纳米流体扩容型脉动热管的传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以近年国际传热领域研究热点——单环路脉动热管(CLPHP)为研究对象,以开发新结构、试用新工质为目的,运用可视化实验与混沌动力学方法进行分析,所得结论为其在实际工程领域的应用提供了实验与理论基础。通过对实验现象的观察,传热性能的计算,并与CLPHP启动运行时测得时间—温度曲线的比较,得到特征温度曲线,其能够体现管内工质运行状态,反应传热情况,为实际应用中快速判断脉动热管运行情况提供方便。在分析传统型CLPHP蒸发段缓慢受热时启动失败的原因基础上,以增强管内压力波动为目的,通过顶部设置扩容室,提出新型扩容型CLPHP,实验证明可有效提高脉动热管启动性能。
     通过对新型扩容型CLPHP传热性能影响因素的研究表明:提高加热功率,可以降低启动温度,但加热功率过高,则导致干烧;重力对运行起促进作用,所以脉动热管竖直底加热时传热性能最佳;低充液率时,需对脉动热管进行局部点加热才能启动并维持运行,定性说明了运行过程具有混沌动力学的“蝴蝶效应”特征;增大扩容室容积可进一步降低脉动热管启动温度,提高传热性能,但加热功率较高时,扩容室内工质存液增加,导致传热性能下降。采用酒精为脉动热管工质,研究表明:工质表面张力决定充液初始分布状态,工质汽化潜热与饱和温度决定启动温度,工质汽化潜热与比热决定传热性能,因此,应选择汽化潜热较小,饱和温度较低且比热较大的流体作为扩容型CLPHP的工质。
     以近年国际传热领域另一研究热点——纳米流体为工质(TiO_2-水),研究表明:利用分散剂所得纳米流体更加均匀稳定;纳米流体强化传热作用明显,加热水60℃-65℃范围内,1.5%TiO_2-水纳米流体提高传热功率20%左右,提高当量导热系数50%左右;加热水70℃-75℃范围内,0.7%TiO_2-水纳米流体提高传热功率20%左右,提高当量导热系数50%左右;纳米颗粒在基流体中的分散性,是强化作用实现的关键,一旦发生团聚沉降,则强化作用消失,并导致传热恶化。应用混沌动力学对扩容型CLPHP的运行传热过程进行分析,通过相空间重构表明:当CLPHP处于稳定运行阶段时,吸引子呈结构紧凑的团状分布;处于启动阶段时,吸引子均匀分布于相空间;处于干烧阶段时,吸引子呈狭长的带状分布。通过混沌动力学特征参数的计算,从定量角度判断CLPHP传热过程具有混沌动力学特征,且随着当量导热系数的增大,最大Lyapunov指数减小,最佳维数升高,最佳时间延迟减小。
Closed-loop pulsating heat pipe (CLPHP), which is a research hot spot at present in heat transfer area, is investigated and researched in this dissertation. By carrying out visualization experiments and chaotic dynamic calculations on CLPHP, new structures are developed and new working fluids are tested. The conclusions gained in this dissertation can provide directions for engineering applications of the CLPHP.
     Characteristic temperature curve is gained by experimental phenomena observation and heat transfer calculation, and then, it is compared with the time-temperature curve which is measured during its start-up. The characteristic temperature curve embodies the states of the working fluids and the heat transfer status inside the heat pipes, which can be used to judge the operation situation of CLPHP in practical application.
     The causes of failure in start-up of the traditional CLPHP when its evaporating section was slowly heated are analyzed. In order to enhance the pressure fluctuation inside the pipe, the dilatant closed-loop pulsating heat pipe is introduced and investigated. And the experiment results show that this new kind of CLPHP possesses better starting performance than the common type.
     The heat transfer performances of the dilatant closed-loop pulsating heat pipe are researched in this dissertation and some important conclusions are gained. When the heating power increases, the starting temperature decreases. But when the heating power is too high, dry burning occurs. There is obvious promotion of the gravity to its operation. When the charging ratio is low, spot heating is necessary to its starting and operation, which qualitatively proves that the Butterfly Effect exists in the operation of CLPHP. By enlarging the dilatant room, the heat transfer performances of the dilatant closed-loop pulsating heat pipe could be improved, meanwhile, the starting temperature could be further decreased. But when the heating power is too high, more working fluids appear in the dilatant room, which leads to the heat transfer deterioration.
     By using alcohol as the working fluid, it is found that the initial charging distribution is determined by the surface tension of the working fluid while the starting temperature are determined by the working fluid’s latent heat of vaporization and its saturation temperature. And the latent heat of vaporization and the specific heat of the working fluid affect the heat transfer performances greatly. Based on these conclusions, it is believed that the working fluids with low latent heat of vaporization, low vaporization temperature and high specific heat are fit for the dilatant closed-loop pulsating heat pipe.
     By using nano-fluids (TiO_2-water) as the working fluids, it is found that, the nano-fluid is much more stable when the dispersant is added in, and the heat transfer performance is improved greatly. In the temperature range 60℃-65℃, by using TiO_2-water of 1.5%, the heat transfer rate increases about 20% and the equivalent thermal conductivity increases about 50%. In the temperature range 70℃-75℃, by using TiO_2-water of 0.7%, the heat transfer rate increases about 20% and the equivalent thermal conductivity increases about 50%. A good dispersion of the nano-particles in the based fluid is the key to improve the heat transfer. When the agglomeration and sedimentation occur, the heat transfer enhancement turns to the heat transfer deterioration
     The heat transfer process of the dilatant closed-loop pulsating heat pipe is analyzed by using chaotic dynamic method and phase space reconstruction. It is found that, when the operation of CLPHP is stable, the attractor morphology is a compactly spherical distribution. When the CLPHP is at the start-up stage, the attractor distributes symmetrically in the phase space. When the CLPHP is at the dry burning stage, the attractor morphology is a long-narrow zonal distribution. By calculating the characteristic parameters, the heat transfer process of the CLPHP is found to be chaotic dynamic. With the increase of the equivalent thermal conductivity, the maximum Lyapunov index and the optimum delay time decrease while the optimum dimension increases.
引文
[1] Gaugler R S, Heat transfer device, U.S.A , 2350348, 1944-06-06
    [2] Grover G M, Cotter T P And Erikson G F, Structure of very high thermal conductance, J.Appl.Phys, 1964, 35(6):
    [3] Cotter T P, Theory of heat pipes, L05 Alamos Scientific Lab, Report No. LA -3246-MS,1965
    [4] Tien C L, Sun K H, Minimum meniscus radius of heat pipe wicking materiats, Int.J.Heat Mass Transfer, 1971.14(11)
    [5] Cotter T P, Pricipies and Prospects of Micro heat pipes, 5th Int.Heat Pipe Conf. Tsukuba, Japan, 1984
    [6] Ma T Z, Jiang Z Y, Heat pipe Research and Development in China, 5th Int.Heat Pipe Conf, Tsukuba, Japan, 1984
    [7]庄骏,张红, 2010年热管技术展望,化工机械, 1998, 25(01):44-49
    [8]庄骏,张红,热管技术及其工程应用,北京:化学工业出版社,2000.5~9
    [9] Akachi H, Structure of a Heat Pipe ,U.S.A, 4921041, 1990
    [10] Akachi H, Structure of Micro-heat Pipe, U.S.A, 5219020, 1993
    [11] Jacobs H R, Hartnett J P, Thermal engineering:emerging technologies and critical phenomena, Workshop Report NSF, No.CTS-9l-04006, 199l:l39-l76.
    [12]姚寿广,马哲树,罗林等,电子电器设备中高效热管散热技术的研究现状及发展,江苏科技大学学报(自然科学版), 2003, 8(17):9-12
    [13] Peng X F, Wang B X, Forced convection and flow boiling heat transfer for liquid flowing through micro-channels, International Journal of Heat Mass Transfer, 1993, 36(14):3421-3427.
    [14] Kambiz Vafai, Lu Zhu, Analysis of two-layered micro-channel heat sink concept in electronic cooling, International Journal of Heat Mass Transfer, 1999, 42(12): 2287-2297.
    [15] Yong ping Chen, Ping Cheng, Heat transfer and pressure drop in fractal tree-like micro-channel nets, International Journal of Heat Mass Transfer, 2002, 45(13): 2643-2648.
    [16] Akachi H, Polasek F, Stulc P, Pulsating Heat Pipes, 5th International Heat Pipe Symposium, Melbourne, Australia, 1996
    [17] TS Heatronics Co. Ltd., http: //www. tsheatronics. co. jp
    [18] Akachi H, Miyazaki Y, Stereo-Type Heat Lane Heat Sink, 10th International Heat Pipe Conference, Stuttgart, German,1997
    [19]马永锡,张红,庄骏,振荡热管——一种新型独特的传热元件,化工进展,2004,23(9):1008-1011
    [20]曹滨斌,李惟毅,螺杆膨胀机双循环低温余热回收系统分析,天津大学学报,2010,43(4):309-314
    [21] Katoh T, Amako K, Akachi H, New Heat Conductor for Avionics Cooling, 11th International Heat Pipe Conference, Tokyo,Japan, 1999
    [22] Kim J S, Im Y B, Kim Y S, et al, Journal of the Japan Association for Heat Pipes, 2003, 21: 1~8
    [23] Khandekar S, Schneider M, Schafer P et al, Thermofluid dynamic study of flat plate closed-loop pulsating heat pipes, Micro-scale thermophysical, 2002, 6(4): 303-317.
    [24] Khandekar S, Charoensawan P, Groll M et al, Closed loop pulsating heat pipes part B:Visualization and semi-empirical modeling, Applied thermal engineering, 2003, 23(16): 2021-2033.
    [25]尹大燕,贾力.振荡热管管内流型对传热性能的影响,应用基础与工程科学学报,2007,15(3):363-367
    [26] Lee W H, Flow visualization of oscillating capillary tube heat pipe, 11th International Heat Pipe Conference,Tokyo,Japan,1999
    [27]曲伟,马同泽,脉动热管的工质流动与传热特性的实验研究,工程热物理学报, 2002, 23(5): 596-598.
    [28]商福民,冼海珍,刘登瀛等,振荡流热管自激强化传热的可行性分析[J].热能动力工程,2006,21(2):161-164.
    [29] Sakulchangsatjatai P, Terdtoon P, Wongratanaphisan T et al,Operation modeling of closed-end and closed-loop oscillating heat pipes at normal operating condition, Applied Thermal Engineering, 2004, 24(7): 995-1008.
    [30] Ma H B, Hanlon M A, Chen C L, An investigation of oscillating motions in a miniature pulsating heat pipe, Micro fluidics and Nanofluidics, 2006, 2(2): 171-179.
    [31] Maezawa S, Nakajima S, Gi K et al, Experimental study on chaotic behavior of thermohydraulic oscillation in oscillating thermosyphonl, 5th international heat pipe symposium, Melbourne, 1996:131-137.
    [32] Rittidech S, Terdtoon P, Tantakom P et al, Effect of Inclination Angles, Evaporator Section Lengths and Working Fluid Properties on Heat Transfer Characteristics of A Closed- End Oscillating Heat Pipe, 6th International Heat Pipe Symposium, Chiang Mai,Thailand,2000
    [33] Akachi H, Polasek F, Stulc P, Pulsating Heat Pipes, 5th International Heat Pipe Symposium, Melbourne, Australia, 1996
    [34] Charoensawan P, Terdtoon P, Tantakom P et al, Effects of Inclination Angles, Filling Ratios and Total Lengths on Heat Transfer Characteristics of a Closed-Loop Oscillating Heat Pipe, 6th International Heat Pipe Symposium, Chiang Mai,Thailand, 2000
    [35] Gi K, Sato F, Maezawa S. Flow Visualization Experiment on Oscillating Heat Pipe, 11th International Heat Pipe Conference, Tokyo, Japan, 1999
    [36] Miyazaki Y, Akachi H, Heat Transfer Characteristics of Looped Capillary Heat Pipe , 5th International Heat Pipe Symposium,Melbourne, Australia, 1996
    [37]汪双凤,西尾茂文,加热段冷却段长度分配对脉动热管性能的影响.华南理工大学学报(自然科学版), 2007, 35(11):59-62
    [38]杨蔚原,张正芳,马同泽,脉动热管运行的可视化实验研究,工程热物理学报, 2001, 22(6):117-120.
    [39] Khandekar S, Dollinger N, Groll M, Understanding operational regimes of pulsating heat pipes:an experimental study, Applied Thermal Engineering, 2003, 23(6): 707-719
    [40]曹小林,席战利,周晋等,脉动热管运行可视化及传热与流动特性的实验研究,热能动力程, 2004, 19(4):411-415
    [41]曹小林,周晋,晏刚,脉动热管的结构改进及其传热特性的实验研究,工程热物理学报, 2004, 25(5):807-809
    [42]杨洪海,KHANDEKAR Sameer,GROLL Manferd,脉动热管技术的研究现状及前沿热点,东北大学学报(自然科学版),2006,32(3):134-137
    [43]冯剑超,纳米流体脉动热管的传热性能研究:[硕士学位论文],北京;中国科学院工程热物理研究所,2008
    [44] Zuo Z J, North M T, Miniature High Heat Flux Heat Pipes for Cooling Eleetronies, Proeeedings of the SymPosium on Energy Engineering, Hong Kong, 2000
    [45] Hosoda M, Nishio S,Shirakashi R.Study of meandering Closed-LooP Heat-TransPort Deviee(VaPor-PlugProPagationphenomena), JSME international journal Series B: fluids and thermal engineering, 1999, 42(4):737-744.
    [46] Tong B Y, Wong T N,Ooi K T, Closed-looP Pulsating heat Pipe, APPlied Thermal Engineering,2001,21(18):1845-62.
    [47] Wong T, Tong B Y, Lim S M et al, Theoretical Modeling of Pulsating Heat Pipe, 11th International Heat Pipe Conference,Tokyo,Japan,1999
    [48] Sakulchangsatjatai P,Terdtoon P,WongratanaPhisan T et al, Operation Modeling of Closed-end and Closed-looP Oseillating Heat pipes at Normal Operating condition, APPlied Thermal Engineering,2004,24(7):995-1008.
    [49] Swanepoel G, Taylor A, Dobson R, Theoretical Modeling of Pulsating Heat Pipes, 6th International Heat Pipe Symposium,Chiang Mai,Thailand,2000.
    [50] Shafii M B,Faghri A, Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes, International journal of Numerical Methods for Heat & Fluid Flow, 2002,12(5):585-609.
    [51] Shafii M,Faghri A,Zhang Y, Thermal Modeling of Unlooped and Looped pulsating Heat Pipes, Joumal of Heat Transfer,2001,123(6):1159-1172.
    [52] Zhang Y , Faghri A, M B Shafii, International Journal of Heat and Mass Transfer P.-. Analysis of Liquid-vapor Pulsating Flow in a U-shaped Miniature Tube, Intemational Journal of Heat and Mass Transfer,2002,45(12):2501-2508.
    [53] Zhang Y, Faghri A, Heat Transfer in a Pulsating Heat Pipe with Open End, International Journal of Heat and Mass Transfer,2002,45(4):755-764.
    [54] Zhang Y, Faghri A, Oseillatory flow in Pulsating heat Pipes with arbitrary numbers of turns, Journal of thermophysics and heat transfer 2003,17(3):340-347.
    [55]曲伟,马同泽,环路型脉动热管的稳态运行机制,工程热物理学报,2004, 25(2): 323-332
    [56] Khandekar S, Thermo-hydrodynamics of Closed LooP Pulsating Heat Pipes: Stuttgart ; Stuttgart University, 2004.
    [57]崔晓钰,翁建华,葛志松等,铜-水振荡热管的传热特性.上海交通大学学报,2004, 38(7):1188-1192
    [58] Khandekar S, Charoensawan P, Groll M et al, Closed looppulsating heat pipes-part b: visualization and semi-empirical modeling, Applied Thermal Engineering, 2003, 23(16):2021-2033
    [59] Rittidech S, Terdtoon P, Murakami M, et al. Correlation topredict heat transfer characteristics of a closed end oscillatingheat pipe at normal operating condition. Applied Thermal Engineering, 2003, 23 (16):497-510
    [60] Maezawa S, Nakajima S, Gi K et al, Experimental study on chaotic behavior of thermohydraulic oscillation in oscillating thermosyphonl, 5th international heat pipe symposium, Melbourne, 1996:131-137.
    [61] Maezawa S, Sato F, Gi K, Chaotic dynamics of looped oscillating heat pipes (theoretical analysis on single loop), 6th International Heat Pipe Symposium, Chiang Mai,Thailand, 2000
    [62]宋延熙,徐进良.脉冲热管温度时间序列的非线性混沌分析.化工进展.2008 59(10):2470-2477
    [63]陈国,刘代俊,梁斌等,湍流状况下的管式反应器中的速度时间序列关联维数分析.高校化学工程学报,2003,17(2):221-225
    [64]李霞,徐娴,从24h心率变异性不同频段提取关联维数的初步研究,生物医学工程与临床,2009,13(5):395-398
    [65] Masuda H, Ebata A, Teramae K et al, Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion ofγ?Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei , 1993,4 (4): 227–233
    [66] Eastman J, S Choi et al, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 2001, 78(6): 718-720.
    [67] Das S, N Putra et al, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 2003,125: 567
    [68] Chopkar M, P Das et al, Synthesis and characterization of nanofluid for advanced heat transfer applications, Scripta materialia, 2006, 55(6): 549-552.
    [69] Faulkner D, D Rector et al, Enhanced heat transfer through the use of nanofluids in forced convection, 2004
    [70] Yang Y, Zhong Z G, Grulke E A et al , Heat transfer properties of nanoparticle-in-fluid dispersion (nanofluids) in laminar flow, International Journal of Heat and Mass Transfer, 200548, 1107-1116.
    [71] Wen D, Y Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer, 2004, 47(24): 5181-5188.
    [72] Ding Y, H Alias et al, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, 2006,49(1-2): 240-250.
    [73] Xuan Y , Q Li, Investigation on convective heat transfer and flow features of nanofluids, Journal of Heat Transfer, 2003, 125: 151.
    [74] Das S, N Putra et al, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 2003, 125: 567.
    [75] Bang I, S Chang, Boiling heat transfer performance and phenomena of Al2O3 ater nano-fluids from a plain surface in a pool, Int. J. Heat Mass Transfer, 2005, 48(12): 2407-2419.
    [76] Wen D , Ding Y, Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids, J Nanopart Res, 2005,7:265–274
    [77] Liu Z, Y Qiu, Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface, Heat and mass transfer, 2007, 43(7): 699-706.
    [78] You S, J Kim et al, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied Physics Letters, 2003, 83: 3374.
    [79] Vassallo P, Kumar R, Damico S, Pool boiling heat transfer experiments in silica–water nano-fluids, Int. J. Heat Mass Transf, 2004, 47: 407-411
    [80] Yu W, S Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, Journal of Nanoparticle Research, 2003, 5(1): 167-171.
    [81] Xue Q, Model for effective thermal conductivity of nanofluids, Physics letters 2003, A 307(5-6): 313-317.
    [82] B X Wang, L P Zhou, X F Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer , 2003, 46: 2665–2672.
    [83]王补宣,周乐平,彭晓峰,纳米颗粒悬浮液有效导热系数的分形模型,自然科学进展,2003,13(9):838-842
    [84]胡卫峰,宣益民,李强,纳米流体聚集结构的模拟及分维数分析,南京理工大学学报,2002,26(3):229-234
    [85] S P Jang, S U S Choi, The role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl Phys Lett, 2004, 84: 4316–4318
    [86] Xuan Y M, Roetzel W, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf, 2000, 43: 3701-3707
    [87] Wen D, Y Ding, Formulation of nanofluids for natural convective heat transfer applications, International Journal of Heat and Fluid Flow, 2005, 26(6): 855-864.
    [88] Mansour R, N Galanis et al, Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids, Applied thermal engineering, 2007, 27(1): 240-249.
    [89] Akoh H, Y Tsukasaki et al, Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate, Journal of Crystal Growth, 1978, 45: 495-500.
    [90] Wagener M , B Murty et al, Preparation of metal nanosuspensions by high-pressure DC-sputtering on running liquids, MATERIALS RESEARCH SOCIETY, 1997
    [91] Eastman J, S Choi et al, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 2001, 78(6): 718-720.
    [92] Zhu H, Y Lin et al, A novel one-step chemical method for preparation of copper nanofluids, Journal of colloid and interface science, 2004, 277(1): 100-103.
    [93]吕金虎,陆君安,陈士华,混沌时间序列分析及其应用,武汉:武汉大学出版社,2002.2-5
    [94]马海军,复杂非线性系统的重构技术,天津:天津大学出版社,2005.13
    [95]林嘉宇,王跃科,黄芝平等,语音信号相空间重构中的时间延迟的选择——复自相关法,信号处理,1999,15(3):220-225
    [96] A M Fraser, H L Swinney, Independent coordinates for strange attractors from mutual information, Phys.Rev.A, 1986, 33:1134-1140
    [97] M T Rosenstein, J J Collins, C J De luca, A practical method for calculating largest Lyapunov exponents from small data sets, Physica D, 1993, 65:117-134 ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700