, Time-delay systems:An overview of some recent advances and open problems[J], Automatica,2003,39(10):1667-1694.
    [97]M.S. Mahmoud, P. Shi, Methodologies for control of jump time-delay sys-tems[M], Boston:Kluwer Academic Publishers,2003.
    [98]S. Xu, J. Lam, A survey of linear matrix inequality techniques in stability analysis of delay systems[J], Int. J. Syst. Sci.,2008,39(12):1095-1113.
    [99]E.K. Bouka, State feedback stabilization of nonlinear discrete-time systems with time-varying time delay [J], Nonlinear Anal.,2007,66(6):1341-1350.
    [100]J. Xu, Z. Teng, Permanence for a nonautonomous discrete single-species system with delays and feedback control[J], Appl. Math. Lett.,2010,23(9): 949-954.
    [101]Y. Zhang, J. Sun, G. Feng, Impulsive control of discrete systems with time delay[J], IEEE Trans. Automat. Contr.,2009,54(4):830-834.
    [102]X. Liu, Z. Zhang, Uniform asymptotic stability of impulsive discrete sys-tems of impulsive discrete systems with time delay [J], Nonlinear Anal.,2011, 74(15):4941-4950.
    [103]J. Hu, Z, Wang, H. Gao, L.K. Stergioula, Robust H∞ sliding mode control for discrete time-delay systems with stochastic nonlinearities[J], J. Franklin Inst.,2012,349(4):1459-1479.
    [104]M.S. Mahmoud, E. Boukas, A. Ismail, Robust adaptive control of uncer-tain discrete-time state-delay systems[J], Comput. Math. Appl.,2008,55(12): 2887-2902.
    [105]M. Ovchinnikov, G.V. Smirnov, I. Zaramenskik, Orbital corrections by a single-input impulsive control applied along the geomagnetic field [J], Act a Astronautica,2009,65(11-12):1826-1830.
    [106]X. Liu, Stability results for impulsive differential systems with applications to population growth models[J], Dynamical Systems,1994,9(2):163-174.
    [107]X. Liu. Impulsive synchronization of chaotic systems subject to time de-lay[J], Nonlinear Anal.,2009,71(12):e1320-e1327.
    [108]S. Mohamad, K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays[J], Applied Mathematics and Computation,2003,135(1):17-38.
    [109]E. Kaslik, S. Sivasundarain', Impulsive hybrid discrete-time Hopfield neural networks with delays and multistability analysis [J], Neural Networks,2011, 24(4):370-377.
    [110]S. Pan, J. Sun, S. Zhao, Robust filtering for discrete time piecewise impulsive systems[J], Signal Processing,2010,90(1):324-330.
    [111]B. Liu, D.J. Hill, Uniform stability and ISS of discrete-time impulsive hybrid systems [J], Nonlinear Analysis:Hybrid Systems,2010,4(2):319-333.
    [112]Z. Zhang, X. Liu, Robust stability of uncertain discrete impulsive switching systems[J], Computers & Mathematics with Applications,2009,58(2):380-389.
    [113]B. Liu, D.J. Hill, Comparison principle and stability of dicrete-time impul-sive hybrid systems[J], IEEE Trans. Circuits Syst.-I,2009,56(1):233-245.
    [114]B. Liu, D.J. Hill, Uniform stability of large-scale delay discrete impulsive systems[J], International Jornal of Control,2009,82(2):228-240.
    [115]Z. Zhang, Robust H∞ control of a class of discrete impulsive switched sys-tems[J], Nonlinear Anal.,2009,71(12):e2790-e2796.
    [116]L. Zhang, H. Jiang, Impulsive generalized synchronization for a class of nonlinear discrete chaotic systems[J], Commun Nonlinear Sci Numer Simulat, 2011,16(4):2027-2032.
    [117]X. Liu, Z. Zhang, Uniform asymptotic stability of impulsive discrete systems of impulsive discrete systems with time delay[J], Nonlinear Analysis:Theory, Methods & Applications,2011,74(15):4941-4950.
    [118]Y. Zheng, Y. Nian, Z. Liu, Impulsive control for the stabilization of discrete chaotic systems[J], Chin.Phys.Lett.,2002,19(9):1251-1253.
    [119]X. Liu, G. Ballinger, Uniform asymptotic stability of impulsive delay differ-ential equations[J], Comput. Math. Appl.2001,41(7-8):903-915.
    [120]Q. Wang, X. Liu, Exponential stability for impulsive delay differential equa-tions by Razumikhin method[J], J. Math. Anal. Appl.2005,309(2):462-473.
    [121]Q. Wang, X. Liu, Impulsive stabilization of delay differential systems via the Lyapunov-Razumikhin method[J], Applied Mathematics Letters,2007, 20(8):839-845.
    [122]Z. Luo. J. Shen. Impulsive stabilization of functional differential equations with infnite delays[J], Appl. Math. Lett.,2003,16(5):695-701.
    [123]J. Shen, J. Yan, Razumikhin type stability theorems for impulsive functional differential equations[J], Nonlinear Anal.,1998,33(5):519-531.
    [124]J. Yan, J. Shen, Impulsive stabilization of functional differential equa-tions by Lyapunov-Razumikhin functions[J], Nonlinear Anal.,1999,37(2): 245-255.
    [125]M. Federson, J.G. Mesquita, A. Slavik, Measure functional differential equa-tions and functional dynamic equations on time scales [J], J. Differential Equa-tions,2012,252(6):3816-3847.
    [126]G. Chen, X. Dong, From Chaos to Order:Methodologies, Perspectives and Applications[M], Singapore:World Scientific,1998.
    [127]E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos [J], Phys. Rev. Lett.,1990, 64(11):1196-1199.
    [128]J. Cao, J. Lu, Adaptive synchronization of neural networks with or without time-varying delays[J], Chaos,2006,16(1):013133,6 pages.
    [129]L.O. Chua, T. Yang, G. Zhong, C. Wu, Adaptive synchronization of Chua's oscillators[J], Int. J. Bifurcation Chaos,1996,6(1):198-201.
    [130]T. Yang, L.O. Chua, Impulsive stabilizaton of control and synchronization of chaotic systems:theory and application to secure communication [J], IEEE Trans. Circuits Syst.-I,1997,44(10):976-988.
    [131]S. Chen, Q. Yang, C. Wang, Impulsive control and synchronization of unified chaotic system [J], Chaos Solitions & Fractals,2004,20(4):751-758.
    [132]D. Chen, J. Sun, C. Huang, Impulsive control and synchronization of general chaotic system [J], Chaos Solitions & Fractals,2006,28(1):213-218.
    [133]Z. Guan, R. Liao, F. Zhou, H. Wang, On impulsive control and synchro-nization to Chen's chaotic system [J], Int. J. Bifurcation Chaos,2002,12: 1191-1197.
    [134]W. Xu, L. Wang, Rong, D. Li, Y. Niu, Analysis for the stabilization of impulsive control Liu's system [J], Chaos Solitions & Fractals,2009,42(2): 1143-1148.
    [135]Y. Zhang, J. Sun, Impulsive robust fault-tolerant feedback control for chaotic Lur'e systems[J], Chaos Solitions & Fractals,2009,39(3):1440-1446.
    [136]J. Sun, Y. Zhang, L. Wang, Q. Wu, Impulsive robust control of uncertain Lur'e systems[J], Phys.Lett.A,2002,304(5-6):130-135.
    [137]Z. Li, C. Wen, Y.C. Soh, W. Xie, The stabilization and synchronization of Chua's oscillators via impulsive control [J], IEEE Trans.Circuits Syst.-I,2001, 48(11):1351-1355.
    [138]Y. Zhang, J. Sun, Controlling chaotic Lu systems using impulsive control [J], Phys. Lett, A,2005,342(3):256-262.
    [139]Y. Li, X. Liu, H. Zhang, Dynamical analysis and impulsive control of a new hyperchaotic system[J], Math.Comput.Modelling,2005,42(11-12):1359-1374.
    [140]H.N. Agiza, M.T. Yassen, Synchronization of Rosler and Chen chaotic dy-namical systems using active control [J], Phys. Lett. A,2001,278(4):191-197.
    [141]E. Bai, K.E. Lonngren, Sequential synhcronization of two Lorenz systems using active control[J], Chaos Solitions & Fractals.2000,11(7):1041-1044.
    [142]S. Bu, S. Wang, H. Ye, An algorithm based on variable feedback to synchro-nize chaotic and hyperchaotic systems [J], Physica D,2002,164(1-2):45-52.
    [143]H. Yau, Design of adaptive sliding mode controller for chaos synchronization with uncertainties [J], Chaos Solitions & Fractals,2004,22(2):341-347.
    [144]K. Lian, T. Chiang, C. Chiu, P. Liu, Synthesis of fuzzy model-based designs to synchronization and secure communications for chaotic systems[J], IEEE Trans.Syst.Man.Cybern.,2001,31(1):66-83.
    [145]H. Zhang, D. Liu, Z. Wang, Controlling Chaos:Suppression, Synchroniza-tion and Chaotification[M], London:Springer.2009.
    [146]G. Qi, G. Chen, S. Du, Z. Chen, Z. Yuan, Analysis of a new chaotic sys-tem[J], Physica A,2005,352(2-4):295-308.
    [147]T. Ushio, Chaotic synchronization and controlling chaos based on contrac-tion mappings[J], Phys. Lett. A,1995,198(1):14-22.
    [148]S. Strogatz, Exploring complex networks[J], Nature,2001,410(6825):268-276.
    [149]X. Wang, G. Chen, Complex networks:small-world, scale free and be-yond [J], IEEE Trans. Circuits Syst.,2003,3(1):6-20.
    [150]A. Barabasi, R. Albert, Statistical mechanics of complex networks[J], Rev. Mod. Phys.,2002,74(1):47-97.
    [151]J. Zhou, J. Lu, J. Lu, Adaptive synchronization of uncertain dynamical network[J], IEEE Trans. Auto. Control,2006,51(4):652-656.
    [152]X. Li, X. Wang, G. Chen, Pinning a complex dynamical network to its equilibrium[J], IEEE Trans. Circuits Syst.-I,2004,51(10):2074-2087.
    [153]Y. Long, M. Wu, B. Liu, Robust impulsive synchronization of linear discrete synamical networks[J], J. Control Theory & Appl.,2005,3(1):20-26.
    [154]B. Liu, X. Liu, G. Chen, Robust impulsive synchronization of uncertain dynamical networks[J], IEEE Trans. Circuits Syst.,2005,52(7):1431-1441.
    [155]M. Lei, B. Liu, Robust impulsive synchronization of discrete dynamical net-works [J], Advances in Difference Equations,2008. Article ID 184275,1-17.
    [156]Q. Zhang, J. Lu, J. Zhao, Impulsive synchronization of general continuous and discrete-time complex dynamical networks[J], Commun. Nonlinear Sci. Numer. Simulat.,2010,15(4):1063-1070.
    [157]H.B. Jiang, Hybrid adaptive and impulsive synchronization of uncertain complex dynamical networks by the generalised Barbalat's lemma[J], IET Control Theory & Appl.,2009,3(10):1330-1340.
    [158]B. LIU, D.J. HILL, Impusive consensus for complex dynamical networks with nonidentical nodes and coupling time-del ay s[J], SI AM J. Control Optim., 2011,49(2):315-338.
    [159]Q. Wang, X. Liu, Exponential stability of impulsive cellular neural networks with time delay via Lyapunov functionals[J], Applied Mathematics and Com-putation,2007,194(1):186-198.
    [160]B. Liu, X. Liu, Rubost stability of uncertain discrete impulsive syst ems [J], IEEE Trans. Circuits Syst.Ⅱ,2007,54(5):455-459.
    [161]X. Liu, Q. Wang, The method of Lyapunov functional and exponential stability of impulsive systems with time delay [J], Nonlinear Analysis:Theory, Methods & Applications,2007,66(7):1465-1484.
    [162]B. Liu, H.J. Marquez, Uniform stability of discrete delay systems and synchronization of discrete delay dynamical networks via Razumikhin tech-nique[J], IEEE Transactions on Circuits and Systems-I:Regular Papers,2008, 55(9):2795-2805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700