碳基薄膜的摩擦学性能及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用中频磁控溅射和等离子体增强化学气相沉积技术在硅片和不同金属表面上制备了一系列的类金刚石薄膜。研究了工艺参数与薄膜结构和性能之间的相关性,并考察了薄膜在不同测试条件下的摩擦学性能,主要的研究成果如下:
     (1)利用中频磁控溅射沉积技术通过改变镍靶电流在单晶硅表面上制备了不同镍含量的掺镍类金刚石薄膜,并考察了镍含量对薄膜的结构和性能的影响。结果表明:镍元素的掺杂,能大幅降低薄膜的残余应力和提高薄膜与基底之间的结合力。当镍含量比较低时,薄膜表现出优异的摩擦学性能,但其机械性能却随着镍含量的增高而降低。
     (2)利用等离子体增强化学气相沉积技术在316L不锈钢表面上制备了类金刚石薄膜,并考察了前驱气体流量比和沉积气压对薄膜的结构、机械性能和摩擦学性能的影响。结果表明:前驱气体流量比和沉积气压对所制备薄膜的结构和性能有着显著的影响。当CH4和H2流量比为20:10的时候,所制备的薄膜表现出优异的机械性能和摩擦学性能,薄膜的硬度和摩擦系数分别为25GPa和0.044;当沉积气压为15Pa时,所制备的薄膜表现出优异的机械性能,薄膜的硬度为18.4GPa,当沉积气压为31Pa时,所制备的薄膜表现出优异的摩擦学性能,摩擦系数为0.035。
     (3)利用等离子体增强化学气相沉积技术在316L不锈钢表面上制备了类金刚石薄膜,并考察了薄膜在不同测试环境下的摩擦学性能。结果表明:随着载荷的增大,薄膜在空气中的摩擦系数逐渐减小,在水环境中的摩擦系数逐渐增大,在柴油环境中的摩擦系数先增大后减小。而随着滑动速度的增大,薄膜在空气、水和柴油环境中的摩擦系数都逐渐减小,且在空气中的摩擦系数最大,柴油环境中的摩擦系数最小。
     (4)利用等离子体增强化学气相沉积技术在钛合金和316L不锈钢表面上制备了类金刚石薄膜,并考察了薄膜在不同润滑条件下的摩擦学性能。结果表明:在316L不锈钢表面上所制备的薄膜表现出优异的机械和摩擦学性能,表明了基底的材质对薄膜的结构和性能有着显著的影响。通过对薄膜在空气、合成机油和水环境中的摩擦学性能研究,表明了流体润滑的化学过程是一个需要被考虑的重要参数,且薄膜与合成机油接触时得到了最低的摩擦系数和磨损量。
Middle-frequency magnetron sputtering and plasma enhanced chemical vapor deposition techniques were used to deposit the diamond-like carbon films on silicon wafer and different metal surface. The effects of various process parameters on the microstructure and properties of the films were investigated systematically. The tribological behaviors of the films under different conditions were studied and possible tribological mechanisms were proposed. The main conclusions of the thesis were drawn as follows:
     (1) Ni-doped diamond-like carbon films were deposited on silicon wafer by middle-frequency magnetron sputtering with different Ni content. The effect of Ni content on microstructure and properties of the films were studied systematically. The result showed that with the Ni doped, the stress was decreased and the adhesion was increased. The excellent tribological properties could be obtained at a low Ni content.
     (2) Diamond-like carbon films were deposited on316L substrate by plasma enhanced chemical vapor deposition techniques. The influences of the precursor gases and working pressure on the microstructure, mechanical properties and tribological properties of the films were studied systematically. The result showed that the excellent properties could be obtained at a CH4/H2of20:10, the hardness about25GPa and the friction coefficient about0.044. When the working pressure of15Pa, the film hardness was as high as18.4GPa and showed the excellent mechanical properties. The film exhibited the low friction coefficient of0.035and excellent tribological properties at the working pressure of31Pa.
     (3) Diamond-like carbon films were deposited on316L substrate by plasma enhanced chemical vapor deposition techniques. The tribological properties of the films were investigated systematically under different conditions. The result showed that with the increase of load, the friction coefficient of the films was decreased in air, increased in water and increased firstly then decreased in diesel. With the increase of sliding speed, the friction coefficient of the films was decreased under different conditions, and the friction coefficient in diesel was lower than in water.
     (4) Diamond-like carbon films were deposited on Ti6AlV4and316L substrate by plasma enhanced chemical vapor deposition techniques. The tribological properties of the films were investigated systematically under different lubrication conditions. It's shown that the excellent properties of the film could be obtained prepared on316L substrate. The effect of the substrate on the microstructure and properties was obvious. The research result indicated that the chemical process of fluid lubrication was an important parameter and needed to be considered. The lower friction coefficient and wear were obtained when the film contacted with synthetic oil.
引文
[1]S. Aisenberg, R. Chabot. Ion-Beam Deposition of Thin Films of Diamondlike Carbon. J. Appl. Phys,1971,42:2953-2958.
    [2]C. A. Charitidis. Nanomechanical and nanotribological properties of carbon based thin films:A review. Int. J. Refract. Met. Hard Mater,2010,28:51-70.
    [3]A. Erdemir. Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int.,2005,38:249-256.
    [4]C. Donnet. Recent progress on the tribology of doped diamond-like and carbon alloy coatings:a review. Surf. Coat. Technol.,1998,100-101:180-186.
    [5]A. Grill. Tribology of diamondlike carbon and related materials:an updated review. Surf. Coat. Technol.,1997,94-95:507-513.
    [6]J. Robertson. Diamond-like amorphous carbon. Mater. Sci. Eng. R.,2002,37: 129-281.
    [7]A. H. Lettington. Applications of diamond-like carbon thin films. Carbon, 1998,36:555-560.
    [8]R. K. Roy, K.-R. Lee. Biomedical applications of diamond-like carbon coatings:A review. J. Biomed. Mater. Res. B.,2007,83B:72-84.
    [9]G. Dearnaley, J. H. Arps. Biomedical applications of diamond-like carbon (DLC) coatings:A review. Surf. Coat. Technol.,2005,200:2518-2524.
    [10]R. Hauert. A review of modified DLC coatings for biological applications. Diamond Relat. Mater.,2003,12:583-589.
    [11]F. Z. Cui, D. J. Li. A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surf. Coat. Technol.,2000,131: 481-487.
    [12]H. Han, F. Ryan, M. McClure. Ultra-thin tetrahedral amorphous carbon film as slider overcoat for high areal density magnetic recording. Surf. Coat. Technol., 1999,120-121:579-584.
    [13]A. Grill. Diamond-like carbon:state of the art. Diamond Relat. Mater.,1999,8: 428-434.
    [14]T. Nakatani, K. Okamoto, A. Araki, T. Washimi. Application of diamond-like carbon to a rotary engine, New Diamond Front. Carbon Technol.,2006,16: 187-200.
    [15]R. Hauert. An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int.,2004,37:991-1003.
    [16]J. Robertson. Diamond-like amorphous carbon. Mater. Sci. Eng.:R,2002, 37(4-6):129-281.
    [17]J. Robertson, E. O'reilly. Electronic and atomic structure of amorphous carbon. Phys. Rev. B,1987,35(6):2946.
    [18]J. C. Angus, F. Jansen. Dense "diamondlike"hydrocarbons as random covalent networks. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1988,6(3):1778-1782.
    [19]W. Jacob, W. Moller. On the structure of thin hydrocarbon films. Appl. Phys. Lett.,1993,63(13):1771-1773.
    [20]李金桂,肖定全.《现代表面工程设计手册》.北京:国防工业出版社,2000.
    [21]C. Weissmatel, K. Bewilogua, D. Dietrich, H.-J. Erler, H.-J. Hinneberg, S. Klose, W. Nowick, G. Reisse. Structure and properties of quasi-amorphous films prepared by ion beam techniques. Thin Solid Films,1980,72:19-32.
    [22]H. R. Kaufmann. Technology of ion beam sources used in sputtering. J. Vac. Sci. Technol.,1978,15:272-276.
    [23]C. F. Chen, Y. W. Li, H. L. Huang. Effect of post-treatment on electrical properties of amorphous hydrogenated carbon films deposited by gridless ion beam deposition. J. Appl. Phys.,2003,42:259-262.
    [24]傅永庆,徐可为,何家文.离子束增强沉积技术在制备优良抗蚀膜层方面的研究进展.表面技术,1997,26(1):1-5.
    [25]徐军.微波-ECR等离子体增强非平衡磁控溅射技术及CN薄膜的制备研究.大连理工大学博士论文,2002.
    [26]姜燮昌.大面积磁控溅射技术的最新进展与应用.2004全国真空冶金与表面工程学术研讨会会议论文集,2004,PP:18.
    [27]柳翠,李国卿,张成武,李新.非平衡磁控溅射类金刚石碳膜的性能.材料研究学报,2004,18(2):171-175.
    [28]吴志猛.类金刚石碳膜的制备与特性研究.辽宁工程技术大学硕士论文,2002.
    [29]马国佳.应用于微机电系统上的类金刚石膜制备.大连理工大学硕士论文,2003.
    [30]郑伟涛.《薄膜材料与薄膜技术》.化学工业出版社,2004/1,第一版。
    [31]李敬财.真空阴极电弧及等离子体化学气相法沉积类金刚石碳膜的研究.广州工业大学硕士论文,2004.
    [32]李刘合,夏立芳,马欣新,孙跃.真空阴极弧离子镀类金刚石碳膜.哈尔滨工业大学学报,1999,31(1):97-100.
    [33]I. G. Brown. Cathodic Arc Deposition of Films. Ann. Rev. Mater. Sci.,1998, 28:243-269.
    [34]A. Anders. Approaches to rid cathodic arc plasmas of macro-and nanoparticles: a review. Surf. Coat. Technol.,1999,121:319-330.
    [35]王淑芳.脉冲激光沉积氮化碳薄膜及其生长机理研究.河北大学硕士论文,2000.
    [36]戢明,宋全胜,曾晓雁.脉冲激光沉积(PLD)薄膜技术的研究现状与展望.真空科学与技术,2003,23(1):22-26.
    [37]李铁军,刘晶儒,王丽戈,楼祺洪.利用脉冲激基分子激光制备大尺寸类金刚石薄膜及其均匀性分析.光子学报,1999,28(12):1080-1085.
    [38]A. A. Voevodin, M. S. Donley. Preparation of amorphous diamond-like carbon by pulsed laser deposition:a critical review. Surf. Coat. Techn.,1996,82: 199-213.
    [39]I. G. Brown. Cathodic arc deposition of films. Ann. Rev. Mater. Sci.,1998,28: 243-269.
    [40]A. Anders, Approaches to rid cathodic arc plasmas of macro-and nanoparticles: a review. Surf. Coat. Technol.,1999,120-121:319-330.
    [41]D. Dijkkamp, T. Venkatesan, X. D. Wu. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett.,1987,51:619-621.
    [42]陈俊英.CH4/H2系统电子助进热丝化学气相沉积动力学过程研究.河北大学硕士论文,2000.
    [43]孙心瑗.热丝化学气相沉积金刚石膜的研究.湖南大学硕士论文,2004.
    [44]杜开瑛,石瑞英,谢茂浓,廖伟,张敏.直接光CVD类金刚石碳膜的初期成膜结构.半导体光电,1999,20(6):405-408.
    [45]刘洪宁,孙建诚.新型UV-CVD工艺系统的研制.电子工业专用设备,1999,28(2):27-29.
    [46]A. Grill, V. Patel. Effects of bias and inert gas on properties of diamond-like carbon deposited by d.c. PACVD. Diamond Relat. Mater.,1994(4):62-68.
    [47]K. Vercammen, J. Meneve, E. Dekempeneer, J. Smeets, E.W. Roberts, M.J. Eiden. Study of RF PACVD diamond-like carbon coatings for space mechanism applications. Surf. Coat. Technol.,1999(120-121):612-617.
    [48]S. F. Yoon, K. H. Tan, Rusli, J. Ahn, Q. F. Huang. Comparative study on the effects of ion density and ion energy on diamond-like carbon deposited by electron cyclotron resonance chemical vapor deposition. J. Appl. Phys.,2001, 89(9):4830-4835.
    [49]Y. Mokuno, A. Chayahara, Y. Horino, Y. Nishimura. Formation of hydrogenated amorphous carbon films by plasma based ion implantation system applying RF and negative high voltage pulses through single feedthrough. Surf. Coat. Technol.,2002,156:328-331.
    [50]A. Raveh, L. Martinu, H. M. Hawthorne, M. R. Wertheimer. Mechanical and tribological properties of dual-frequency plasma-deposited diamond-like carbon. Surf. Coat. Technol.,1993,58:45-55.
    [51]B. Racine, M. Benlahsen, K. Zellama, R. Bouzerar, J. P. Kleider, H. J. Von Bardeleben. Electronic properties of hydrogenated amorphous carbon films deposited using ECR-RF plasma method. Diamond Relat. Mater.,2001,10: 200-206.
    [52]陈杰瑢.《低温等离子体化学及其应用》.科学出版社,2001.
    [53]T. S. Cale, G. B. Raupp, B. R. Rogers. Introduction to plasma enhanced chemical vapor deposition. Proceedings of Plasma Processing of Semiconductors. Chateau de Bonas, France, June 1996,17-28.
    [54]D. M. Bhusari, C. K. Chen, K. H. Chen, T. J. Chuang, L. C. Chen, M. C. Lin. Composition of SiCN crystals consisting of a predominantly carbon-nitride network. J. Mater. Res.,1997,12:322-325.
    [55]H. Wang, M. R. Shen, Z. Y. Ning, C. Ye, C.-B. Cao, H. Y. Dang, H.-S. Zhu. Deposition of diamond-like carbon films by electrolysis of methanol solution. Appl. Phys. Lett.,1996,69:1074-1076.
    [56]H.Wang, M. R. Shen, Z. Y. Ning, C. Ye, H.-Y. Dang, C.-B. Cao, H.-S. Zhu. Deposition of unhydrogenated diamond-like amorphous carbon films by electrolysis of organic solutions. Thin Solid Films,1997,293:87-90.
    [57]K. Cai, C. B. Cao, H. S. Zhu. Deposition of diamond-like carbon films on aluminum in the liquid phase by an electrochemical method. Carbon,1999,37: 1860-1862.
    [58]Q. Fu, J. T. Jiu, H. Wang, C.-B. Cao, H.-S. Zhu. Simultaneous formation of diamond-like carbon and carbon nitride films in the electro deposition of an organic liquid. Chem. Phys. Lett.,1999,301:87-90.
    [59]J. T. Jiu, K. Cai, Q. Fu, C.-B. Cao, H.-S. Zhu. Liquid deposition of hydrogenated carbon films in DMF solution. Mater. Lett.,1999,41:63-66.
    [60]D. Guo, K. Cai, L. T. Li, Y. Huang, Z.-L. Gui, H.-S. Zhu. Electro deposition of diamond-like amorphous carbon films on Si from N, N-dim ethyl form amide. Chem. Phys. Lett.,2000,329:346-350.
    [61]C. B. Cao, H. S. Zhu, H. Wang. Electro deposition diamond-like carbon films from organic liquids. Thin Solid Films,2000,368:203-207.
    [62]X. B. Yan, T. Xu, S. R. Yang, H. W. Liu, Q. J. Xue. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. J. Phy. D:Applied Physics,2004,37:2416-2424.
    [63]Z. Sun, X. Shi, X. Wang, Y. Sun. Structure and properties of hard carbon films depending on heat treatment temperatures via polymer precursor. Diamond Relat. Mater.,1999,8:1107-1113.
    [64]J. S. Chen, Z. Sun, S. P. Lau, B. K. Tay. Structure and tribological properties of hard carbon film synthesized by heat-treatment of a polymer on graphite substrate. Thin Solid Films,2001,389:161-166.
    [65]X. B. Yan, T. Xu, S. Xu, G. Chen, H. W. Liu, S. R. Yang. Fabrication of carbon spheres on a-C:H films by heat-treatment of polymer precursor. Carbon,2004, 42:2769-2771.
    [66]A. Grill, V. Patel, B. Meyerson. Tribological behavior of diamond-like carbon: effects of preparation conditions and annealing. Surf. Coat. Technol.,1991,49: 530-536.
    [67]C. Donnet. Advanced solid lubricant coatings for high vacuum environments. Surf. Coat. Technol.,1996,80:151-156.
    [68]Y. Liu, A. Erdemir, E. I. Meletis. Influence of environmental parameters on the frictional behavior of DLC coatings. Surf. Coat. Technol.,1997,94-95: 463-468.
    [69]C. Donnet, A. Grill. Friction control of diamond-like carbon coatings. Surf. Coat. Technol.,1997,94-95:456-462.
    [70]F. E. Kennedy, D. Lidhagen, A. Erdemir, et al. Tribological behavior of hard carbon coatings on steel substrates. Wear,2003,255:854-858.
    [71]J. Andersson, R. A. Erck, A. Erdemir. Friction of diamond-like carbon films in different atmospheres. Wear,2003,254:1070-1075.
    [72]J. Andersson, R. A. Erck, A. Erdemir, Frictional behavior of diamondlike carbon films in vacuum and under varying water vapor pressure. Surf. Coat. Technol.,2003,163:535-540.
    [73]H. X. Li, T. Xu, J. M. Chen, et al. The effect of applied dc bias voltage on the properties of a-C:H films prepared in a dual dc-rf plasma system. Appl. Surf. Sci.,2004,227:364-372.
    [74]H. X. Li, T. Xu, C. B. Wang, et al. Friction behaviors of hydrogenated diamond-like carbon film in different environment sliding against steel ball. Appl. Surf. Sci.,2005,249:257-265.
    [75]H. X. Li, T. Xu, C. B. Wang, et al. Effect of relative humidity on the tribological properties of hydrogenated diamond-like carbon films in a nitrogen environment. J. Phys. D Appl. Phys.,2005,38:62-69.
    [76]戴达煌,周克崧.金刚石薄膜沉积制备工艺与应用.北京:冶金工业出版社,2001,第一版.
    [77]刘声雷,郑惟彬.DLC膜化工设备防腐材料的研究.安徽化工,1996,102(6):32.
    [78]N. Ueda, N. Yamauchi, T. Sone, et al. DLC film coating on plasma-carburized austenitic stainless steel. Surf Coat Technol.,2007,201:5487.
    [79]张敏,程发良,姚海军.类金刚石膜的性质和制备及应用.表面技术,2006,35(2):4.
    [80]N. Yamauchi, N. Ueda, A. Okamoto, et al. DLC coating on Mg2Li alloy. Surf Coat Technol,2007,201:4913.
    [81]J. Choi, S. Nakao, J. Kim. Corrosion protection of DLC coatings on magnesium alloy. Diamond Relat Mater.,2007,16:1361.
    [82][日]织田一彦.类金刚石膜的实用化现状与今后展望.超硬材料工程,2006,18(4):49.
    [83]O. Groning, O. M. Kuttel, E. Schaller, et al. Vacuum arc discharges preceding high electron field emission from carbon films. Appl. Phys. Lett.,1996,69: 476-478.
    [84]J. Robertson. Amorphous carbon cathodes for field emission display. Thin Solid Films,1997,296:61-65.
    [85]B. S. Satyanarayana, A. Hart, W. I. Milne, et al. Field emission from tetrahedral amorphous carbon. Appl. Phys. Lett.,1997,71:1430-1432.
    [86]H. Mimura, G. Hashiguchi, M. Okada, et al. Enhancement in electron emission from polycrystalline silicon field emitter arrays coated with diamondlike carbon. J. Appl. Phys.,1998,84:3378-3381.
    [87]周之斌,崔容强.硼离子掺杂类金刚石薄膜及C(B)/n2Si异质结光伏特性.太阳能学报,1996,17(2):197.
    [88]Masayoshi, Umeno, Sunil, Adhikary. Diamond-like carbon thin films by microwave surface-wave plasma CVD aimed for the application of photo voltaic solar cells. Diamond Relat Mater,2005,14:1973.
    [89]葛阳中,张新宇.用类金刚石碳掩膜制备LaAl03台阶衬底.低温物理学报,1997,19(5):340.
    [90]张万虎,谭宇师,建涛等.射频等离子体法制备类金刚石薄膜.应用光学,2003,24(6):32.
    [91]廖显伯,邓勋明.用PECVD在低温衬底上制备类金刚石碳膜.人工晶体学报,2000,29(3):220.
    [92]M. Smietana, J. Szmidt, L. KorwinPawlowskiM, et al. Application of diamond-like carbon films in optical fiber sensors based on long-period gratings. Diamond Relat Mater.,2007,16:1374.
    [93]郑传林.类金刚石碳膜在生物医学上的应用前景.稀有金属材料与工程,2005,34(6):1215.
    [94]R. Hauert. A review of modified DLC coatings for biological applications. Diamond Relat Mater.,2003,12:583.
    [95]Z. H. Xu, D. Rowcliffe. Nanoindentation on diamond-like carbon and alumina coatings. Surf Coat Technol.,2002,161:44.
    [96]Shirakura. Diamond-like carbon films for PET bottles and medical applications. Thin Solid Films,2006,494:84.
    [97]李刘合,夏立芳,张海泉.类金刚石碳膜的摩擦学特性及其研究进展.摩擦学学报,2001,21:76-80.
    [98]Y. Liu, A. Erdemir, E. I. Meletis. Influence of environmental parameters on the frictional behavior of DLC coatings. Surf. Coat. Technol.,1997,94-95: 463-468.
    [99]C. Donnet, A. Grill. Friction control of diamond-like carbon coatings, Surf. Coat. Technol.,1997,94-95:456-462.
    [100]A. Erdemir; C. Donnet. Tribology of diamond-like carbon films:recent progress and future prospects. J. Phys. D:Appl. Phys.,2006,39:R311-R327.
    [101]T. Krumpiegl, H. Meerkamm, W. Fruth, C. Schaufler, G. Erkens, H. Bohner. Amorphous carbon coatings and their tribological behaviour at high temperatures and in high vacuum. Surf. Coat. Technol.,1999,120-121: 555-560.
    [102]B. K. Gupta, A. Malshe, B. Bhushan, V. V. Subramaniam. Friction and Wear Properties of Chemomechanically Polished Diamond Films. J. Tribol.,1994, 116:445-453.
    [103]Y. Fu, B. Yan, N. L. Loh, C. Q. Sun, P. Hing. Characterization and tribological evaluation of MW-PACVD diamond coatings deposited on pure titanium. Mater. Sci. Eng. A.,2000,282:38-48.
    [104]M. Schmitt, D. Paulmier, T. Le Huu. Tribological behaviour of oriented diamond coating/steel couples under various environments. Surf. Coat. Technol.,1999,120-121:585-588.
    [105]A. Erdemir. Genesis of superlow friction and wear in diamond-like carbon films, Tribol. Int.,2004,37:1005-1012.
    [106]K. Miyoshi, R. L. C. Wu, A. Garscadden, P. N. Barnes, H. E. Jackson. Friction and wear of plasma-deposited diamond films. J. Appl. Phys.,1993,74: 4446-4454.
    [107]S. Chandrasekar, B. Bhushan. The role of environment in the friction of diamond for magnetic recording head applications. Wear,1992,153:79-89.
    [108]F. P. Bowden, J. E. Young. Friction of Diamond, Graphite, and Carbon and the Influence of Surface Films. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.,1951,208:444-455.
    [109]M. N. Gardos, B. L. Soriano. The effect of environment on the tribological properties of polycrystalline diamond films. J. Mater. Res.,1990,5: 2599-2609.
    [110]A. Erdemir, M. Switala, R. Wei, P. Wilbur. A tribological investigation of the graphite-to-diamond-like behavior of amorphous carbon films ion beam deposited on ceramic substrates. Surf. Coat. Technol.,1991,50:17-23.
    [111]C. Donnet, M. Belin, J. C. Auge, J. M. Martin, A. Grill, V. Patel. Tribochemistry of diamond-like carbon coatings in various environments. Surf. Coat. Technol.,1994,68-69:626-631.
    [112]A. Erdemir. The role of hydrogen in tribological properties of diamond-like carbon films. Surf. Coat. Technol.,2001,146-147:292-297.
    [113]J. A. Heimberg, K. J. Wahl, Ⅰ. L. Singer, A. Erdemir. Superlow friction behavior of diamond-like carbon coatings:Time and speed effects. Appl. Phys. Lett.,2001,78:2449-2451.
    [114]A. Erdemir. G. R. Fenske. Tribological Performance of Diamond and Diamondlike Carbon Films at Elevated Temperatures. Tribol. Trans.,1996,39: 787-794.
    [115]P. L. Dickrell, W. G. Sawyer, J. A. Heimberg, I. L. Singer, K. J. Wahl, A. Erdemir. A Gas-Surface Interaction Model for Spatial and Time-Dependent Friction Coefficient in Reciprocating Contacts:Applications to Near-Frictionless Carbon. J. Tribol.,2005,127:82-88.
    [116]A. Erdemir, O. L. Eryilmaz, G. Fenske. Synthesis of diamondlike carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A.,2000,18: 1987-1992.
    [117]K. Oguri, T. Arai. Low friction coatings of diamond-like carbon with silicon prepared by plasma-assisted chemical vapor deposition. J. Mater. Res.,1990,5: 2567-2571.
    [118]T. Hioki, Y. Itoh, A. Itoh, S. Hibi, J. Kawamoto. Tribology of carbonaceous films formed by ion-beam-assisted deposition of organic material. Surf. Coat. Technol.,1991,46:233-243.
    [119]S. Miyake, R. Kaneko. Microtribological properties and potential applications of hard, lubricating coatings. Thin Solid Films,1992,212:256-261.
    [120]W. J. Wu, T. M. Pai, M. H. Hon. Wear behavior of silicon-containing diamond-like carbon coatings. Diamond Relat. Mater.,1998,7:1478-1484.
    [121]R. Gilmore, R. Hauert. Control of the tribological moisture sensitivity of diamond-like carbon films by alloying with F, Ti or Si. Thin Solid Films,2001, 398-399:199-204.
    [122]V. N. Inkin, G. G. Kirpilenko, A. A. Dementjev, K. I. Maslakov. A superhard diamond-like carbon film. Diamond Relat. Mater.,2000,9:715-721.
    [123]K. Baba, R. Hatada. Preparation and properties of metal containing diamond-like carbon films by magnetron plasma source ion implantation. Surf. Coat. Technol.,2002,158-159:373-376.
    [124]Y. Y. Chang, D. Y. Wang; W. Wu. Catalysis effect of metal doping on wear properties of diamond-like carbon films deposited by a cathodic-arc activated deposition process. Thin Solid Films,2002,420-421:241-247.
    [125]H. Rusli, S. F. Yoon, Q. F. Huang, J. Ahn, Q. Zhang, H. Yang, Y. S. Wu, E. J. Teo, T. Osipowicz, F. Watt. Metal-containing amorphous carbon film development using electron cyclotron resonance CVD. Diamond. Relat. Mater., 2001,10:132-138.
    [126]A. A. Voevodin, J. S. Zabinski. Supertough wear-resistant coatings with 'chameleon' surface adaptation. Thin Solid Films,2000,370:223-231.
    [127]A. A. Voevodin, J. P. O'Neill, J. S. Zabinski. Nanocomposite tribological coatings for aerospace applications. Surf. Coat. Technol.,1999,116-119: 36-45.
    [128]Y. Liu, A. Erdemir, E. I. Meletis. A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol.,1996,82:48-56.
    [129]A. Erdemir, C. Bindal, G. R. Fenske, C. Zuiker, P. Wilbur. Characterization of transfer layers forming on surfaces sliding against diamond-like carbon. Surf. Coat. Technol.,1996,86-87:692-697.
    [130]J. C. Sanchez-Lopez, A. Erdemir, C. Donnet, T. C. Rojas. Friction-induced structural transformations of diamondlike carbon coatings under various atmospheres. Surf. Coat. Technol.,2003,163-164:444-450.
    [131]S. Dag, S. Ciraci. Atomic scale study of superlow friction between hydrogenated diamond surfaces. Phys. Rev. B.,2004,70:241401.
    [132]O. L. Eryilmaz, A. Erdemir. TOF-SIMS and XPS characterization of diamond-like carbon films after tests in inert and oxidizing environments. Wear,2008,265:244-254.
    [133]O. L. Eryilmaz, A. Erdemir. On the hydrogen lubrication mechanism(s) of DLC films:An imaging TOF-SIMS study. Surf. Coat. Technol.,2008,203: 750-755.
    [134]O. L. Eryilmaz, A. Erdemir. Surface analytical investigation of nearly frictionless carbon films after tests in dry and humid nitrogen. Surf. Coat. Technol.,2007,201:7401-7407.
    [135]O. Eryilmaz, A. Erdemir. Investigation of Initial and Steady-State Sliding Behavior of a Nearly Frictionless Carbon Film by Imaging 2-and 3-D TOF-SIMS. Tribol. Lett.,2007,28:241-249.
    [136]H. Liu, A. Tanaka, T. Kumagai. Influence of sliding mating materials on the tribological behavior of diamond-like carbon films. Thin Solid Films,1999, 352:145-150.
    [137]D. S. Knight, W. B. White. Characterization of diamond films by Raman spectroscopy. J. Mater. Res.,1989,4:385-393.
    [138]R. J. Nemanich, S. A. Solin. First-and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B.,1979,20:392.
    [139]B. S. Elman, M. Shayegan, M. S. Dresselhaus, H. Mazurek, G. Dresselhaus. Structural characterization of ion-implanted graphite. Phys. Rev. B.,1982,25: 4142.
    [140]R. J. Nemanich, J. T. Glass, G. Lucovsky, R. E. Shroder. Raman scattering characterization of carbon bonding in diamond and diamond-like thin films. J. Vac. Sci. Technol. A.,1988,6:1783-1787.
    [141]M. A. Tamor. W. C. Vassell. Raman "fingerprinting" of amorphous carbon films. J. Appl. Phys.,1994,76:3823-3830.
    [142]A. C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B.,2000,61:14095.
    [143]R. Haerle, E. Riedo, A. Pasquarello, A. Baldereschi. sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts:X-ray photoelectron spectroscopy and first-principles calculation. Phys. Rev. B.,2001,65: 045101.
    [144]C. K. Park, S. M. Chang, H. S. Uhm, S. H. Seo, J. S. Park. XPS and XRR studies on microstructures and interfaces of DLC films deposited by FCVA method. Thin Solid Films,2002,420-421:235-240.
    [145]C. Moβner, P. Grant, H. Tran, G. Clarke, D. J. Lockwood, H. J. Labb, B. Mason, I. Sproule. Characterization of diamond-like carbon by Raman spectroscopy, XPS and optical constants. Thin Solid Films,1998,317:397-401.
    [146]P. Merel, M. Tabbal, M. Chaker, S. Moisa, J. Margot. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS, Appl. Surf. Sci.,1998,136: 105-110.
    [147]D. Caschera, F. Federici, S.Kaciulis. Deposition of Ti-containing Diamond like carbon (DLC) films by PECVD technique. Materials Science and Engineering C,2007,27:1328-1330.
    [148]W. Zhang, A. Tanaka, K. Wazumi, Y. Koga. Effect of environment on friction and wear properties of diamond-like carbon film. Thin Solid Films,2002,413: 104.
    [149]Takanori Takeno, Toshifumi Sugawara, Hiroyuki Miki, Toshiyuki Takagi. Deposition of DLC film with adhesive W-DLC layer on stainless steel and its tribological properties. Diamond and Related Materials.2009; 18:1023-1027.
    [150]Yu Xiang, Wang Cheng-biao, Liu Yang, Yu De-yang, Fu Zhi-qiang. Cr-doped DLC films in three mid-frequency dual-magnetron power modes. Surface and Coatings Technology,2006,200:6765-6769.
    [151]Sam Zhang, Xuan Lam Bui, Yongqing Fu. Magnetron-sputtered nc-TiC/a-C(Al) tough nanocomposite coatings. Thin Solid Films,2004,467: 261.
    [152]G. Y. Chen, J. S. Chen, Z. Sun, Y. J. Li, S. P. Lau, B. K. Tay, J. W. Chai. Field emission properties and surface structure of nickel containing amorphous carbon. Applied Surface Science,2001; 180:185-190.
    [153]Lina Huang, Heqing Jiang, Jisheng Zhang, Zhijun Zhang and Pingyu Zhang. Synthesis of copper nanoparticles containing diamond-like carbon films by electrochemical method. Electrochemical Communication,2006,8:262-266.
    [154]Xing-zhao Ding, B. K. Tay, S. P. Lau, P. Zhang, X. T. Zeng. Structural and mechanical properties of Ti-containing diamond-like carbon films deposited by filtered cathodic vacuum arc. Thin Solid Films,2002,408:183-187.
    [155]M. Zarrabian, N. Fourches-Coulon, G. Turban, M. Lancin and C. Marhic. Effect of negative bias voltage on a-C:H films deposited in electron cyclotron resonance plasma. Diamond and Related Materials,1997,6:542-546.
    [156]Kamata, Kiichiro, Inoue, Tohru, Sugai, Kenichi, Saitoh, Hidetoshi, Maruyama, Kazunori. Effect of negative dc bias voltage on mechanical property of a— C:H films deposited in electron cyclotron resonance plasma. Journal of applied physics,2009,78; 1394-1396.
    [157]W. Cai, J. H. Sui. Effect of working pressure on the structure and the electrochemical corrosion behavior of diamond-like carbon(DLC)coatings on the NiTi alloys. Surface and Coatings Technology,2007,201:5194-5197.
    [158]J. Robertson. Diamond-like amorphous carbon. Materials Science and Engineering:R:Reports,2002,37:129.
    [159]Namwoong Paik. Raman and XPS studies of DLC films prepared by sputter-type negative ion source. Surface and Coatings Technology,2005,200: 2170-2174.
    [160]A.I. Kulak, A. V. Kondratyuk, T. I. Kulak, M. P. Samtsov, D. Meissner. Electrochemical pulsed deposition of diamond-like films by powerful coulostatic discharge in dimethylsulfoxide solution of lithium acetylide. Chemical Physics letters,2003,378:95-100.
    [161]K. Cai, D. Guo, Y. Huang, H. S. Zhu. Electrodeposition of diamond-like amorphous carbon films on aluminum from acetonitrile. Applied Physics A, 2000,71:227-228.
    [162]N. Benchikh, F. Garrelie, C. Donnet, B. Bouchet-Fabre, K. Wolsk, F. Rogemond, A. S Loir, J. L. Subtil. Nickel-incorporated amorphous carbon film deposited by femtosecond pulsed laser ablation. Thin Solid Films,2005, 482:287-292.
    [163]N. W. Khun, E. Liu, G. C. Yang. Structure, scratch resistance and corrosion performance of nickel doped diamond-like carbon thin films. Surface and Coatings Technology,2010,204:3125-3130.
    [164]Guo cheng Yang, Erjia Liu, Nay Win Khun, San PingJiang. Direct electro chemical response of glucose at nickel-doped diamond like carbon thin film electrodes. Journal of Electroanalytical Chemistry,2009,627:51-57.
    [165]S. Miyagawa, S. Nakao, J. Choi, M.Ikeyama, Y. Miyagawa. Eects of target bias voltage on the electrical conductivity of DLC films deposited by PBII/D with a bipolar pulse. Nuclear Instruments and Methods in Physics Research B,2006 242:346-348.
    [166]M.Sniureviciute. Stress and strain in DLC films induced by electron bombardment. Vacuum,2009,83:S159-S161.
    [167]M. M. Morshed, B. P. McNamara, D. C. Cameron, M. S. J. Hashmi. Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source. Journal of Materials Processing Technology,2003,141:127-131.
    [168]Wang Q, Wang C B, Wang Z. Fullerene nanostructure induced excellent mechanical properties in hydrogenated amorphous carbon. Applied Physics Letters,2007,91:141902
    [169]Zhang W, Tanaka A, Wazumi K, Koga Y. Effect of environment on friction and wear properties of diamond-like carbon film. Thin Solid Films,2002,413: 104.
    [170]Wang D Y, Weng K W, Huang S Y. Study on metal doped diamond-like carbon films synthesized by cathodic arc evaporation. Diamond and Related Materials.2000,9(9):1762-1766.
    [171]Yi Jin Woo, Kim Jong Kuk, Kim Seock Sam. Effects of metal plasma source ion implantation on tribological properties of a DLC film. Key Engineering Materials Advances in Nondestructive Evaluation.2004, V2702273: 1147-1152
    [172]K. S. Tripathi, N. Shukla, S. Dhamodaran, et al. Substrate atom enriched carbon nanosturtures fabricated by focused slectron beam induced deposition. Nanotechnology,2008,19:205302.
    [173]Zhang B, Yu Y L, Wang Z, et al. Structure evolution from nanocolumns to nanoporous ofnitrogen doped amorphous carbon films deposited by magnetron sputtering. Applied Surface Science,2010,256:6506-6511.
    [174]Wang J J, Zhu M Y, Outlaw R A, et al. Freestanding subnanometer graphite sheets. Applied Physice Letters,2004,85:1265.
    [175]J. M. Colgan, J. M. Brett. Field emission from carbon and silicon films with pillar microstructure. Thin Solid Films,2001,389:1-4.
    [176]L. Diederich, E. Barborini, P. Piseri, et al. Supercapacitors based on nanostructured carbon electrodes grown by cluster beam deposition. Applied Physics Letters,1999,75:2662.
    [177]Zhang X H, Jiang J Q, Zeng Y Q, et al. Effect of carbon on TiAlCN coatings deposited by reactive magnetron sputtering. Surface and Coatings Technology, 2008,203(5-7):594-597.
    [178]李红轩,徐洮,陈建敏等.直流射频等离子体增强化学气相沉积类金刚石碳薄膜的结构及摩擦学性能研究.摩擦学学报,2004,26(1):1-5
    [179]A. Kulak, A. Kondratyuk, Kulak T, et al. Electrochemical pulsed deposition of diamond-like films by powerful coulostatic discharge in dimethylsulfoxide solution of lithium acetylide. Chemical physics letters,2003,378(1):95-100.
    [180]W. Dai, A. Y. Wang. Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources. Journal of Alloys and Compounds, 2011,509:4626-4631.
    [181]S. Uhlmann, T. Frauenheim, Y. Lifshitz. Molecular-Dynamics Study of the Fundamental Processes Involved in Subplantation of Diamondlike Carbon. Phys. Rev. Lett.,1998,81:641-644.
    [182]D. Caschera, F. Federici, S. Kaciulis. Deposition of Ti-containing Diamond like carbon (DLC) films by PECVD technique. Materials Science and Engineering C,2007,27:1328-1330.
    [183]W. Zhang, A. Tanaka, K. Wazumi, Y. Koga. Effect of environment on friction and wear properties of diamond-like carbon film.Thin Solid Films,2002,413: 104-107.
    [184]S. K. Tripathi, N. Shukla, S. Dhamodaran, et al. Substrate atom enriched carbon nanosturtures fabricated by focused slectron beam induced deposition. Nanotechnology,2008,19:205302.
    [185]Zhang B, Yu Y L, Wang Z, et al. Structure evolution from nanocolumns to nanoporous ofnitrogen doped amorphous carbon films deposited by magnetron sputtering. Applied Surface Science,2010,256:6506-6511.
    [186]Wang J J, Zhu M Y, Outlaw R A, et al. Freestanding subnanometer graphite sheets. Applied Physice Letters,2004,85:1265.
    [187]J. M.Colgan, J. M. Brett. Field emission from carbon and silicon films with pillar micro structure. Thin Solid Films,2001,389:1-4.
    [188]杨莉,陈强,张受业.PECVD法沉积类金刚石薄膜的结构及其摩擦学性能.真空科学与技术学报,2009,29(3):292-297.
    [189]C. A.Ferrari, J. Roberson. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B,2000,61(20):14095-14107.
    [190]R. Hauert. A review of modified DLC coatings for biological applications. Diamond. Relat. Mater.,2003,12:583-589.
    [191]S. V. Johnston, S. V. Hainsworth. Effect of DLC coatings on wear in automotive applications. Surf. Eng.,2005,21:67-71.
    [192]A. Erdemir, C. Donnet. Tribology of diamond-like carbon films:recent progress and future prospects. Phys. D:Appl. Phys,2006,39:R311-R327.
    [193]C. Donnet, A. Erdemir. Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, Springer Science, USA,2008:1-20.
    [194]G. Dearnaley, J. H. Arps. Biomedical applications of diamond-like carbon (DLC) coatings:A review. Surf. Coat. Technol.,2005,200:2518-2524.
    [195]R. K. Roy, K.R. Lee. Biomedical applications of diamond-like carbon coatings: A review, J. Biomed. Mater. Res. B.,2007,83B:72-84.
    [196]H. Ronkainen, S. Varjus, K. Holmberg. Friction and wear properties in dry, water-and oil-lubricated DLC against alumina and DLC against steel contacts. Wear,1998,222:120-128.
    [197]韩修训,阎鹏勋,阎逢元,刘维民.类金刚石涂层在不同载荷和湿度下的摩擦特性.摩擦学学报,2003,23(1):5-9
    [198]T. M. Ksenija, L. Frances, S. Hugh. Behaviour of Boundary Lubricating Additives on DLC Coatings. Wear,2008,265(11-12):1893-1901.
    [199]M. Kalin, J. Viintin. A Comparison of the Tribological Behaviour of Steel/ Steel, Steel/DLC and DLC/DLC Contacts when Lubricated with Mineral and Biodegradable Oils. Wear,2006,261(1):22-31.
    [200]K. Vercammen, Van Acker K, Vanhulsel A, et al. Tribological Behaviour of DLC Coatings in Combination with Biodegradable Lubricants. Tribo.Inter., 2004,37(11-12):983-989.
    [201]谭平恒,李峰,成会明译.碳材料的拉曼光谱从纳米管到金刚石.化学工业出版社,北京,2007:194.
    [202]J. R. Shi, X. Shi. Resonant Raman studies of tetrahedral amorphous carbon films. Diamond Relat. Mate.,2001,10(1):76-81.
    [203]张玲,赖起邦,崔万国,王辅明.拉曼光谱表征无氢类金刚石薄膜的新方法.表面技术,2010,39(4):103-105.
    [204]杨发展,沈丽如,高晕,刘海峰,王世庆.316不锈钢表面沉积厚类金刚石膜层的性能研究.功能材料,2012,15(43):1994-1996
    [205]Jisheng, T. D. Gawne. Wear characteristics of plasma-nitrided CrMo steel under mixed and boundary conditions. J. Mater.Sci.,1997,32(4):913-920.
    [206]K. Miyoshi. Aerospace mechanism and tribology technology. Tribo.Inter., 1999,32(11):673-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700