大气压氦气冷等离子体射流的流体力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,大气压冷等离子体射流由于其独特的优势和广泛的应用前景而受到人们格外的关注。和传统的大气压非平衡等离子体源相比,大气压冷等离子体射流最大的优势就是能够将等离子体产生区域和工作区域在空间中分离开来,在保持放电稳定性的同时,还能保持较强的等离子体化学活性。尽管大气压冷等离子体射流目前已被广泛应用于材料加工和表面改性以及等离子体医学等各个应用领域,但是一些根本性的问题还没有得到很好的解决。因此,需要对其作进一步深入研究。在本论文中,主要开展了以下工作:
     建立了一个1.5维等离子体流体力学模型,数值研究了针板型放电结构下等离子体射流子弹的产生、传播以及熄灭过程;结果表明:等离子体子弹的传播机制是一种类似于流注的电离波的传播。在其传播过程中,电子的碰撞电离是最主要的电离机制,而潘宁电离可以为其传播提供足够的种子电子。驱动电压的极性决定了等离子体射流的动力学行为,在正脉冲电压驱动下,等离子体子弹头部内存在一个具有高斯型分布的净电荷区域,空间电荷在该区域内激发强电场,电离剧烈,发光比较强。等离子体子弹的传播速度与最大空间电场的变化规律一致,都是首先增加,达到最大值后开始下降。而在负脉冲驱动下,等离子体射流中没有准中性区域的存在,且在阴极附近存在着一个非常窄的阴极位降区。电场在整个射流范围内均比较高,电离也都比较强,没有类似等离子体子弹的结构存在。另外,等离子体射流的传播速度比正脉冲射流的传播速度低,且随时间不断减小。
     研究了环境空气对氦气冷等离子体射流放电性质的影响。结果发现由于氧的附着效应使得等离子体射流中的电子密度降低了。氦亚稳态原子与空气之间的潘宁电离作用促进了电离反应,加快了射流的传播速度。在不考虑空气扩散效应的情况下,当空气含量小于1%时,等离子体射流的最大传播速度随着空气含量的增加而增大;而当空气含量大于1%时,随着通道内空气的增多,射流的传播速度将不断地降低。等离子体射流的长度随着空气含量的增加不断减小。考虑了空气扩散的作用,利用一维径向流体力学模型研究了等离子体子弹横截面上环形结构的形成机理。结果表明由于气体成分的不均匀空间分子造成的电子直接碰撞电离变化是环状结构形成的根本原因。
     基于一维等离子体流体力学模型,研究了气流对平板型等离子体射流中心放电放电特性的影响。在亚微秒单极脉冲驱动下,气流对第一次放电的影响比较显著,而对第二次放电几乎没有影响。随着气体流速的增加,第一次放电的放电电流不断减小,且放电时刻也不断延迟,这是由于种子电子在气流的作用下移出放电区域所造成的;在交流驱动下,由于空间电场的存在,电子的迁移输运比对流输运高很多,因此气流的输运主要体现在正离子的对流输运上。气流的存在造成了正负半周内的放电上下不对称。同时由于表面电荷的作用,使得相邻两次放电之间的时间间隔不再相等,而是呈现长短交替的变换规律。当气流超过某一临界值,系统会经历倍周期分岔过程而进入一个二倍周期的放电状态。
     基于自洽的二维等离子体流体力学模型,研究了直流脉冲驱动下放电参数(例如脉冲频率、上升沿时间、介电常数等)对放电性质的影响。模拟结果显示:随着脉冲重复频率的增加,两次放电电流的大小均不断减小,且第一次放电电流的峰值时刻不断提前。在正脉冲放电电流峰值时刻,瞬时阴极附近的最大电子密度随着脉冲重复频率的增加而不断减小,其峰值对应的位置不断向瞬时阴极靠近。而在负脉冲放电电流峰值时刻,虽然瞬时阴极附近的最大电子密度也随着脉冲重复频率的增加而不断减小,但是其峰值对应的位置却不断向瞬时阳极靠近。随着上升沿时间的增大,两次放电电流的大小也都不断减小。下降沿时间的长短对对第二次放电电流影响明显。下降沿时间越长,第二次放电电流越小。
     基于自洽的二维等离子体流体力学模型,研究了大气压氦气冷等离子体射流在自身环境气体中以及在介质管中的传播问题。得到了电子密度、电离速率、空间电场以及电子温度等参量的时空分布规律,分析了介质管大小以及介质管介电常数对射流放电性质的影响,得到了一种提高电子密度和射流尺寸的新方法。
Atmospheric pressure cold plasma jets (APCPJs) have recently been of an enormous interest due to their unique advantages and numerous potential applications. Compared with traditional atmospheric pressure non-equilibrium plasma sources, one of the most prominent features of the atmospheric pressure cold plasma jets is the spatial separation of plasma generation from their working regions, which can simultaneously achieve both high discharge stability and efficient reaction chemistry. Although APCPJs have been applied to several practical applications such as material processing, surface modification, and plasma medicine, many fundamental mechanisms still remain unknown. Therefore, further detailed investigations on these issues are needed. In this paper, the following works have been done:
     The plasma bullet creation, propagation and inhibition in a needle-to-plane discharge have been investigated based on a l.5D plasma fluid model. It is found that the propagation of plasma bullet is similar to the propagation of an ionizing wave. The collision ionization is the most important ionization mechanisms during the bullet propagation, while the Penning ionization can provide sufficient seed electrons ahead of it. The dynamics of the plasma jets are determined by the voltage polarity. When the plasma jets arc driven by a positive pulsed voltage, there is a net space charge domain with Gaussian-shaped distribution in the head of the plasma bullet. In this domain, the electric filed induced by space charge is strong enough, and the ionization is intensive. The bullet velocity has the same evolution as that of peak field. It starts to accelerate as soon as it is launched, and then slow down after reaching its maximum velocity at some distance. In contrast to the positive plasma jet, there are some specific features in the plasma jet driven by a negative pulse. The notable features are the existence of a narrow cathode fall region near the tip electrode and the absence of quasi-neutral ionized channels. Moreover, the propagation velocity of plasma jet in negative pulses, which is lower than that in the positive pulses, decreases all the time during its propagation.
     The influence of ambient air on the atmospheric pressure helium plasma jets has been studied. It is demonstrated that the electron density in the plasma jets are reduced due to the electron attachment by oxygen molecules. The Penning ionization between metastable helium atoms and air molecules facilitates the volume ionization and accelerates the propagation of the plasma jets. Without taking air diffusion into account, the maximum of streamer velocity increases with the increasing air content, and reaches its maximum when the air impurity level is increased to1%, and then decreases with the further increasing air content. Meanwhile, the plasma jet length is decreased exponentially as the air impurity level increases. In addition, the forming mechanism of ring-shaped structure on the cross-section of plasma jet is investigated by using a one-dimensional fluid model that including the air diffusion effects. It is shown that the formation of ring structure is governed mainly by the difference of direct ionization rate between helium and air.
     The influence of gas flow on the discharge characteristics in the dielectric barrier discharge with parallel electrodes at atmospheric pressure was investigated by a one-dimensional self-consistent kinetic model. When the discharge is driven by a sub-microsecond pulsed dc voltage, two discharge current pulses, the positive one and the negative one, are operated in a normal glow mode and a sub-normal glow mode, respectively. It is shown that the gas flow has a significant impact on the discharge characteristics, especially on the positive discharge pulse. The spatial distribution of electrons is affected by the gas flow through the convection transport mechanism. When the discharge is driven by ac voltage, the convective transport mechanism is mainly governed by positive ions. The presence of gas flow results in the formation of asymmetric discharge in a whole driving period. Associated with the surface charge, the gas flow makes the intervals between two consecutive discharge events no longer remains constant, but exhibits a alternative fashion. As the gas flow exceeds some critical value, the system will undergoes a double period bifurcation and transits into a Period2discharge pattern.
     The effects of discharge parameters (pulsed driving frequency, the rising time, permittivity, etc) on the atmospheric pressure dielectric barrier discharge excited by repetitive voltage pulses have been numerically studied by using a two-dimensional fluid model.It is demonstrated that both the two discharge currents decrease as the driving frequency is increased. The time delay between the igniting event and the current peak of the first discharge becomes shorter and shorter. The maximum of electron density near the instantaneous cathode at the positive discharge current peak moment decreases, and the corresponding position moves towards the instantaneous cathode when the driving frequency increases. However, although the maximum of electron density near the instantaneous cathode at the positive discharge current peak moment decreases, but the corresponding position moves towards the instantaneous anode when the driving frequency increases. As the rising time is increased, both he two discharge currents decrease. The falling time plays an important role in the second discharge. The longer the falling time is increased, the smaller current peak of second discharge becomes.
     Based on a self-consistent two-dimensional plasma fluid model,we investigated the propagating problems in the cold atmospheric pressure helium plasma jets that surrounded by helium itself and thin dielectric tube, respectively. The spatio-temporal distributions of electron density, ionization rate, electrical field, and electron temperature were obtained. It is found that both the radius and the permittivity of dielectric tube have an impact on the discharge characteristics. A new method of improving the electron density and plasma jet size were also proposed.
引文
[1]Schaper L, Reuter S, Waskoenig J, et al. The dynamics of radio-frequency driven atmospheric pressure plasma jets [J]. Journal of Physics:Conference Series,2009, 162(1):012013
    [2]Teschke M, Kedzierski J, Finantu-Dinu E G, et al. High-speed photographs of a dielectric barrier atmospheric pressure plasma jet [J]. IEEE Trans. Plasma Sci, 2005,33(2):310-311.
    [3]Lu X P and Laroussia M. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses [J] J. Appl. Phys,2006,100:063302
    [4]Shi J, Zhong F, Zhang J, et al. A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet [J]. Phys. Plasmas,2008,15:013504
    [5]Kim S J, Chung T H, and Bae S H. Striation and plasma bullet propagation in an atmospheric pressure plasma jet [J]. Phys. Plasma,2010,17:053504
    [6]Lu X, Xiong Q, Xiong Z, et al. Propagation of an atmospheric pressure plasma plume [J]. J.Appl. Phys,2009,105:043304
    [7]Jiang C, Chen M T and Gundersen M A. Polarity-induced asymmetric effects of nanosecond pulsed plasma jets [J]. J. Phys. D:Appl. Phys,2009,42:232002
    [8]Sands B L, Ganguly B N, and K. Tachibana. A streamer-like atmospheric pressure plasma jet [J]. Appl. Phys. Lett,2008,92:151503
    [9]Jiang N, Ji A, and Cao Z. Atmospheric pressure plasma jets beyond ground electrode as charge overflow in a dielectric barrier discharge setup [J]. J. Appl. Phys,2010, 108:033302
    [10]江南,曹则贤.一种大气压放电氦等离子体射流的实验研究[J].物理学报,2010,59(5):3324-3330.
    [11]Jiang N, Ji A, and Cao Z. Atmospheric pressure plasma jet:effects of electrode configuration discharge behavior, and its formation mechanism [J]. J. Appl. Phys, 2009,106:013308
    [12]Bourdet N M, Laroussi M, Begum A, et al. Experimental investigations of plasma bullets [J]. J. Phys. D:Appl. Phys,2009,42:055207
    [13]Walsh J L and Kong M G. Ignition and Propagation of an Atmospheric-Pressure Helium Plasma Jet [J]. IEEE Trans. Plasma Sci.,2011,39(11):2306-2307
    [14]Sands B L, Ganguly B N, and Tachibana K. Time-resolved imaging of "plasma bullets" in a dielectric capillary atmospheric pressure discharge [J]. IEEE Trans. Plasma Sci.,2008,36:956-957
    [15]Walsh J L, Shi J J, and Kong M G. Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets [J]. Appl. Phys. Lett,2006,88:171501
    [16]Laimer J, Stori H. Recent advances in the research on non-equilibrium atmospheric pressure plasma jets [J]. Plasma Process. Polym,2007,4:266-274
    [17]Schutze A, Jeong J Y, Babayan S E, et al. The atmospheric-pressure plasma jet: A Review and comparison to other plasma sources [J]. IEEE Trans. Plasma Sci.,1998, 26(6):1685-1694
    [18]Laroussi M, Akan T. Arc-free atmospheric pressure cold plasma jets:A Review [J]. Plasma Process. Polym,2007,4:777-788
    [19]Xiong Q, Lu X, Xian Y, et al. Experimental investigations on the propagation of the plasma jet in the open air [J]. J. Appl. Phys,2010,107:073302
    [20]Xiong Q, Lu X, Ostrikov K, et al. Length control of He atmospheric plasma jet plumes: Effects of discharge parameters and ambient air [J]. Phys. Plasma,2009,16:043505
    [21]Xiong Q, Lu X, Ostrikov K, et al. Pulsed dc-and sine-wave-excited cold atmospheric plasma plumes:A comparative analysis [J]. Phys. Plasma,2010,17:043506
    [22]Jarriege J, Laroussi M and Karakas W. Formation and dynamics of plasma bullets in a non-thermal plasma jet:influence of the high-voltage parameters on the plume characteristics [J]. Plasma Sources Sci. Technol,2010,19:065005
    [23]Karakas E, Koklu M and Laroussi M. Correlation between helium mole fraction and plasma bullet propagation in low temperature plasma jets [J]. J. Phys. D:Appl. Phys,2010,43:155202
    [24]Karakas E and Laroussi M. Experimental studies on the plasma bullet propagation and its inhibition [J]. J. Appl. Phys,2010,108:063305
    [25]Xiong Z, Lu X, Xian Y, et al. On the velocity variation in atmospheric pressure plasma plumes driven by positive and negative pulses [J]. J. Appl. Phys,2010,108: 103303
    [26]Walsh J L, Iza F, Janson N B, et al. Three distinct modes in a cold atmospheric pressure plasma jet [J]. J. Phys. D:Appl. Phys,2010,43:075201
    [27]Kim D, Jung H, Gweon B, et al. The driving frequency effects on the atmospheric pressure corona jet plasmas from low frequency to radio frequency [J]. Phys. Plasmas, 2011,18:043503
    [28]Xiong Q, Nikiforov A Y, Lu X P, et al. A branching streamer propagation argon plasma plume [J]. IEEE Trans. Plasma Sci.,2011,39(11):2094-2095
    [29]Lei X and Fang Z. DBD Plasma Jet in Atmospheric Pressure Neon [J]. IEEE Trans. Plasma Sci.,2011,39(11):2288-2289
    [30]Li Q, Pu Y, and Nishiyama H. Atmospheric-Pressure Dielectric Barrier Plasma Jets Elongated by Elevating External Electric Field [J]. IEEE Trans. Plasma Sci.,2011, 39(11):2290-2291
    [31]Wu S, Wang Z, Huang Q, et al. Plasma Plume Ignited by Plasma Plume at Atmospheric Pressure [J]. IEEE Trans. Plasma Sci.,2011,39(11):2292-2293.
    [32]Li Q, Li J T, Zhu W C, et al. Effects of gas flow rate on the length of atmospheric pressure nonequilibrium plasma jets [J]. Appl. Phys. Lett,2009,95:141502
    [33]Gkelios A, Svarnas P, Clement F, et al. Guided Propagation of Excited Species Produced by Microjet Plasma [J]. IEEE Trans. Plasma Sci.,2011,39(11):2296-2297, 2011
    [34]Walsh J L and Kong M G. Frequency effects of plasma bullets in atmospheric glow discharges [J]. IEEE Trans. Plasma Sci.,2008,36:954-955
    [35]Karakas E, Akman M A, and Laroussi M. Propagation Phases of Plasma Bullets [J]. IEEE Trans. Plasma Sci.,2011,39(11):2308-2309
    [36]Zhu W, Li Q, Zhu X, et al. Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium [J]. J. Phys. D:Appl. Phys,2009,42:202002
    [37]Kim D B, Jung H, Gweon B, et al. Double streamer phenomena in atmospheric pressure low frequency corona plasma [J]. Phys. Plasma,2010,17:073503
    [38]Lee H W, Nam S H, Mohamed A H, et al. Atmospheric pressure plasma jet composed of three electrodes:Application to tooth bleaching [J]. Plasma Process. Polym, 2010,7:274-280
    [39]Sarani A, Nikiforov A Yu, and Leys C. Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures:Optical emission spectroscopy and temperature measurements [J]. Phy. Plasma,2010,17:063504
    [40]Xiong Q, Nikiforov A Y, Lu X P, et al. High-speed dispersed photographing of an open argon plasma plume by a grating-ICCD camera system [J]. J. Phys. D:Appl. Phys, 2010,43:415201
    [41]Nastuta A V, Topala I, and Popa G. ICCD Imaging of Atmospheric Pressure Plasma Jet Behavior in Different Electrode Configurations [J]. IEEE Trans. Plasma Sci. 2011,39(11):2310-2311
    [42]Kang S, Mohamed A, Lee H, et al. Droplet Striations Formed in a 900-MHz Microwave Argon Atmospheric-Pressure Plasma Jet [J]. IEEE Trans. Plasma Sci.,2011,39(11): 2318-2319
    [43]Niu Z, Shao T, Zhang C, et al. Atmospheric-Pressure Plasma Jet Produced by a Unipolar Nanosecond Pulse Generator in Various Gases [J]. IEEE Trans. Plasma Sci., 2011,39(11):2322-2323
    [44]Kim S and Chung T. Effects of Control Parameters on Plasma Bullet Propagation in a Pulsed Atmospheric Pressure Argon Plasma Jet [J]. IEEE Trans. Plasma Sci.,2011, 39(11):2280-2281
    [45]Dawson G and Winn W P. A model for streamer propagation [J]. Z. Phys,1965,183: 159-171
    [46]Ye R and Zheng W. Temporal-spatial-resolved spectroscopic study on the formation of an atmospheric pressure microplasma jet [J]. Appl. Phys. Lett,2008,93:071502
    [47]Hong Y C, Uhm H S and Yi W J. Atmospheric pressure nitrogen plasma jet:observation of striated multilayer discharge patterns [J]. Appl. Phys. Lett,2008,93:051504.
    [48]Forster S, Mohr C, Viol W. Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy [J]. Surf. Coat. Technol.,2005,200(1-4): 827-830.
    [49]Park H S, Kim S J, Joh H M, et al. Optical and electrical characterization of an atmospheric pressure microplasma jet with a capillary electrode [J]. Phys. Plasmas, 2010,17(3):033502.
    [50]Lu X P, Jiang Z H, Xiong Q, et al. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine [J]. Appl. Phys. Lett.,2008,92(8): 081502.
    [51]Laroussi M, Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications [J]. Appl. Phys. Lett.,2005,87(11):113902.
    [52]Nie Q Y, Ren C S, Wang D Z, et al. Self-organized pattern formation of an atmospheric pressure plasma jet in a dielectric barrier discharge configuration [J]. Appl. Phys. Lett.,2007,90(22):221504.
    [53]Ni T L, Ding F, Zhu X D, et al. Cold microplasma plume produced by a compact and flexible generator at atmospheric pressure [J]. Appl. Phys. Lett.,2008,92(24): 241503.
    [54]Shashurin A, Shneider M N, Dogariu A, et al. Temporal behavior of cold atmospheric plasma jet [J]. Appl. Phys. Lett.,2009,94(23):231504.
    [55]Xiong Q, Lu X, Z. J, et al, An atmospheric pressure nonequilibrium plasma jet device [J]. IEEE Trans. Plasma Sci.,2008,36:986-987
    [56]Lu X P, Jiang Z H, Xiong Q, et al. A single electrode room-temperature plasma jet device for biomedical applications [J]. Appl. Phys. Lett.,2008,92(15):151504.
    [57]Hong Y C, Kang W S, Hong Y B, et al. Atmospheric pressure air-plasma jet evolved from microdischarges:Eradicationof E. coli with the jet[J]. Phys. Plasmas,2009, 16(12):123502.
    [58]Li S Z, Huang W T, Wang D Z. The effect of gas flow on argon plasma discharge generated with a single-electrode configuration at atmospheric pressure [J]. Phys. Plasmas.,2009,16(9):093501.
    [59]Bayliss D L, Walsh J L, Shama G, et al. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet [J]. New J. Phys., 2009,11(11):115024.
    [60]Ohyama R, Sakamoto M and Nagai A. Axial plasma density propagation of barrier discharge non-thermal plasma bullets in an atmospheric pressure argon gas stream [J]. J.Phys. D:Appl. Phys.,2009,42:105203
    [61]Bussiahn R, Kindel E, Lange H, et al. Spatially and temporally resolved measurements of argon metastable atoms in the effuent of a cold atmospheric pressure plasma jet[J]. J. Phys. D:Appl. Phys.,2010,43(16):165201.
    [62]Ito T, Raddenzati A, Shams A, et al. Reverse propagation of atmospheric pressure plasma jets [J]. Japanese J. Appl. Phys.,2010,49:100209
    [63]Li S Z, Huang W T, Zhang J L, et al. Discharge characteristics of an atmospheric-pressure argon plasma column generated with a single-electrode configuration [J]. Phys. Plasmas,2009,16(7):073503.
    [64]Kieft I E, Laan E P, Stoffels E. Electrical and optical characterization of the plasma needle [J]. New J. Phys.,2004,6(1):149.
    [65]Huang W T, Li S Z. Preliminary Study on Applications of an Atmospheric-Pressure Argon Plasma Discharge With a Single-Electrode Configuration [J]. IEEE Trans Plasma Sci.,2010,38(2):121-126
    [66]Hong Y C, Cho S C, Kim J H, et al. A long plasma column in a flexible tube at atmospheric pressure [J]. Phys. Plasmas,2007,14(7):074502
    [67]Hong Y C, Uhm H S. Microplasma jet at atmospheric pressure [J]. Appl. Phys. Lett., 2006,89(24):221504
    [68]Moon S Y, Choe W and Kang B K. A uniform glow discharge plasma source at atmospheric pressure [J]. Appl. Phys. Lett.,2004,84:188-190
    [69]Feng Y, Ren C S, Nie Q Y, et al. Study on the Self-Organized Pattern in an Atmospheric Pressure Dielectric Barrier Discharge Plasma Jet [J]. IEEE Trans. Plasma Sci.,2010, 38(5):1061-1065.
    [70]Cao Z, Nie Q Y, Kong M G. A cold atmospheric pressure plasma jet Controlled with spatially separated dual-frequency excitations [J]. J. Phys. D:Appl. Phys.,2009, 42(22):222003.
    [71]Cao Z, Walsh JL and Kong MG. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment [J]. Appl. Phys. Lett., 2009,94:021501.
    [72]Nie Q Y, Cao Z, Ren C S, et al. A two-dimensional cold atmospheric plasma jet array for uniform treatment of large-area surfaces for plasma medicine [J]. New Journal of Physics,2009,11:115015
    [73]Cao Z, Nie Q, Bayliss D L, et al. Spatially Extended Atmospheric Plasma Arrays [J]. Plasma Sources Sciences & Technology,2010,19:025003
    [74]Park J, Henins I, Herrmann H W, et al. An atmospheric pressure plasma source [J]. Appl. Phys. Lett.,2000,76:288-290
    [75]Guo Y B and Hong F. RF microdischarge arrays for large-area cold atmospheric plasma generation [J]. Appl. Phys. Lett.,2003,82:337-339
    [76]Sakai 0, Kishimoto Y, and Tachibana K. Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure [J]. J. Phys. D:Appl. Phys.,2005,38:431-441.
    [77]Walsh J L, Kong M G. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets [J]. Appl. Phys. Lett.,2008,93(11):111501.
    [78]Kolb J F, Mohamed A-AH, Price R 0, et al. Cold atmospheric pressure air plasma jet for medical applications [J]. Appl. Phys. Lett.,2008,92(24):241501.
    [79]Wu S, Lu X, Xiong Z, et al. A Touchable pulsed air plasma plume driven by DC Power supply [J]. IEEE Trans. Plasma Sci.,2010,38(12):3404-3407
    [80]Walsh J L, and Kong M G. Protable nanosecond pulsed air plasma jet [J]. Appl. Phys. Lett,2011,99:081501
    [81]Moon S Y, Choe W, Uhm H S. Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tube [J]. Physics of Plasmas,2002,9(9):4045-4051.
    [82]Al-Shamma A I, Wylie S R, Lucas J. Design and construction of a 2.45 GHz waveguide-based microwave plasma jet at atmospheric pressure for material processing [J]. J Phys D:Appl Phys,2001,34:2734-2741.
    [83]Lee M H, Park B J, Jin S C. Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure [J]. New Journal of Physics,2009,11:115022.
    [84]Duan Y, Huang C, Yu Q. Low-temperature direct current glow discharges at atmospheric pressure [J]. IEEE Trans Plasma Sci,2005,33(2):328-329.
    [85]Xian Y, Lu X, Cao Y, et al. On Plasma bullet behavior [J]. IEEE Trans Plasma Sci, 2009,37(10):2068-2073.
    [86]张冠军,詹江杨,邵先军,等.大气压氩气等离子体射流长度的影响因素[J].高电压技术,2011,37(6):1432-1438.
    [87]Zhang J, Sun J, Wang D, et al, A novel cold plasma jet generated by atmospheric dielectric barrier capillary discharge [J]. Thin Solid Films,2006,506-507: 404-408
    [88]Koinuma H, Ohkubo H, Hashimoto T, et al. Development and application of a microbeam plasma generator [J]. Appl. Phys. Lett,1992,60(7):816-817
    [89]Jeong J Y, Babayan S E, Tu V J, et al. Etching materials with an atmospheric-pressure plasma jet. Plasma Sources Sci. Technol,1998,7:282-285.
    [90]Park J, Henins I, Herrmann H W, et al. Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source [J]. J. Appl. Phys,2001,89(1): 20-28
    [91]Laimer J, Haslinger S, Meissl W, et al. Investigation of an atmospheric pressure radio-frequency capacitive plasma jet [J]. Vacuum,2005,79:209-214
    [92]Yang X, Moravej M, Nowling G R, et al. Comparison of an atmospheric pressure, radio-frequency discharge operating in the a and γ modes [J]. Plasma Sources Sci. Technol.,2005,14:314-320
    [93]Moravej M, Babayan S E, Nowling G R, et al. Plasma enhanced chemical vapour deposition of hydrogenated amorphous silicon at atmospheric pressure [J]. Plasma Sources Sci. Technol,2004,13(1):8-14
    [94]Zhu W C, Wang B R, Yao Z X, et al. Discharge characteristics of an atmospheric pressure radio-freqency plasma jet [J]. J. Phys. D:Appl. Phys,2005,38(9): 1396-1401
    [95]Yuan X, Raja L L. Role of trace impurities in large-volume noble gas atmospheric-pressure glow discharges [J]. Appl. Phys. Lett,2002,81:814-816
    [96]Park J, Henins I, Herrmann H W, et al. Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source [J]. Journal of Applied Physics,2001, 89(1):20-28
    [97]Shi J J, Deng X T, Hall R, et al. Three modes in a radio frequency atmospheric pressure glow discharge [J]. Journal of Applied Physics,2003,94:6303-6310
    [98]Laimer J, Stori H. Glow Discharges Observed in Capacitive Radio-Frequency Atmospheric-Pressure Plasma Jets [J]. Plasma Process. Polym,2006,3(8):573-586
    [99]Yan X, Zhou F, Lu X, et al. Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA [J]. Appl. Phys. Lett.,2009, 95:083702
    [100]Nastuta A V, Topala I, Grigoras C, et al. Stimulation of wound healing by helium atmospheric pressure plasma treatment [J]. J. Phys. D:Appl. Phys.,2011,44(10): 105204.
    [101]Chen L, Zhao P, Shu X, et al. On the mechanism of atmospheric pressure plasma plume [J]. Phys. Plasmas,2010,17(8):0 83502.
    [102]卢新培.等离子体射流及其医学应用[J].高电压技术,2011,37(6):1416-1425.
    [103]Lu X, Xiong Q, Tang Z, et al. A cold Plasma jet device with multiple plasma plumes merged [J]. IEEE Transaction on plasma Science,2008,36(4):990-991
    [104]Tang D, Ren C, Wang D, et al. The interactions of two cold atmospheric plasma jets [J]. Plasma Science and Technology,2009,11(3):293-296
    [105]0'Connell D, Cox L J, Hyland W B, et al. Cold atmospheric pressure plasma jet interactions with plasmid DNA [J]. Applied Physics Letters,2011,98(4):043701
    [106]Kim K, Choi J D, Hong Y C, et al. Atmospheric-pressure plasma-jet from micronozzle array and its biological effects on living cells for cancer theraphy [J]. Applied Physics Letters,2011,98(7):073701
    [107]Naidis G V. Modelling of plasma bullet propatation along a helium jet in ambient air [J]. J. Phys. D:Appl. Phys,2011,44 (21):215203
    [108]Takashima K, Adamovich I V, Xiong Z, et al. Experimental and modeling analysis of fast ionization wave discharge propagation in a rectangular geometry [J]. Physics of Plasmas,2011,18(8):083505
    [109]Jansky J and Bourdon A. Simulation of helium discharge ignition and dynamics in thin tubes at atmospheric pressure [J]. Applied Physics Letters,2011,99(16): 161504
    [110]Sakiyama Y, Graves D B, Jarrige J, et al. Finite element analysis of righ-shaped emission profile in plasma bullet [J]. Appl. Phys. Lett,2010,96:041501
    [111]Naidis G V. Simulation of streamers propagating along helium jets in ambient air: Polarity-induced effects [J]. Applied Physics Letters,2011,98:141501
    [112]Breden D, Miki K, and Raja L L. Computational study of cold atmospheric nanosecond pulsed helium plasma jet in air [J]. Appl. Phys. Lett.2011,99:111501
    [113]Zhang P and Kortshagen U. Two-dimensional numerical study of atmospheric pressure glows in helium with impurities [J]. J. Phys. D:Appl. Phys,2006,39(1):153-163.
    [114]Yuan X and Raja L L. Computational study of capacitively coupled high-pressure glow discharge in helium [J]. IEEE Transaction on Plasma Science,2003,31(4): 495-503.
    [115]Sakiyama Y and Graves D B. Finite element analysis of an atmospheric pressure RF-excited plasma needle [J]. J. Phys. D:Appl. Phys,2006,39(16):3451-3456
    [116]Wang Y and Wang D. Influence of impurities on the uniform atmospheric-pressure discharge in helium [J]. Physics of Plasmas,2005,12(2):023503
    [117]Lama W L and Gallo C F. Systematic study of the electrical characteristics of the "Trichel" current pulses from negative needle-to-plane coronas [J]. Journal of Applied Physics,1974,45(1):103-113
    [118]Davies A J, Evans C J, and Llewellyn-Jones F. Electrical breakdown of gases:the spatio-temporal growth of ionization in fields distorted by space charge [J]. Proc. R. Soc. London Ser. A,1964,281:164-183
    [119]Sato N. Discharge current induced by the motion of charged particles. J. Phys. D:Appl. Phys.,1980,13:L3-6.
    [120]Morrow R. Theory of negative corona in oxygen [J]. Physical Review A,1985,32(3): 1799-1809
    [121]Morrow R and Lowke J J. Streamer propagation in air [J]. J. Phys. D:Appl. Phys, 30:614-627.
    [122]Loeb L B. Ionizing waves of potential gradient [J]. Science,1965,148(3676): 1417-1426.
    [123]Kulikovsky A A. Analytical modle of positive streamer in weak filed in air: Application of plasma chemical calculations [J]. IEEE Trans. Plasma Sci.,1998,26 (4):1339-1346
    [124]Kulikovsky A A. Positive streamer between parallel plate electrodes in atmospheric pressure air [J]. J. Phys. D:Appl. Phys.,1997,30:441-450
    [125]Li Q, Zhu W C, Zhu X M, et al. Effects of Penning ionization on the discharge patterns of atmospheric pressure plasma jets [J]. J. Phys. D:Appl. Phys,2010, 43:382001
    [126]Li Q, Zhu X M, Li J M, et al. Role of metastable atoms in the propagation of atmospheric pressure dielectric barrier discharge jets [J]. Journal of Applied Physics,2010,107:043304
    [127]H. Raether. Die Entwicklung der Elektronenlawine in den Funkenkanal [J]. Z. Phys., 1939,112:464-489
    [128]Kulikovsky A A. Positive streamer in a weak field in air:a moving avalanche-to-streamer transition [J]. Phys. Rev. E.,1998,57(6):7066-7074
    [129]Liu J and Kong M G. Plasma bullet formation in liquid-damped atmospheric helium flow [J]. IEEE Transactions on Plasma Sci.,2011,39(11):2314-2315.
    [130]Lee D, Park J M, Hong S H, et al. Numerical simulation on mode transition of atmospheric dielectric barrier discharge in helium-oxygen mixture [J]. IEEE Trans. Plasma Sci.,2005,33:949-957.
    [131]Xiong Q, Lu X, Liu J, et al. Temporal and spatial resolved optical emission behaviors of a cold atmospheric pressure plasma jet [J]. J. Appl. Phys,2009,106: 083303
    [132]李万平.计算流体力学[M].武昌:华中科技大学出版社,2004
    [133]贺礼清.工程流体力学[M].北京:石油工业出版社,2004
    [134]Satti R P, Agrawal A K. Flow structure in the near-field of buoyant low-density gas jets [J]. Int. J. Heat Fluid Flow,2006,27:336-347.
    [135]温正,石良辰,任毅如.Fluent流体计算应用教程[M].北京:清华大学出版社,2009
    [136]Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models [J]. Plasma Sources Sci. Technol.,2005,14:722-733
    [137]卢新培.大气压脉冲放电等离子体的研究现状与展望[J].中国科学:物理学力学天文学,2011,41(7):801-815
    [138]Park G Y, Park S J, Choi M Y, et al. Atmospheric-pressure plasma sources for biomedical applications [J]. Plasma Sources Sci. Technol.,2012,21:043001
    [139]Lu X, Laroussi, Puech V. On atmospheric-pressure non-equlibrium plasma jets and plasma bullets [J]. Plasma Sources Sci. Technol.,2012,21:034005
    [140]Yousfi M, Eichwald M, Merbahi N, et al. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations [J]. Plasma Sources Sci. Technol.,2012,21:034003
    [141]Karakas E, Akman M A, Laroussi M. The evolution of atmospheric-pressure low-temperature plasma jets:jet current measurements [J]. Plasma Sources Sci. Technol.,2012,21:034016
    [142]Xian Y, Lu X, Liu J, et al. Multiple plasma bullet behaviour of an atmospheric-pressure plasma plume driven by a pulsed dc voltage [J]. Plasma Sources Sci. Technol.,2012,21:034013
    [143]Kim J, Kim S, Wei Y, et al. A flexible cold microplasma jet using biocompatible dielectric tubes for cancer therapy [J]. Appl. Phys. Lett,2010,96:203701
    [144]Mariotti D. Nonequilibrium and effect of gas mixtures in an atmospheric microplasma [J]. Appl. Phys. Lett.,2008,92:151505
    [145]Laroussi M. Low-Temperature Plasmas for Medicine? [J]. IEEE Trans. Plasma Sci., 2009,37(6):714-725
    [146]Sakiyama Y and Graves D B. Neutral gas flow and ring-shaped emission profile in non-thermal RF-excited plasma needle discharge at atmospheric pressure [J]. Plasma Sources Sci. Technol.,2009,18:025022
    [147]Luo H, Liang Z, Wang X, et al. Homogeneous dielectric barrier discharge in nitrogen at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,2010,43:155201
    [148]Lu X, and Laroussi M. Temporal and spatial emission behaviour of homogeneous dielectric barrier discharge driven by unipolar sub-microsecond square pulses [J]. J. Phys. D:Appl. Phys.,2006,39(6):1127-1131
    [149]Akishev Yu, Grushin M, Karalnik V, et al. Non-equilibrium constricted dc glow discharge in N2 flow at atmospheric pressure:stable and unstable regimes [J]. J. Phys. D:Appl. Phys.,2010,43:075202
    [150]Gherardi N and Massines F. Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen [J]. IEEE Trans. Plasma Sci., 2001,29(3):536-544
    [151]Akishev Yu, Goossens 0, Callebaut T, et al. The influence of electrode geometry and gas flow on corona-to-glow and glow-to-spark threshold currents in air [J]. J. Phys. D:Appl. Phys.,2001,34:2875-2882
    [152]Luo H, Liang Z, Wang X, et al. Effect of gas flow in dielectric barrier discharge of atmospheric helium [J]. J. Phys. D:Appl. Phys.,2008,41:205205
    [153]Pavon S, Dorier J, Hollenstein Ch, et al. Effects of high-speed airflows on a surface dielectric barrier discharge [J]. J. Phys. D:Appl. Phys.,2007,40: 1733-1741
    [154]Wang Z, Ren C, Nie Q, et al. Effects of airflows on dielectric barrier discharge in air at atmospheric pressure [J]. Plasma Science and Technology,2009,11:177-180
    [155]Takaki K, Nawa K, Mukaigawa S, et al. Self-organization of microgap dielectric-barrier discharge in gas flow [J]. IEEE Transaction on Plasma Science, 2008,36(4):1260-1261
    [156]Okhrimovskyy A, Bogaerts A, and Gijbels R. Incorporating of the gas flow in a numerical model of rf discharge in methane [J]. J. Appl. Phys.,2004,96(6): 3070-3076
    [157]Wang Y H, Zhang Y T, and Wang D Z. Period multiplication and chaotic phenomena in atmospheric dielectric-barrier glow discharges [J]. Appl. Phys. Lett.,2007, 90:071501
    [158]Laroussi M, Lu X, Kolobov V, et al. Power consideration in the pulsed dielectric barrier discharge at atmospheric pressure [J]. J. Appl. Phys.,2004,96(5): 3028-3030
    [159]Martens T, Brok W J M, Dijk J, et al. On the regime transitions during the formation of an atmospheric pressure dielectric barrier glow discharge [J]. J. Phys. D:Appl Phys.,2009,42:122002
    [160]Ha C, Choi J, Kim D, et al. Properties of dielectric-barrier-free atmospheric pressure microplasma driven by submicrosecond dc pulse voltage [J]. Appl. Phys. Lett.,2009,95:061502
    [161]Yuan X, Shin J, Raja L L, One-dimensional simulation of multi pulse phenomena in dielectric-barrier atmospheric-pressure glow discharges [J]. Vacuum,2006,80: 1199-1205.
    [162]Xian Y, Lu X, Wu S, etal, Are all atmospheric pressure cold plasma jets electrically driven?[J]. Appl. Phys. Lett.2012,100:123702
    [163]Bork W J M, Dijk J, Bowden M D, et al, A model study of propagation of the first ionization wave during breakdown in a straight tube containing argon [J]. J. Phys. D:Appl. Phys.2003,36:1967-1779
    [164]M. Laroussi and M. A. Akman, Ignition of a large volume plasma with a plasma jet [J]. AIP Advances,2011,1:032138
    [165]Lu X, Laroussi M and Puech V, On atmospheric-pressure non-equilibrium plasma jets and plasma bullets[J]. Plasma Sources Sci. Technol.2012,21:034005
    [166]Kim S, Kim J, Kim D, et al, Intense plasma emission induced by jet-to-jet coupling in atmospheric pressure plasma arrays[J]. Appl. Phys. Lett.2012,101:173503
    [167]Beouf J, Yang L, and Pitchford L, Dynamics of a guided streamer in a helium jet in air at atmospheric pressure [J]. J. Phys. D:Appl. Phys.2013,46:015201
    [168]Douat C, Bauville G, Fleury M, et al, Dynamics of colliding microplasma jets [J]. Plasma Sources Sci. Technol.2012,21:034010
    [169]Jansky J, Tholin F, Bonaventura Z, et al, Simulation of the discharge propagation in a capillary tube in air at atmospheric pressure [J]. J. Phys.D:Appl. Phys., 2010,43:395201
    [170]Georghiou G E, Papadakis A P, Morrow R and Metaxa s A C, Numerical modelling of atmospheric pressure gas discharges leading to plasma production [J]. J. Phys. D: Appl. Phys.,2005,38:R303-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700