羟丙基甲基纤维素热引发水凝胶的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在考察纤维素醚(羟丙基纤维素)HPC和羟丙基甲基纤维素(HPMC)溶液性质及溶液─凝胶动力学转变过程的基础上,以HPMC为原料,通过热引发的方法制备了一种新型的水凝胶,并对其智能响应行为进行了研究。
     首先使用乌氏粘度计测试了HPC和HPMC在不同溶剂中的粘度,通过传统的特性粘数的求算方法计算出各稀溶液体系的特性粘数,根据得到的特性粘数对稀溶液的性质进行研究发现:在强极性溶剂DMF中,由于较强的氢键作用的存在,分子线团呈卷紧状。氯离子的加入则会破坏氢键作用,导致分子线团松散。同时氯离子的存在会产生静电排斥作用,大分子之间的近程相互作用力减弱。根据经验公式,用特性粘数估算出各溶液体系的临界交叠浓度。分子量对于临界交叠浓度有十分显著的影响,溶剂的影响则不是很明显。离子的加入会引起临界交叠浓度一定的降低,这可能是由于离子的静电排斥作用导致的大分子无规线团松散变大,从而使得临界交叠浓度减小。
     用旋转粘度计研究了HPMC浓溶液的流变性质,结果表明:分子量对于HPMC溶液的流变性质有着显著的影响,高分子量的样品具有更明显的假塑性流体的性质,取代度对流变性质的影响不是特别显著。给出的数学模型表明,对HPMC的四种样品,流体行为指数与浓度之间均存在着一致的指数关系:n=k*exp(-C/t_0)+b。
     用动态流变仪对HPMC水溶液的热凝胶过程进行跟踪测试,通过分析体系粘弹性力学行为的变化考察HPMC热凝胶的可逆过程。研究结果表明:HPMC凝胶动力学分为预凝胶和凝胶两个阶段进行,凝胶化和去凝胶化过程并不完全相同,疏水聚集体和网络结构的解体要发生在低于其形成时的温度下。HPMC的两个取代基团对热凝胶过程的影响效果是相反的,羟丙基和水分子之间的氢键作用对预凝胶阶段的开始起着阻碍作用,而甲氧基则对凝胶阶段的大分子的疏水结合起促进作用。甲氧基含量高且羟丙基含量低的HF系列样品易于形成热凝胶。分子量的高低对于凝胶过程不起决定性的影响作用,不同取代度的样品分子量的影响不同。对HF系列,甲氧基取代基团的影响占主导,高分子量的样品易于成凝胶,而HK系列中,羟丙基的阻碍作用占主导,因此分子量的影响趋势相反。
     以不同分子量和取代度的HPMC样品通过热引发的方法制备了水凝胶,并对凝胶的溶胀动力学进行了研究,结果表明:HPMC热引发制备的水凝胶具有较好的溶胀吸水性能,其溶胀过程分三个阶段进行,符合Schott二级溶胀动力学方程,即水凝胶的溶胀度随时间的变化符合规律:t/SR=A+Bt。
     研究了HPMC水凝胶的环境智能响应行为,结果表明:HPMC水凝胶的平衡溶胀度随温度的增加而减小。温度对两个系列的凝胶的影响敏感程度不同,对HK系列而言,平衡溶胀度与温度成二次关系,而对HF系列则成一次的线性关系。HPMC水凝胶的溶胀行为受溶剂影响显著,在强极性溶剂中,氢键作用加强,溶胀度增加。弱极性溶剂中溶胀性能则迅速下降。在水中溶胀平衡的水凝胶置于弱极性溶剂中会发生消溶胀行为。pH值的改变对凝胶溶胀性能的影响不是特别显著,但是由于盐离子的加入而产生的盐析作用,溶胀吸水性能有不同程度的下降。
     分子参数对凝胶溶胀行为的影响研究结果表明:羟丙基含量高、甲氧基含量低的HK系列凝胶由于大分子和水分子之间更多的氢键作用,吸水溶胀性能明显高于HF系列凝胶。分子量的影响要受到取代度的干扰,HK系列的凝胶平衡溶胀度随分子量增加而增加,而HF系列则呈现相反的影响趋势。
A new-style hydrogel were prepared by hydroxypropyl methyl cellulose in thermal induced way, after reviewing the solution property of cellulose ethers (hydroxypropyl cellulose HPC and hydroxypropyl methyl cellulose HPMC) and process of sol-gel transition of HPMC. The intelligent responding behaviors of this hydrogel were studied as well.
     The viscosity of HPC and HPMC solutions with different solvents were tested by Ubbelohde viscosity meter, and its intrinsic viscosity were calculated by a traditional way. Subsequent investigations about properties of dilute solution were carried out with intrinsic viscosity and the following findings can be concluded: first, in the solvents with strong polarity such as DMF, molecular chains show a curly state because of the presence of stronger hydrogen bond. Addition of Cl" will lead to weaken of hydrogen bond and molecular chains become more relaxed. At the same time, the reciprocity of short range between macromolecules declined due to the static repulsion of Cl~-. Critical overlap concentration
     (C~*) of different solution systems were estimated from experiential formula by intrinsic viscosity. The influence of molecular weight on C~* is remarkable, while solvent property has a weak effect. Fall of C~* can be observed after adding ions, as a result of the relaxation of molecular chains led by the static repulsion between ions.
     Rheological property of HPMC solutions were studied by rotary viscosity meter. The flow behavior is much more influenced by molecular weight than degree of substitution. Critical overlap concentration can be concluded from the rheological test. By fitting the curves of studied solutions, a mathematical model was established which show there is a coincident function relationship between flow behavior index and concentration: n=k~*exp(-C/t_0)+b.
     Thermoreversible gelation process of HPMC samples were reviewed on dynamic rheometer by analyzing the change of visco-elastic mechanical behavior. This process can be divided in two stages: pre-gel stage and gel stage. The hydrophobic association in heating process is not the same as the disassociation in cooling. Thermal gelation behavior is strongly influenced by the degree of substitution. More methoxy content and lower hydroxypropyl content is easier to form a gel at lower temperature. But the effect of molecular weight is different for two sample series. The sample with higher molecular weight gels easily for HF series whose thermal behavior is mostly controlled by methoxy groups while there is an opposite trend for HK series because of the predominant inhibition of hydroxypropyl groups.
     HPMC hydrogel were prepared by thermal induced way using different MW and DS samples and its swelling kinetics were researched at the same time. It was found that HPMC hydrogel has a good absorbency. Its swelling behavior processed in three steps and was accordant with Schott mode, namely, the relationship between the swelling ration and times follow the equation as: t/SR=A+Bt.
     Intellective responsive behavior of HPMC hydrogel has been investigated: equilibrium swelling ration decrease with the increase of temperature. The sensitivity of effect of temperature on equilibrium swelling ratio is different. Relationship between ESR and temperature for HK series display a square relation, while show linearity for HF series. Swelling behavior of HPMC hydrogel were also greatly influenced by solvents. Swelling ratio increase in strong polarity solvents because of the enhancement of hydrogen bond, while descend rapidly in weak polarity solvents. It is not very obvious for the effect of change of pH on swelling ability, but there are different reductions of absorbency due to salt-out action brought by the addition of ions from acid or base.
     The results of research about effect of MW and DS on swelling behavior are as following: owing to more hydrogen bond action between macromolecules, HK hydrogel which has higher hydroxypropyl and lower methoxy content get a better swelling ability than HF series. Equilibrium swelling ratio of HK series hydrogel increases with the augment of MW, while a contrast influencing trend can be observed for HF series hydrogel.
引文
[1]杨之礼,苏茂尧,高洗.纤维素醚基础与应用.广州,华南理工大学出版社,1990,106-108
    [2]许冬生.纤维素衍生物.北京,化学工业出版社,2001,76-79
    [3]王培铭,许绮.羟乙基甲基纤维素对水泥砂浆性能的影响.建筑材料学报,2000,3,305-309
    [4]Pourchez J.,Peschard A.,Grosseau P.,et al.HPMC and HEMC influence on cement hydration.Cement and Concrete Research,2006,36,288-294
    [5]Pourchez J.,Grosseau P.,Guyonnet R.HEC influence on cement hydration measured by conductometry.Cement and Concrete Research,2006,36,1777-1780
    [6]Weyer H.J.,Muller I.,Schmitt B.,et al.Time-resolved monitoring of cement hydration:Influence of cellulose ethers on hydration kinetics.Nuclear Instruments and Methods in Physics Research B,2005,238,102-106
    [7]郑平友.羟丙基甲基纤维素分散剂对聚氯乙烯树脂颗粒特性的影响.齐鲁石油化工,2006,34,1-3
    [8]温国华,温国永,王奂玲等.羧甲基纤维素接枝丙烯酸钠高吸水性树脂的合成与性能.内蒙古大学学报,2002,2,158-160
    [9]刘涛,雷景新,李启满.吸水膨胀型软质聚氯乙烯/羧甲基纤维素共混物的研究塑料科技,2005,6,28-32
    [10]张向东,陈志来,赵小军.由纤维素醚制备高吸水材料的研究.天津化工,2001,5,5-7
    [11]刘君,黄园,段友容等.制备对pH敏感的羟丙基甲基纤维素衍生物并研究其相关特性.华西药学杂志,2004,19,81-84
    [12] Vueba M. L., Batista de Carvalho L. A. E., Veiga F., et al. Influence of cellulose ether polymers on ketoprofen release from hydrophilic matrix tablets. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 51-59
    [13] Baumgartner S., Odon P., Stane S., et al. Analysis of surface properties of cellulose ethers and drug release from their matrix tablets. European journal of pharmaceutical sciences, 2006, 27, 375-383
    [14] Karavas E., Georgarakis E., Bikiaris D. Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 64, 115-126
    [15] Miller-Chou B. A., Koenig J. L. A review of polymer dissolution. Progress in Polymer Science, 2003, 28, 1223-1270
    [16] Li L., Shan H., Yue C. Y., et al. Thermally Induced Association and Dissociation of Methylcellulose in Aqueous Solutions. Langmuir, 2002, 18, 7291-7298
    [17] Gao J., Haidar G., Lu X. H., et al. Self-Association of Hydroxypropylcellulose in Water. Macromolecules, 2001, 34, 2242 -2247
    [18] Li L. Thermal Gelation of Methylcellulose in Water: Scaling and Thermoreversibility. Macromolecules, 2002, 35, 5990-5998
    [19] Hofmeister F. Arch Exp Pathol Pharmakol, 1888, 24, 247.
    [20] Xu Y.R., Li L. Thermoreversible and salt-sensitive turbidity of methylcellulose in aqueous solution. Polymer, 2005, 46, 7410-7417
    [21] Wang Q. Q., Li L., Liu E. J., et al. Effects of SDS on the sol-gel transition of methylcellulose in water. Polymer, 2006, 47, 1372-1378
    [22]李静.羧甲基纤维素钠溶液的流变性质及其酸性乳体系的稳定作用.[硕士学位论文].上海,上海交通大学,2007
    [23]梁亚琴.改性羟乙基纤维素的制备及其溶液性质研究.[硕士学位论文].太原,中北大学,2006
    [24]张黎明,黄少杰.羧甲基纤维素钠/羟乙基纤维素复合溶液的性能.应用化学,1998,15:115-116
    [25]Sovilj V.,Petrovic L.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,298,94-98
    [26]Tomoaki H.,James L.F.Effect of nicotinamide on the properties of aqueous HPMC solutions.International Journal of Pharmaceutics,2001,226,53-60
    [27]Schmidt J.,Burchard W.,Richtering W.Shear-Induced Mixing and Demixing in Aqueous Methyl Hydroxypropyl Cellulose Solutions.Biomacromolecules 2003,4,453-460
    [28]Peppas N.A.,Mikos A.G.Hydrogels in Medicine and Pharmacy.Boca Raton,CRC Press,1986,1-27.
    [29]Brannon L.Absorbent Polymer Technology.Amsterdam,Elsevier,1990,45-66.
    [30]何天白,胡汉杰.功能高分子与新技术.北京,化学工业出版社,1997,174
    [31]Wach R.A.,Mitomo H.,Yoshii F.,et al.Hydrogel of Radiation-Induced Cross-Linked Hydroxypropylcellulose.Macromolecular Materials and Engineering,2002,287,285-295
    [32]肖君,崔英德,范会强等.pH敏感性水凝胶的制备与作用原理.河南化工,2003,8,5-7
    [33]刘峰,卓仁禧.水凝胶的制备及应用.高分子通报,1995,4,205-216
    [34]Nagaoka N.,Safgeay A.,Yoshida M.,et al.Synthesi S of Poly(N-isopropylamide)Hydrogels by Radiation Polymerization and Cross linking.Macromolecules,1993,26,7386-7388.
    [35]翟茂林,伊敏.辐射技术在温度敏感性水凝胶的合成改性中的应用.辐射研究与辐射工艺学报,1995,18,124-128
    [36]Sarkar N.Thermal gelation properties of methyl and hydroxypropyl methyl cellulose.Journal of applied polymer science,1979,24,1073-1087
    [37]Kundu P.P.,Kundu M.Effect of salts and surfactant and their doses on the gelation of extremely dilute solutions of methyl cellulose.Polymer,2001,42,2015-2020
    [38]Xu Y.R.,Li L.,Zheng P.J.Controllable gelation of methylcellulose by a salt mixture.Langmuir,2004,20,6134-6138
    [39]Kundu P.P.,Kundu M.,Sinha M.,et al.Effect Of alcoholic,glycolic,and polyester resin additives on the gelation of dilute solution(1%)of methylcellulose.Carbohydrate Polymers,2003,51,57-61
    [40]Harsh D.C.,Gehrke S.H.Controlling the swelling characteristics of temperature-sensitive cellulose ether hydrogels.Journal of Controlled Release,1991,17,175-185.
    [41]O'Connor S.M.,Gehrke S.H.Synthesis and characterization of thermally-responsive hydroxypropyl methylcellulose gel beads.Journal of Applied Polymer Science,1997,66,1279-1290.
    [42]Bin F.,Radoslaw A.W.,Hiroshi M.,et al.Hydrogel of Biodegradable Cellulose Derivatives.I.Radiation-Induced Crosslinking of CMC.Journal of Applied Polymer Science,2000,78.278-283
    [43]Radoslaw A.W.,Hiroshi M.,Fumio Y.,et al.Hydrogel of Biodegradable Cellulose Derivatives.Ⅱ.Effect of Some Factors on Radiation-Induced Crosslinking of CMC.Journal of Applied Poiymer Science,2001,81,3030-3037
    [44]Radoslaw A.W.,Hiroshi M.,Fumio Yoshii,et al.Hydrogel of Radiation-Induced Cross-Linked Hydroxypropylcellulose. Macromolecular Materials and Engineering,2002,287,285—295
    [45]Richardson J.C.,Foster C.S.,Doughty S.W.,et al.The influence of L-amino acid molecular structure on the phase transition temperature of hydroxypropyl methylcellulose.Carbohydrate Polymers,2006,65,22-27
    [46]Banks S.R.,Sammon C.,Melia C.D.,et al.Monitoring the thermal gelation of cellulose ethers in situ using attenuated total reflectance Fourier transform infrared spectroscopy.Applied Spectroscopy,2005,59,452-459
    [47]Kita R.,Kaku T.,Kubota K.,et al.Pinning of phase separation of aqueous solution of hydroxypropylmethylceilulose by gelation.Physics Letters A,1999,259,302-307
    [48]Ford J.L.,Rubinstein M.H.,Hogan J.E.Formulation of sustained release promethazine hydrochloride tablets using hydroxypropyl methyl cellulose matrices.International Journal of Pharmaceutics,1985,24,327—338
    [49]董志超,蒋雪涛.羟丙基甲基纤维素的性质对药物亲水性骨架片溶出度的影响.药学学报,1994,29(12),920-924
    [50]程紫骅,康保国,朱家璧等.尼莫地平HPMC骨架片的药物释放影响因素研究.中国药科大学学报,1998,29(6),418—421
    [51]林莹,蒋国强,昝佳等.甲基纤维素温敏水凝胶的凝固及体外释药特性.清华大学学报(自然科学版),2006,46(6),836—838,842
    [52]林莹,朱德权,咎佳等.海藻酸钠对甲基纤维素温敏水凝胶特性的影响.清华大学学报(自然科学版),2006,46(6),839—842
    [53]Vinatiera C.,Magnea D.,Wei SS P.,et al.A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes.Biomaterials,2005,26,6643-6651
    [54]Trojani C.,Weiss P.,Michiels J.F.,et al.Three-dimensional culture and differentiation Of human osteogenic cells in an injectable hydroxypropyl methylcellulose hydrogel.Biomaterials,2005,26(27),5509—5517
    [55]范庆荣,宋家琪.聚合物流变学.北京,科学出版社,1983,8—10
    [56]金日光,华幼卿.高分子物理.北京,化学工业出版社,2000,207
    [57]Bower D.I.An introduction to polymer physics.England,Cambridge University Press,2002,27
    [58]钱人元.高聚物的分子量测定.北京,科学出版社,1958,27
    [59]张兴英,李齐方.高分子科学实验.北京,化学工业出版社,2004,78
    [60]张丽娜,薛奇,莫志深等.高分子物理近代研究方法.武汉,武汉大学出版社,2003,47
    [61]Du D.X.,Zuo J.,An Y.L.,et al.Study of Viscosity A bnormality Of PS/Toluene Solution in Extremely Dilute Concentration Regime.Journal of Applied Polymer Science,2006,102,4440-4446
    [62]Lovell P.A.Dilute solution viscometry,in:C.Price,C.Booth(Eds.),Comprehensive Polymer Science:Polymer Characterization,vol.1,Pergamon Press,Oxford,1989,173
    [63]Hasan T.,Nurhan A.Flow properties of sugar beet pulp cellulose and intrinsic viscosity-molecular weight relationship.Carbohydrate Polymers,2003,54,63-71
    [64]Fox G.T.,Flory J.P.Intrinsic viscosity-molecular weight relationships for polyisobutylene.Journal of Physics and Colloid Chemistry,1949,53,197
    [65]Fried J R.Polymer Science and Technology.Pearson Education,2003.139
    [66]虞志光.高聚物分子量及其分命的测定.上海,上海科学技术 出版社,1984,9
    [67]Dondos A.,Benoit H.Polymer,1977,18,1161
    [68]杨晓明,郑庆康,李瑞霞等.十二烷基硫酸钠对溶液中聚乙二醇分子构象的影响.四川大学学报(工程科学版),2004,36,45-48
    [69]de Gennes P.G.Scalling concept in polymer physics.Ithaca,Cornell University Press,1979,23
    [70]Syuji F.,Naoki S.,Mitsuo N.Rheological Studies on the Phase Separation of Hydroxypropyl cellulose Solution Systems.Journal of Polymer Science:Part B,Polymer Physics,2001,39,1976-1986
    [71]吴其晔.高分子凝聚态物理及其进展.上海,华东理工大学出版社,2006,47
    [72]宋洪涛,郭涛,张跃新等.硫酸沙丁胺醇脉冲控释微丸的制备.沈阳药科大学学报,2003,20,97-101
    [73]蒋锡夔,张劲涛.有机分子的簇集和自卷.上海,上海科学技术出版社,1996,18
    [74]Graessley W.W.Polymer chain dimensions and the dependence of viscoelastic properties on concentration,molecular weight and solvent power.Polymer,1980,21,258-261
    [75]梁伯润.高分子物理学.北京,中国纺织出版社,2000,213—214
    [76]高洗.纤维素醚的溶解和溶液的性质.纤维素醚工业,2002,2,11—17
    [77]Heymann.Studies on sol-gel transformation.1.The inverse sol-gel transformation of methylcellulose in water.Transactions of the Faraday Society,1935,31,846-851
    [78]Haque A.,Morris E.R.Thermogelation Of methylcellulose.Part Ⅰ:molecular structures and processes.Carbohydrate Polymers,1993,22,161-173
    [79]Haque A.,Richardson R.K.,Morris E.R.Thermogelation of methylcellulose.Part Ⅱ:effect of hydroxypropyl substituents. Carbohydrate Polymers,1993,22,175-186
    [80]Kato T.,Yokoyama M.,Takahashi A.Melting temperatures of thermally reversible gels Ⅳ:Methyl cellulose-water gels.Colloid and Polymer Science,1978,266,15-21
    [81]Kobayashi K.,Huang C.,Lodge,T.P.Thermoreversible Gelation of Aqueous Methylcellulose Solutions.Macromolecules,1999,32,7070-7077
    [82]Wang Q.Q.,Li L.Effects of molecular weight on thermoreversible gelation and gel elasticity of methylcellulose in aqueous solution.Carbohydrate Polymers,2005,62,232-238
    [83]Sarkar N.,Walker L.C.Hydration-dehydration properties of methylcellulose and hydroxypropylmethylcellulose.Carbohydrate Polymers,1995,27,177-185
    [84]Hussaina S.,Kearyb C.,Craiga D.Q.M.A thermorheological investigation into the gelation and phase separation of hydroxypropyl methylcellulose aqueous systems Polymer,2002,43,5623-5628
    [85]Li L.,Thangamathesvaran P.M.Gel Network Structure of Methylcellulose in Water.Langmuir,2001,17,8062-8068.
    [86]邝清林.温敏甲基纤维素凝胶的转变及性质研究.[硕士学位论文].天津,天津大学,2004
    [87]Ferry J.K.Viscoelastic properties of polymers.(3rd ed).New York,Wiley,1980
    [88]Yang Y.J.,Zhao Y.B.,Jan B.F.N.Engberts.Stimuli response of polysoap hydrogels under electricity fields.Acta Physico-chemic Sinica,1999,15,406-412
    [89]张建合.智能型水凝胶的合成及其刺激响应性.信阳师范学院学报(自然科学版),1998,11,191-195
    [90]Adrover A.,Givna M.,Grassi M.Analysis of controlled release in disordered structures.Journal of Membrane Science,1996,113,21 -30
    [91]Thiel J.Untersuchungen zur quellung yon polyacrylamid-und poly(acrylamid-meth-acrylsaeure)-gelen in wassrigen loe-sungen.University Kaiserslautern,1995,70-80
    [92]Cussler E.L.,Varbery J.E.Gels as size selective extraction solvents.AIChE Journal,1984,30,578-582
    [93]Freitas R.,Cussler E.L.Temperature sensitive gels as extraction solvents.Chemical Engineering and Sciences,1986,41,2153-2160
    [94]Kazasskil K.,Dabrovskil S.Hydrogels.Advances in Polymer Science,1995,104,99-133
    [95]Wach R.A.,Hirroshi M.,Fumio Y.Hydrogel of Biodegradable Cellulose Derivatives.Ⅱ.Effect of Some Factors on Radiation-Induced Crosslinking of CMC.Journal of Applied Polymer Science,2001,81,3030—3037
    [96]Feng X.H.,Pelton R.Carboxymethyl Cellulose:Polyvinylamine Complex Hydrogel Swelling.Macromolecules,2007,40,1624-1630
    [97]Liu P.F.,Peng J.,Li J.Q.Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel.Radiation Physics and Chemistry,2005,72,635-638
    [98]刘鹏飞,彭静,吴季兰.辐射交联制备改性CMC水凝胶的溶胀行为研究.高分子学报,2002,6,756-759
    [99]周树华,杨建国,吴承佩.聚N,N-二乙基丙烯酰胺/蒙脱土纳米复合物的合成及溶胀性能.高分子学报,2003,3,326-3 29
    [100]白渝平,杨荣杰,李建民等.PVA-PAA IPN水凝胶的制备及其溶胀性质研究.高分子材料科学与工程,2002,1,98-101
    [101]Franson N.M.,Peppas N.A.Influence of copolymer composition on non-Fickian water transport through glassy copolymer.Journal of Applied Polymer Science,1983,28,1299-1310
    [102]Korsemeyer N.M.,Merrwall E.M.,Peppas N.A.Solute and penetrant diffusion in swellable polymers.Ⅱ.Verification of theoretical models.Journal of Polymer Science,Polymer Physics Edition,1986,24,409-434
    [103]Andreopulos A.G.,Polyzolis G.L.Swelling properties of cross-linked maxillofacial elastomers.Journal of Applied Polymer Science,1993,50(4),729-733
    [104]童真,刘新星.强电解质凝胶的溶胀平衡与体积相变.高分子通报,1999,(3),1-8
    [105]杨少华.PVP/壳聚糖接枝共聚水凝胶的合成与性能研究.[硕士学位论文].广州,广东工业大学,2004
    [106]曾少娟.聚丙烯酰胺/木质素磺酸盐水凝胶的制备与性能研究.[硕士学位论文].上海,东华大学,2006
    [107]殷以华,杨亚江,徐辉碧.结肠位点药物传载凝胶的溶胀动力学研究.高分子学报,2001,5,650-655

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700