Mg-Al合金铸态组织细化技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有高的比强度、比刚度、良好的减振性、导热性和可切削加工性,广泛地应用于汽车、电子、航空航天等领域。提高镁合金强度和塑性变形能力,以扩大其应用范围,近年来成为材料工作者努力的目标。晶粒细化是提高镁合金综合力学性能最有效的方法之一,因此研究镁合金晶粒细化技术具有十分重要的意义。
     本文通过正交实验,研究了Al、Zn、Mn三种合金元素对负压吸铸镁合金力学性能的影响规律,结果表明,Al含量是影响Mg-Al合金力学性能的关键因素,Zn、Mn含量变化的影响相对Al而言较弱。在本文研究条件下,Mg-6Al-0.6Zn-0.3Mn为负压吸铸的镁合金最佳成分。
     采用负压吸铸的方法,研究了Ca、Ce含量变化对Mg-6Al-0.6Zn-0.3Mn合金铸态组织影响规律。实验结果表明,Ca、Ce对该合金的铸态组织都有明显的细化效果:当Ca添加量在0~0.9%范围时,随着Ca含量的增加,晶粒尺寸逐渐减小;当Ce添加量在0~1.0%范围时,随着Ce量的增加,枝晶愈见发达,枝晶臂缩颈现象加剧,其中断开呈细小棒状的晶粒逐渐增多,晶界上的β-Mg17Al12相逐渐减少,但出现了新相Al4Ce;
     通过高温液淬实验和热分析技术,研究了Ca和Ce对Mg-6Al-0.6Zn-0.3Mn合金凝固过程的影响机理。结果表明,Ca促进了液相中的异质核心形核、抑制了α枝晶生长,从而使镁合金的等轴晶尺寸减小;Ce促使镁合金枝晶生长,从而抑制了镁合金枝晶前沿的形核。分析认为,Ca在凝固过程中富集于固液界面前沿,增大了界面前沿液相中的过冷度,从而促进了界面前沿液相中的异质形核,并抑制了先析晶粒的长大;Ce在凝固过程中吸附于固液界面,降低了界面能,从而促进了枝晶的生长,同时导致界面前沿液相中的过冷度减小,抑制了界面前沿液相中的异质形核,减小了α枝晶的二次枝晶间距。
     在Mg-9Al-0.8Zn-0.3Mn合金凝固过程中采用超声波、磁致振荡和脉冲电流等物理场进行处理,并与MgCO3变质处理的结果进行对比。实验结果表明,功率超声对合金的铸态组织有明显细化效果,随着功率的增加,细化效果更明显,当功率达到500W时,其细化效果比MgCO3变质处理的效果更好。磁致振荡对合金的铸态组织也有显著细化作用,且随着磁致振荡电压的增大,细化效果也越明显,当电压达到100jV以上时细化效果比MgCO3变质处理的效果更好。脉冲电流对合金的铸态组织同样有细化作用,随着脉冲电流电压的增大,细化效果增大,当电压达到250jV时细化效果与MgCO3变质处理的效果相当。
     分析不同物理场和MgCO3变质处理的冷却曲线表明,三种物理场处理对该合金的初始凝固温度影响较小,但是可以显著缩短合金的凝固时间;而MgCO3变质处理使得合金初始凝固温度明显提高,凝固时间略微缩短。分析认为,外物理场处理主要通过促进熔体散热和增加型壁晶核的脱落和漂移,从而促使其凝固组织细化;而MgCO3变质处理的主要通过增加异质形核质点。
Magnesium alloys are widely used in the fields of automobile, electronic and aviation. Magnesium alloys possess many advantages, such as high specific strength, excellent damping capacity, better thermal conductivity, and good machinability. But low strength and plasticity restrict its applications to more fields. Structure refinement is an effective method to improve their mechanical properties. The aim of this work is to study structure refinement of Mg-Al alloys by addition of alloy elements and the external physical field.
     In this work, effects of Al, Zn and Mn on the mechanical properties and the structures of magnesium alloys were investigated by orthogonal experiment design in negative suction casting. For negative suction casting, Al content is the key factor to mechanical properties of Mg-Al alloys. At last, the determined optimal alloy compositions are Mg-6Al-0.6Zn-0.3Mn for negative suction casting, respectively.
     The influences of Ca and Ce elements on the structures of Mg-6Al-0.6Zn-0.3Mn alloys were systematically studied by negative suction casting. The results show that Ca and Ce elements can obviously refine the solidification structures. Increase of Ca content makes the grain size gradually decrease when it is below 0.9wt.%. Increasing Ce content (below 1.0wt.%) makes the number of the secondary dendrite increase, the link between secondary dendrite and first dendrite become thinner, even more secondary become new small crystals. Moreover, increase of Ce content makes content ofβ-Mg17Al12 phase decrease and a new phase (Al4Ce) appear.
     The effect mechanisms of Ca and Ce elements on the solidification structures of Mg-6Al-0.6Zn-0.3Mn alloys were systematically studied by liquid quenching. The results show that Ca element can promote nucleation in the melt ahead of dendrite tips and restrain crystal growth. But Ce element restrains the nucleation ofαphase and promotes crystal growth. Ca and Ce elements both can restrain the coarsing of the secondary dendrite and decrease the secondary dendrite spacing.
     The solidification structures of Mg-9Al-0.8Zn-0.3Mn alloy were examined when it solidified under physical fields including ultrasonic, magneto oscillation and pulsed electric current. The results show that the ultrasonic treatment can significantly refine its solidification structure. In the range of 300~700W, increasing the ultrasonic power makes the grain size gradually decrease. When ultrasonic power is over 500W, the grain size is smaller than that of the samples treated by MgCO3 modifier. The treatment of magneto oscillation also can clearly refine its solidification structures. In the range of 50~200jV, increasing the voltage makes the grain size gradually decrease. When the voltage is over 100jV, the grain size is smaller than that of the samples treated by MgCO3 modifier. The pulsed electric current also markedly refined its solidification structures. In the range of 100~250jV, increasing the voltage makes the grain size gradually decrease. When the voltage is 250jV, the grain size is the same as that of the samples treated by MgCO3 modifier.
     During solidification course of Mg-9Al-0.8Zn-0.3Mn alloy with different treatment method, the temperature was measured by thermal couple. The measured cooling lines show that treatment of three physical fields makes the solidification time obviously shorter, but have little effects on the initial solidification temperature. However, MgCO3 modification treatment makes its initial solidification temperature clearly increase, and makes its solidification time slightly shorter. Analysis suggests that refinement reason of the physical fields mainly is promoting heat elimination of melt and crystal multiplication, while MgCO3 modification treatment mainly increase the number of nucleation site.
引文
[1]刘正,张奎,曾小勤著.镁基轻质合金理论基础及应用[M].北京:机械工业出版社, 2002. 9
    [2]姚素娟等.镁及镁合金的应用与研究[J].世界有色金属,2005(1):26~27
    [3]唐春龙.镁合金的特性及其在汽车制造业中的应用[J].中国科技信息,2005(12):76~77
    [4] Cole G Michigan D. Can Magnesium Achieve its Potential for Large Volume Usagein Automotive Components Magnesium-the Lightweight Solotion -Automotive Sourcing Special Report, London: Automotive Sourcing UK Ltd, 1998:18
    [5]申泽骥,李宝东.镁合金的铸造技术进展[J],铸造,2001,50(9):522~544
    [6]许小忠等.镁合金在工业及国防中的应用[J].华北工学院学报,2002(3):190~191.
    [7]白木,周洁,汽车用才青睐镁合金,金属世界,2002(2):4~5.
    [8]贺岩松,杨诚,镁合金在轻量化汽车中的应用.汽车工艺与材料,2002(6):25~28.
    [9]丁文江等.镁合金科学与技术[M].北京:科学出版社,2007.
    [10] Aghion E, Bronfin B, Eliezer D. The Role of the Magnesium Industry in Protecting the Environment. Journal of Materials Processing Technolegy [J]. 2001 (117): 381~ 383
    [11]刘向阳.镁合金压铸技术及应用[J].轻合金, 2005, 2:35-38
    [12]陈礼清,赵志江.从镁合金在汽车及通讯电子领域的应用看其发展趋势.世界有色金属,2004,7:12~20
    [13] Nishikaw , Y. Development of Electric Products Using Magnesium Alloy[J].Function and Materials(Japan),1999,19(6):21~27
    [14]吴先敬.我国镁合金加工的现状及未来发展[J].有色金属加工,2001,30(6):14~19
    [15]刘政军,苏永海,刘铎等.镁合金及其成型技术综述[J].沈阳工业大学学报,2006, 28(1):14-20
    [16] I J Polmear. Magnesium Alloys and Application[J]. Materials Science and Technology, 1994,10(1): 1-16
    [17]申泽骥,李玉胜,冯志军.新型铸造镁合金开发现状[J].铸造,2003(3):153~155
    [18] Polmear I J,Magnesium Alloys and Applications[J],Material Science and Technology,1994(10):1~16.
    [19] Suzuki M. Effects of Creep Behavior and Deformation Substructures of Magnesium[A]. KojimaY,Aizawa T,Eds. Magnesium Alloys 2000,Materials Science Forum[C].Tras.Tech.,Switzerland:2000,151~160
    [20]科技报道.日本科学家开发出高强度镁合金材料[J].国外科技动态,2001(4):48-48
    [21] D.Eliezer , E.Aghion , F.H.Froes , Magnesium Science , Technology and Applications,Advanced Performance Materials,1998(5):210~212
    [22] Okumura A, Suwa H, Kanzawa R, etc. Manufacture of Magnesium Alloy wheels, Proceedings of 46th Annual World Magnesium Conference, Dearborn, Michigan,USA, 1989.USA:International Magnesium Association, 1989:17~26
    [23] Kainer K U, the Fundamentals of the New Rheocasting-process for Magnesium Alloys, Magnesium Alloys and their Applications, Munich, Germany, 2000. Weinheim: WGV Verlagsdienstleistungen Gmbh, 2000:533~539
    [24] Kainer K U, Semi-solid Injection Molding of Magnesium Alloys, Magnesium Alloys and their Applications, Munich, Germany, 2000. Weinheim: WGV Verlagsdienstleistungen Gmbh, 2000:577~583
    [25] Kainer K U, Semi-solid Forming of New Mg-Zn-Al-Ca Alloys, Magnesium Alloys and their Applications, Munich, Germany, 2000. Weinheim: WGV Verlagsdienstleistungen Gmbh, 2000:651~658
    [26]刘子利,沈以赴,李子全等.铸造镁合金的晶粒细化技术[J].材料科学与工程学报, 2004, 22(1):146-149
    [27]杨明波,潘复生,李忠盛等.镁合金铸态晶粒细化技术的研究进展[J].铸造, 2005, 54(14):214-319
    [28] Dahle A K, Lee Y C, Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminum alloys[J]. Journal of Light Metals, 2001 (1) : 61– 72
    [29] Avedesian M. Michael, Baker Hugh, Magnesium and Magnesium Alloys, ASM International, 1999:53~97
    [30] Lee Y.C, Dahle A.K and StJohn D. H, Grain Refinement of Magnesium.In, Kaplan H.I, Hryn J, Clow B, Magnesium Technology 2000,Nashville, Tennessee,2000:211~218
    [31] Q D Wang, W Z Chen, X Q Zeng, et al. Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy[J]. Journal of materials science, 2001, 36: 3035– 3040
    [32] Qian Bao-guang, Geng Hao-ran, Tao Zhen-dong, et al. Effect of Ca addition on microstructure and properties of AZ63 magnesium alloy[J]. Trans. Nonferrous Met.Soc. China, 2004, 14: 987-991
    [33]李培杰,郑伟超,汤彬等. Ca和Sr对AZ91D合金组织的细化作用[J].特种铸造及有色合金, 2004(3): 8-11.
    [34]闵学刚,杜温文,孙杨善等. Ca提高Mg17Al12相熔点的现象及EET理论分析[J].科学通报, 2002(1): 109-112
    [35]闵学刚,孙扬善,杜温文等. Ca, Si和RE对AZ91合金的组织和性能的影响[J].东南大学学报, 2002, 32(3): 409-414
    [36] G Y Yuan, Z L Liu, W J Ding, et al. Microstructure refinement of Mg-Al-Zn-Si alloy[J]. Materials Letters, 2002, 56: 53-58
    [37]黄正华,郭雪峰,张忠明. Ce对AZ91力学性能与阻尼性能的影响.稀有金属材料与工程. 2005,34(3):375-379.
    [38]樊昱,吴国华,高洪涛等. La对AZ91镁合金力学性能与腐蚀性能的影响.金属学报. 2006,42(1):35-42.
    [39]李娜,刘建睿,王栓强等.稀土在镁及镁合金中的应用.铸造技术. 2006,27(10):1133-1136.
    [40]王渠东,吕宜振,曾小勤等.稀土在铸造镁合金中的应用[J].特种铸造及有色合金, 2002年压铸专刊:295-299。
    [41]刘峰,冯可芹,杨屹.镁合金晶粒细化的研究现状及发展[J].铸造技术,2004, 25(6):450-452
    [42] T M Yosuke, Y G Jiro, H T Tadashi, et al. Observation of mangnanese- bearing particles in molten AZ91 magnesium alloy by rapid solidification[J]. Materials Transactions, 2003, 44(4):552-557
    [43]张世军,黎文献,余琨等.镁合金的晶粒细化工艺[J].铸造, 2001(7):373-375.
    [44]刘清梅,超声波对金属凝固特性及组织影响的研究:[博士学位论文].上海:上海大学,2007
    [45]龚永勇,脉冲磁致振荡凝固细晶技术基础研究:[博士学位论文].上海:上海大学,2008
    [46]廖希亮,脉冲电流对金属凝固组织的影响:[博士学位论文].上海:上海大学,2007
    [47]沈以赴,郭晓楠,张坤.脉冲电流对金属材料的作用及其研究进展[J].材料科学与工程, 1998, 16(3): 4-7.
    [48] Brush L N, Grugel R N. The effect of an electric current on rod-eutectic solidification in Sn-0.9 wt% Cu alloys [J]. Materials Science and Engineering A, 1997, 238(1): 176-181.
    [49] Xie G Q, Ohashi O, Chiba K, Yamaguchi N, Song M. Frequency effect on pulse electric current sintering process of pure aluminum powder [J]. Materials Science and Engineering A, 2003, 359(1-2): 384-390.
    [50] Wang S W, Chen L D, Kang Y S, Niino M, Hirai T. Effect of plasma activated sintering (PAS) parameters on densification of copper power [J]. Materials Research Bulletin, 2000, 35(4): 6198-6208.
    [51]何良菊,李培杰.中国镁工业现状与镁合金开发技术[J].铸造技术, 2003 (3): 161~162
    [52] V.Ravi Kumar. Effect of Alloying Elements on the Ignition Resiatance of the MagnesiumAlloy [J]. Scripta Materialia, 2003, 49 (23): 225~227
    [53]王益志,镁合金熔炼中采用SF6对环境的影响铸造[J] .铸造, 2002(4): 239~241
    [54]申泽骥,李宝东.铸造镁合金熔炼技术进展[J].特种铸造及有色合金(2001中国压铸、挤压铸造、半固态加工学术年会论文集):90-93
    [55]杨明波,潘复生,李忠盛等.镁合金铸态晶粒细化技术的研究进展[J].铸造, 2005, 54(14):214-319
    [56] Emley E F. Principle of Magnesium Technology, Pergamon Press, London (1996): 969
    [57] Pekguleryua M O. Some Potentials for Alloy Development [J]. Light Metal, 1992 (12): 679~686
    [58]刘子利,沈以赴,李子全等.铸造镁合金的晶粒细化技术[J].材料科学与工程学报, 2004, 22(1):146-149
    [59] Y C Lee, A K Dahle, D H Stjohn. The role of solute in grain refinement of magnesium[J]. Metallurgical And Materials transactions A, 2000, 31A: 2895- 2906
    [60]胡汉起编著.金属凝固原理[M],机械工业出版社, 2000
    [61]周海涛,曾小勤,刘文法等.稀土铈对AZ61变形镁合金组织和力学性能的影响[J].中国有色金属学报, 2004, 14(1): 99-104
    [62]王立世,段汉桥,魏伯康等.混合稀土对AZ91镁合金组织和性能的影响[J].特种铸造及有色合金, 2002(3):55-63
    [63] J D Hunt. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials science and engineering, 1984, 65(1):75-83
    [64]廖恒成,丁毅,孙国雄. Sr对近共晶Al-Si合金中α枝晶生长行为的影响[J].金属学报, 2002, 38(3): 245-249
    [65] S Annavarapu, R D Doherty. Inhibited coarsening of solid-liquid microstructures in spray casting at high volume fractions of solid[J]. Acta Metallurgica et Materialia, 1995, 43(8): 3207-3230
    [66] M Chen, T Z Kattamis. Dendrite coarsening during directional solidification of Al–Cu–Mn alloys[J]. Materials science and engineering A, 1998, 247(2): 239-247
    [67] S L Backerud, G K Sigworth. Recent developments in thermal analysis of aluminum casting alloys[J]. AFS transaction, 1989, 64: 459-464
    [68] I G Chen, D M Stefanescu. Computer-aided differential thermal analysis of spherodial and compacted graphite cast irons[J]. AFS transactions, 1984, 30: 947-963
    [69] Q Wang, Y X Li, X C Li. Grain refinement of Al-7Si alloys and the efficieny assessment by recongnition of cooling curves[J]. Metallurgical and materials Transactions, 2003, 34A: 1175-1182
    [70] E.Fras, W Kapturkiewicz, A.Burbielko, et al. A new concept in thermal analysis of castings[J]. AFS transactions, 1993, 131: 505-11
    [71]胡赓祥,蔡珣主编.材料科学基础[M],上海交通大学出版社,2000
    [72] G Chai, L Bacherud, L Arnberg. Relation between grain size and coherency parameters in aluminium alloys. Materials science and technology, 1995, 11: 1099-1103
    [73]陈镜泓,李传儒.热分析及其应用[M].北京:科学技术出版社, 1985.
    [74]闫永生,华勤.热分析在铸造检测与控制技术上的应用[J].热加工工艺,2002,146(1):41-45
    [75] A.Luo, Heterogeneous Nucleation and Grain Refinement in Cast Mg(AZ91)/SiCp Metal Matrix Composites. Canadian Metallurgical Quality.1996.35(4):376~379.
    [76]马大猷.声学手册[M].北京:科学出版社,1983.
    [77]张海波,功率超声对AZ81镁合金凝固组织的影响,硕士学位论文,上海大学, 2004.
    [78] Abramov O V . Ultrasound in liquid and solid metals [M].Florida: CRC Press,1994
    [79]冯若.声化学及其应用[M].安徽:安徽科技出版社,1990
    [80]钱祖文.非线性声学[M].北京:科学出版社,1992
    [81]宋维锡.金属学[M].北京:冶金工业出版社,1995.
    [82]高守雷,戚飞鹏等,高能超声处理对锡锑包晶合金凝固组织的影响[J],铸造,2003,52(1):5~7
    [83]张海波,功率超声对AZ81镁合金凝固组织的影响,硕士学位论文,上海大学, 2004.
    [84]王俊,用高能超声法制备的MMCp及其细观力学行为[M],南京:东南大学出版社,1997
    [85]何柞镛.声学理论基础[[M],北京:国防工业出版社,1981.
    [86]林为干,符果行,邬林若等.电磁场理论[M].北京:人民邮电出版社, 1984: 243.
    [87]赵凯华,陈熙谋.电磁学.北京:高等教育出版社, 1985:472.
    [88] Tian X.F. Fan Z.T. Huang N.Y. et al. Microstructure and mechanical properties of magnesium alloy prepared by lost foam casting [J]. Trans. Nonferrous Met. Soc. China. 2005,15(1):10.
    [89] Nakada M, Shiohara Y, Flemings M C. Modification of Solidification Structures by Pulse Electric Discharging. ISIJ International, 1990, 30(1): 27~33.
    [90] Xiliang Liao, Qijie Zhai, Jun Luo , Wenjie Chen, Yongyong Gong,Refning mechanism of the electric current pulse on the solidification structure of pure aluminum, Acta Materialia, 2007, 55: 3103-3109.
    [91]唐勇.电脉冲作用下液态金属结构及其对碳钢凝固组织改善的研究:[博士学位论文].北京:北京科技大学,2000
    [92] Barnak J P, Sprecher A F, Conrad H. Colony (grain) Size Reduction in Eutectic Pb-Sn Castings by Electroplusing. Scripta Metallurgica et Materialia, 1995,32(6): 879~884.
    [93]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700