用户名: 密码: 验证码:
结构流固耦合振动与流动控制的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代结构向超高层和大跨度方向发展,使结构变轻、变柔,结构在风荷载作用下的流固耦合效应十分突出。深入系统地研究结构流固耦合效应及其流场主动控制方法与机理,具有重要的学术价值和广阔的应用前景。
     本文采用CFD数值模拟方法,研究结构/群的涡激振动及其绕流场控制原理,揭示湍流来流条件下结构涡激振动的特点和规律,并将研究成果应用于实际超高层建筑结构绕流场及其风致振动效应的分析中。
     本文的主要研究内容如下:
     首先,在Fluent流体计算平台基础上,在C语言下自编结构域振动程序(采用Newmark-β算法),并通过动网格技术更新边界,发展一种弹性支撑刚性柱体流致振动的数值模拟计算方法。在此基础上,研究不同截面形状柱体的振动特点,分析结构参数和流向振动对圆柱气动力和位移的影响规律,给出尾流涡结构,揭示柱体振动与涡脱模式间的关系。
     第二,建立弹性支撑圆柱群流固耦合振动系统的数值计算方法;研究正方形顺排排列四圆柱的固定绕流干扰效应,以及间距对各圆柱气动力及频率特性的影响;进一步研究弹性支撑四圆柱的气动弹性干扰效应,分析间距对各圆柱的气动力和振动响应的影响规律,揭示流场结构与涡脱模式。
     第三,研究表面带振荡附属物的单圆柱涡激振动,建立表面带振荡附属物的单圆柱涡激振动模型,分析附属物的尺寸、旋转方向和振荡幅度对圆柱涡激振动幅值的影响,分析气动力和位移随折减风速的变化规律及与附属物振荡方向的相关性。
     第四,研究CFD数值模拟中湍流来流边界的实现方法,通过单圆柱的绕流结果揭示出流场的脉动特性,进一步研究不同湍流强度脉动风作用下单圆柱的涡激振动,重点分析圆柱的位移幅值和锁定区范围随折减风速的变化规律,指出与平均风作用下单圆柱涡激振动结果的差别并分析产生差别的原因。
     第五,将本文实现的脉动风来流边界应用于实际工程结构,基于数值风洞技术预测超高层建筑表面的平均风压和脉动风压,并与风洞实验结果进行比较;进一步对超高层建筑的风致流固耦合振动进行数值模拟,并与常态风和台风作用下该超高层建筑的现场实测结果进行对比,重点分析了结构的振动响应和气动力随高度和时间的变化规律,通过不同高度处的涡量等值线图分析结构振动对流场的影响。
     最后,采用角动量尾迹控制法对固定方柱绕流场实现主动流动控制,研究不同风向和角动量大小对流场的控制效果;进一步研究了角动量尾迹控制法对弹性支撑方柱单自由度横向振动的抑制,通过方柱表面的平均压力分布和尾流涡量等值线图揭示该方法实现流动控制的机理。
Modern building structures begin to develop towards super high-rise and large span, and become more and more light and flexible. The fluid-solid coupling effect to the structure is very conspicuous under wind loads. It has important academic value and wide application prospect to systematically investigate the fluid-solid coupling effect and the active flow control method and mechanism.
     The computational fluid dynamics (CFD) is employed in present paper to study the vortex-induced vibration and the flow field control principle a structure/ a structure group, and reveal the characteristics and laws of vortex-induced vibration of the structure under a fluctuating inflow. Moreover, the research results are employed to analyze flow field around the structure and the wind-induced vibration of an actual super high building.
     The main contents are included as follows:
     Firstly, a computation program of the structural domain is realized through a user defined function (UDF) based a Newmark-βalgorithm in a C language environment on the Fluent numerical platform base; the boundary updating is completed through a moving-grid technology; and develop a numerical calculation method of flow-induced vibration of a rigid cylinder under an elastic support. The vibration type’s characteristics of different section shapes are investigated. The influence law of structure parameters and flow-along vibration to the aerodynamic force and oscillation displacement are emphatically analyzed; the wake vortex structures are given; and the correlation between cylinder vibration and vortex shedding pattern is revealed.
     Secondly, this paper develops a numerical calculation method of fluid-solid interaction vibration system of multi cylinders under elastic supports. The flow interferences of four fixed circular cylinders in line square arrangements and the influence of the spacing ratios to aerodynamic forces of each cylinder and frequency characteristics are investigated. Furthermore, the flow interferences of four circular cylinders under elastic supports in line square arrangements are investigated. The influence law of the space ratio changing to the aerodynamic forces and vibration types are emphatically analyzed; and the fluid field structures and the vortex shedding patterns are revealed.
     Thirdly, this paper investigates the vortex induced vibration of a single cylinder with a surface rotation appendage, and set up a vortex-induced vibration model of a single cylinder with a surface rotation appendage. The influence of the size, rotation direction and rotation amplitude of the rotation appendage to the oscillation amplitude of the cylinder is emphatically studied; the changing law of the aerodynamic lift force and cross-flow displacement with the reduced velocity is analyzed; and the correlation between the aerodynamic lift force and cross-flow displacement with the rotation direction of the surface appendage is investigated.
     Fourthly, this paper studies a realized method of turbulent inflow boundary in the CFD numerical simulation. The fluctuating characteristics of the flow field are revealed through the flow results around a single cylinder. Furthermore, the vortex induced vibration of a single cylinder under a fluctuating wind with various turbulent intensities is investigated. The changing law of the displacement amplitude of the cylinder and frequency lock-in range with the reduced velocity is emphatically analyzed, the differences of vortex-induced vibration under a mean wind and a fluctuating wind are given and the generation reason of the differences is analyzed.
     Fifthly, the fluctuating inflow boundary realized in present paper is employed to an actual engineering of a super high building. The surface mean and fluctuating wind pressures on the super high building based the numerical wind tunnel technology are predicted, which are compared with the mean wind pressure results of the wind tunnel experiments. Furthermore, the fluid-solid coupling effect between the super high building and the wind field is numerically simulated and compared with the measured results under the normal wind and typhoon. The changing laws of aerodynamic forces and displacement with height and time are emphatically analyzed; and the influence of structure vibration to the fluid field is analyzed through the vorticity contours of different heights.
     Lastly, the angular momentum wake control method is employed to control the flow field around the fixed square cylinder, and the control effectiveness of the input size of angular momentum for the flow field under different wind yaw angles is investigated. Furthermore, the angular momentum wake control method is studied to suppress the cross-flow vibration of the square cylinder under an elastic support. The flow control mechanism using this method is revealed by analyzing the mean pressure distribution on the surface of the square cylinder and the vorticity contours in the wake.
引文
1. Bishop R. E. D., Hassan A. Y., The lift and Drag Forces on a Circular Cylinder Oscillating in a Flowing Fluid. Proceedings of the Royal Society of London. 1964, 277:51-75.
    2. Protos A., Goldschmidt V. W., Toebes G. H., Hydroelastic forces on bluff cylinders. ASME, Journal of Basic Engineering, 1968, 90:378-386.
    3. Toebes G. H., The unsteady flow and wake near an oscillating cylinder. Journal of Basic Engineering, 1969, 91:493-502.
    4. Mercier J. A., Large amplitude oscillations of a circular cylinder in a low-speed stream. Ph.D. Thesis, Stevens Institute of Technology, Hoboken, NJ, USA, 1973.
    5. Stansby P. K., The locking-on if vortex shedding due to the cross-stream vibration of circular cylinders in uniform and shear flows. Journal of Fluid Mechanics, 1976, 74:641-665.
    6. Bearman P. W., Currie I. G., Pressure fluctuation measurements on an oscillating circular cylinder. Journal of Fluid Mechanics, 1979, 91:661-677.
    7. Griffin O. M., Votaw C. W., The Vortex Street in the Wake of a Vibrating Cylinder. Journal of Fluid Mechanics, 1972, 51: 31-48.
    8. Griffin O. M., Ramberg S., The Vortex-Street Wakes of Vibrating Cylinders. Journal of Fluid Mechanics, 1974, 66: 553-576.
    9. Sarpkaya T., In-line and transverse forces on cylinders in oscillatory flow at high Reynolds numbers. Journal of Ship Research, 1977, 21:200-216.
    10. Sarpkaya T., Transverse oscillations of a circular cylinder in uniform flow. Part1. Technical Report NPS-69SL77071, Naval Postgraduate School, Monterey, CA, USA, 1977.
    11. Carberry J., Wake states of a submerged oscillating cylinder and of a cylinder beneath a free-surface. Ph.D. Thesis, Monash University, Melbourne, Australia, 2002.
    12. Jones G. W., Cincotta J. J., Walker R. W., Aerodynamic forces on a stationary and oscillating circular at high Reynolds numbers. Technical Report NASA R-300: N69-17304. National Aeronautics and Space Administration, Washington, DC, USA, 1969.
    13. Sarpkaya T., Fluid forces on oscillating cylinders. Journal of Waterway, Port, Coastal and Ocean Engineering, 1978, 104:275-290.
    14. Parkinson G., Phenomena and Modelling of Flow-induced Vibrations of Bluff Bodies. Progress in Aerospace Science, 1989, 26: 169-224.
    15. Sarpkaya T., A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 2004, 19: 389-447.
    16. Marris A. W., Brown O. G., Hydrodynamically excited vibrations of cantilever-supported probes. ASME, No. 62-Hyd-7, 1963.
    17. Feng C. C., The Measurement of Vortex-induced Effects in Flow Past Stationary and Oscillating Circular and d-section Cylinders. M.A.Sc. thesis, University of British Columbia, Vancouver, B. C., Canada, 1968.
    18. Griffin O. M., Koopmann G. H., The Vortex-excited Lift and Reaction Forces on Resonantly Vibrating Cylinders. Journal of Sound and vibration, 1977, 54:435-448.
    19. Griffin.O. M, Vortex-excited Cross-flow Vibrations of a Single Cylindrical Tube. ASME, Journal of Pressure Vessel Technology, 1980, 102: 158-166.
    20. Griffin O. M., Ramberg S. E., Some Recent Studies of Vortex Shedding with Application Tomarine Tubulars and Risers. ASME, Journal of Energy Resources Technology, 1982, 104: 2-13.
    21. Zdravkovich M. M., Modification of vortex shedding in the synchronization range. ASME, Journal of Fluids Engineering, 1982, 104:513-517.
    22. Griffin O. M., Vortex-induced Vibrations of Marine Structures in Uniform and Sheared Currents. NSF Workshop on Riser Dynamics, University of Michigan, 1992.
    23. Williamson C. H. K., A. Roshko. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 1988, 2:35-381.
    24. Khalak A., Williamson C. H. K., Dynamics of a hydroelastic cylinder with very low mass and damping. Journal of Fluids and Structures, 1996, 10 (5):455-472.
    25. Khalak A., Williamson C.H.K., Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of Fluids and Structures, 1999,13(7-8): 813-851.
    26. Govardhan R., Williamson C.H.K., Modes of vortex formation and frequency response for a freely vibrating cylinder. Journal of Fluid Mechanics, 2000,420:85-130.
    27. Vikestad K., Vandiver J. K., Larsen C. M., Added mass and oscillatory frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance. Journal of Fluids and Structures, 2000, 14(7):1071-1088.
    28. Goswami I., Scanlan R. H., Jones N. P., Vortex-induced vibration of circular cylinders-part 1: Experimental Data. Journal of Engineering Mechanics, 1993, 119 (11):2288-2302.
    29. Hartlen R. T., Currie I. G., Lift-oscillator Model of Vortex Induced Vibration. Journal of the Engineering Mechanics, 1970, 96 (5):577-591.
    30. Skop R. A., Griffin O. M., A Model for the Vortex-Excited Resonant Response of Bluff Cylinder. Journal of Sound and Vibration, 1973, 27(2):225-233.
    31. Iwan W. D., The Vortex Induced Oscillation of Elastic Structure Elements. ASME Journal of Engineering for Industry, 1975, 97:1378-1382.
    32. Skop R. A., Balasubramanian S., A new Twist on an Old Model for Vortex-Excited Vibrations. Journal of Fluid and Structures, 1997, 11:395-412.
    33. Facchinetti M.L., Langre E. de, Biolley F., Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structure, 2004,19 (3):123-140.
    34. Simiu E., Scanlan R. H., Wind Effects on Structures, Wiley, New York, 1986.
    35. Basu R. I., Vickery B. J., Across-wind vibrations of structures of circular cross-section-part 2: Development of a mathematical model for full-scale application, Journal of Wind Engineering and Industrial Aerodynamics, 1983, 12 (1):75-97.
    36. Goswami I., Scanlan R. H., Jones N.P., Vortex-induced vibration of circular cylinders-part 2: New model. Journal of Engineering Mechanics, 1983, 119 (11):2288-2302.
    37. Sarpkaya T., In-line and transverse forces on cylinders in oscillatory flow at high Reynolds numbers. Journal of Ship Research, 1977, 21:200-216.
    38. Griffin O. M.,Vortex-Excited Cross-Flow Vibration of a Single Cylindrical Tube. ASME, Journal of Pressure Vessel Technology, 1980, 102:158-166.
    39. Goswami I., Scanlan R. H., Jones N. P., Vortex-induced vibration of circular cylinders-part 1: Experimental Data. Journal of Engineering Mechanics, 1993, 119 (11):2288-2302.
    40. Billah K., A Study of Vortex-Induced Vibration, Ph.D. Thesis, Princeton University, 1989.
    41. Zhang JianFeng, Dalton Charles, Interactions of vortex-induced vibrations of acircular cylinder and a steady approach flow at a Reynolds number of 13,000. Computers & Fluids, 1996,25: 283-294.
    42. Al-Jamal H., Dalton C., Vortex Induced Vibrations Using Large Eddy Simulation at a Moderate Reynolds Number, Journal of Fluids and Structures, 2004, 19:73-92.
    43. Meneghini J. R., Saltara F., Fregonesi R. A., Yamamoto C. T., Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields, European Journal of Mechanics - B/Fluids, 2004:51-63.
    44. Zhou C. Y., So R. M. C., Lam K., Vortex Induced Vibrations of an Elastic Circular Cylinder, Journal of Fluids and Structures, 1999, 13:165-189.
    45. Pan Z.Y., Cui W.C., Miao Q.M., Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code. Journal of Fluids and Structures, 2007,23: 23-37.
    46.陈文礼,李惠.基于RANS的圆柱风致涡激振动的CFD数值模拟.西安建筑科技大学学报, 2006, 38 (4):509-513.
    47. Placzek Antoine, Sigist Jean-Francois, Hamdouni Aziz, Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations. Computers & Fluids, 2009,38: 80-100.
    48. Kang Sangmo. Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Physics of Fluids, 2003, 15(9): 2486-2498.
    49. Mahbub Alam Md., Moriya M., Takai K., Sakamoto H. Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91:139-154.
    50. Meneghini J. R., Saltara F., et al. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. 2001, 15: 327-350.
    51.徐有恒,程兆,张厚勇等,三圆柱绕流的时均压力分布和气动力.气动实验与测量控制, 1993, 7(2): 18-26.
    52.徐有恒,张德龙,马健,三圆柱绕流压力的脉动幅度及其与RMS值数值关系的实验研究.水动力学研究与进展(A辑), 1997, 12(4): 419-425.
    53. Sayers A T., Flow interference between three equispaced cylinders when subjected to a cross flow. Journal of Wind Engineering and IndustrialAerodynamics, 1987, 26: 1-19.
    54. Lam K., Cheung W.C., Phenomena of vortex shedding and flow interference of three cylinders in different equilateral arrangements. Journal of Fluids Mechanics, 1988, 196: 1-26.
    55.顾志福,孙天风,三圆柱绕流的实验研究.空气动力学学报, 2000, 18(4): 441-447.
    56.李会知,谢长天,高雷诺数下三圆柱的压力分布及气动力.流体力学实验与测量, 1997, 11(2): 43-47.
    57.张爱社,张陵,等边布置三圆柱绕流的数值模拟.应用力学学报, 2003, 20(1): 31-36.
    58. Lam K., Fang X., The effect of interference of four equispaced cylinders in cross flow on pressure and force coefficient. Journal of Fluid and Structures, 1995, 9:195-214.
    59. Farrant T., Tana M., Price W.G., A cell boundary element method applied to laminar vortex shedding from circular cylinders. Computers & Fluids, 2001, 30:211-236.
    60. Farrant T., Tana M., Price W.G., A cell boundary element method applied to laminar vortex- shedding from arrays of cylinders in various arrangements. Journal of Fluids and Structures, 2000, 14: 375-402.
    61. Lam K., Li J.Y., Chana K.T., So R.M.C., Flow pattern and velocity field distribution of cross-flow around four cylinders in a square configuration at a low Reynolds number. Journal of Fluids and Structures, 2003, 17:665-679.
    62. Li JingYin, Lam K., et al. Study on the cross flow around four cylinders in an in-line square arrangement at low Reynolds numbers. Journal of Engineering Thermophysics, 2004, 25(1):59-62.
    63. Lam K., Gong W.Q., So R.M.C., Numerical simulation of cross-flow around four cylinders in an in-line square configuration. Journal of Fluids and Structures, 2008, 24:34-57.
    64. Assi G.R.S., Meneghini J.R., Aranha J.A.P., et al, Experimental investigation of flow-induced vibration interference between two cylinders. Journal of Fluids and Structures, 2006, 22: 819-827.
    65. Kubo Yoshinobu, Nakahara Tomonari, Kato Kusuo, Aerodynamic behavior of multiple elastic circular cylinders with vicinity arrangement. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55: 227-237.
    66. Lin Tsun-Kuo, Yu Ming-Huei, An experimental study on the cross-flow vibration of a flexible cylinder in cylinder arrays. Experimental Thermal and Fluid Science, 2005,29: 523-536.
    67. Liu Y., So R.M.C., Lan Y.L., Zhou Y., Numerical studies of two side-by-side elastic cylinders in a cross-flow. Journal of Fluids and Structures, 2001, 15: 1009-1030.
    68. Lam K., Jiang G.D., Liu Y., So R.M.C., Simulation of cross-flow-induced vibration of cylinder arrays by surface vorticity method. Journal of Fluids and Structures, 2006, 22: 1113-1311.
    69.庄逢甘,黄志澄.未来高技术战争对空气动力学创新发展的需求. 2003年空气动力学前沿研究论文集,北京:中国宇航出版社,2003:73-79.
    70.罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展.力学进展, 2005,35(2):221-234.
    71. Gad-el-Hak M., Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, 2000.
    72. Bechert D. W., Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 1997, 338(5): 59- 87.
    73. Lee S. J., Jang Y. G., Control of flow around a NACA 0012 airfoil with a micro-riblet film. Journal of Fluids and Structures, 2005,20: 659-672.
    74. Choi K-S. Near-wall structures of a turbulent boundary layer with riblets. Journal of Fluid Mechanics,1989, 208:417- 458.
    75. Bearman P. W., Owen J. C., Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines. Journal of Fluids and Structures, 1998,12: 123-130.
    76. Bearman Peter, Brankovic Masa, Experimental studies of passive control of vortex-induced vibration. European Journal of Mechanics B/Fluids, 2004,23:9-15.
    77.李椿萱,彭少波,吴子牛.附属小圆柱对主圆柱绕流影响的数值模拟.北京航空航天大学学报, 2003,29(11):951-958.
    78. Arturo B., Maurizio Q., Turbulent drag reduction by spanwise wall oscillations. Applied Scientific Research, 1996, 55:311- 326.
    79. Laadhari F., Skandaji L., Morela. R. Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Physics and Fluids, 1994, 6(10):3218-3220.
    80.熊永亮,郜冶,王革,水下超空泡航行体减阻能力的数值研究.弹道学报, 2007,19(1):51-54.
    81.高永琪,顾建农,超空泡鱼雷有关流体动力分析.海军工程大学学报, 2005,17(3):57-60.
    82.魏平,侯健,杨柯.超空泡射弹研究综述.舰船电子工程, 2008,6:13-17.
    83.白鹏,周伟江,汪翼云.三角翼大攻角分离流开缝吸气效应研究.航空学报.1999,20(5): 393-398.
    84.洪俊武,陈晓东,张玉伦,陈作斌.主动流动控制技术的初步数值研究.空气动力学学报,2005,23(4):402-407.
    85. Cui E J, Yu X T, Fu G M. Investigation of unsteady excitation effects on aerodynamics properties of airfoil. Chinese Journal of Aerodynamics, 1991,4(2):163-170.
    86.辛大波.桥梁风雨致颤振稳定性分析及边界层控制方法.哈尔滨工业大学博士学位论文,2008.
    87. Choi K-S, et al. Emerging techniques in drag reduction. Mechanical Engineering Publications London, l996.
    88. Yang Zhu, Wu Jie-zhi, Drag reduction by axisymmetric traveling wavy wall. Journal of university of science and technology of china, 2005,35(4):471-479.
    89.吴锤结,王亮.完全消除圆柱绕流振荡尾迹的动波浪壁流动控制.第十届全国分离流、旋涡和流动控制会议论文集, 2004: 224-233.
    90. Wu Chui-Jie, Wang Liang, Wu Jie-Zhi, Suppression of the von Karman vortex street behind a circular cylinder by a travelling wave generated by a flexible surface. Journal of fluid mechanics, 2007,574: 365-391.
    91.解妍琼.行波壁在流动控制中的应用.解放军理工大学硕士研究生学位论文, 2003.
    92. Patnaik B.S.V., Wei G.W., Controlling wake turbulence. Physical Review Letters, 2002,88.
    93. Munshi S.R., Modi V.J., Yokomizo T., Aerodynamics and dynamics of rectangular prisms with momentum injection. Journal of Fluids and Structures, 1997,11: 873-892.
    94. Munshi S.R., Modi V.J., Yokomizo T., Fluid dynamics of flat plates and rectangular prisms in the presence of moving surface boundary-layer control. Journal of Wind Engineering and Industrial Aerodynamics 1999,79: 37-60.
    95. Kubo Y., Modi V.J., Kotsubo C., Suppression of wind-induced vibrations of tallstructures through moving surface boundary-layer control. Journal of Wind Engineering and Industrial Aerodynamics, 1996,61: 181-194.
    96. Modi V.J., Moving surface boundary-layer control: a review. Journal of Fluids and Structures, 1997,11: 627-663.
    97. Modi V.J., Deshpande V.S., Fluid dynamics of a cubic structure as affected by momentum injection and height. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 445-470.
    98.聂武.海洋工程结构动力分析.哈尔滨:哈尔滨工程大学出版社, 1988, 125-155.
    99. Norberg C., Fluctuating lift on a circular cylinder: review and new measurements . Journal of Fluids and Structures, 2003, 17: 57-96.
    100. So R.M.C., Liu Y., Chan S.T. & Lam K., Numerical studies of a freely vibrating cylinder in a cross flow . Journal of Fluids and Structures, 2001, 15: 845-866.
    101.曹丰产,项海帆.圆柱非定常绕流及涡激振动的数值计算.水动力学研究与进展(A辑), 2001,16 (1):111-118.
    102. Farrant T., Tana M., Price W.G., A cell boundary element method applied to laminar vortex- shedding from arrays of cylinders in various arrangements. Journal of Fluids and Structures, 2000, 14: 375-402.
    103. Meneghini J.R., Saltara F., Soqueira C.L.R., Ferrari JR J.A., Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluid and Structures, 2001, 15: 327-350.
    104. Govardhan R., Williamson C.H.K., Mean and fluctuating velocity fields in the wake of a freely-vibrating cylinder. Journal of Fluids and Structures, 2001, 15: 489-501.
    105.方平治.典型建筑结构气弹问题的数值模拟研究.哈尔滨工业大学博士学位论文,2009.
    106. Robertson. I , Li. L , Sherwin. S J, et al. A numerical study of rotational and transverse galloping rectangular bodies. Journal of Fluids and Structures, 2003,17:681-699.
    107. Griffin O. M., Vortex-induced Vibrations of Marine Structures in Uniform and Sheared Currents. NSF Workshop on Riser Dynamics, University of Michigan, 1992.
    108. Sarpkaya T., Hydrodynamic damping, flow-induced oscillations, andbiharmonic response. ASME Journal of Offshore Mechanics and Arctic Enginnering, 1995,117:232-238.
    109. Williamson C.H.K., Jauvtis N., A high-amplitude 2T mode of vortex-induced vibration for a light body in XY motion. European Journal of Mechanics B/Fluids, 2004,23: 107-114.
    110. Jauvtis N, Williamson C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. Journal of Fluids Mechanics, 2004,509:23-62.
    111.李广望,任安禄,陈文曲. ALE方法求解圆柱的涡激振动.空气动力学报,2004,22(3):283-288.
    112. Lam K., Gong W.Q., So R.M.C., Numerical simulation of cross-flow around four cylinders in an in-line square configuration. Journal of Fluids and Structures, 2008, 24:34-57.
    113. Farrant T., Tana M., Price W.G., A cell boundary element method applied to laminar vortex- shedding from arrays of cylinders in various arrangements. Journal of Fluids and Structures, 2000, 14: 375-402.
    114. Kang Sangmo. Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Physics of Fluids, 2003, 15(9): 2486-2498.
    115. Meneghini J. R., Saltara F., et al. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. 2001, 15: 327-350.
    116. Lam K., Li J.Y., So R.M.C., Force coefficients and Strouhal numbers of four cylinders in cross flow. Journal of Fluids and Structures, 2003, 18:305-324.
    117. Lin Tsun-Kuo, Yu Ming-Huei, An experimental study on the cross-flow vibration of a flexible cylinder in cylinder arrays. Experimental Thermal and Fluid Science, 2005,29: 523-536.
    118. Matsumoto M., Shirato H., Yagi T., Goto M., et al. Field observation of the full-scale wind-induced cable vibration. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91:13-26.
    119.陈文礼.斜拉索风雨激振的试验研究与数值模拟.哈尔滨工业大学博士学位论文,2009.
    120.顾明,吕强.斜拉桥拉索风雨激振理论分析的一个新方法.土木工程学报,2003,36(6):47-52.
    121. Gu M., Lu Q. Theoretical analysis of wind-rain induced vibration of cables of cable-stayed bridges. Journal of Wind Engineering, 2001, 89:125-128.
    122.任安禄,王焕然,邵雪明,邓见.利用分区ALE算法数值模拟圆柱湍流涡激振动.空气动力学学报, 2008,26(4):544-548.
    123. Toriumi R., Katsuchi H., Furuya N.A., Study on Spatial Correlation of Natural Wind. Journal of Wind Engineering and Industrial Aerodynamics. 2000,87: 203-216.
    124.罗俊杰,韩大建.大跨度结构随机脉动风场的快速模拟方法.工程力学, 2008,25(3): 96-101.
    125.马麟,刘健新,韩万水.基于改进谐波合成法的杭州湾跨海大桥风场模拟研究.郑州大学学报(工学版), 2008,29(1): 56-60.
    126.董军,邓洪洲,刘学利.高层建筑脉动风荷载时程模拟的AR模型方法.南京建筑工程学院学报, 2000,53(2): 20-25.
    127.胡雪莲,李正良,晏致涛.大跨度桥梁结构风荷载模拟研究.重庆建筑大学学报, 2005,27(3): 63-67.
    128.韩艳,陈政清.利用小波逆变换模拟随机风场的脉动风.振动工程学报, 2007,20(1): 52-56.
    129. Shirani E., Ferziger J.H., Reynolds W.C., Mixing of a passive scalar in isotropic and sheared homogeneous turbulence, report TF-15, 1981, Mech. Eng. Dept., Stanford Univ.
    130. Kondo K., Murakami S., Mochida A., Generation of velocity fluctuations for inflow boundary condition of LES. Journal of Wind Engineering and Industrial Aerodynamics, 1997,67&68: 51-64.
    131.杨仕超,欧肇雄,陈东红.深圳地王商业大厦风洞模型试验.第四届全国风工程及工业空气动力学学术会议论文集. 1994:119-124.
    132. Huang Shenghong, Li Q.S., Xu Shengli. Numerical evaluation of wind effects on a tall steel building by CFD. Journal of Constructional Steel Research, 2007,63: 612-627.
    133.贺德馨等.风工程与工业空气动力学.北京:国防工业出版社, 2006: 412-418.
    134.李朝.建筑物风荷载与山地风场的数值模拟.哈尔滨工业大学硕士学位论文,2005.
    135.付以贤,田玉基.国家体育场屋盖结构的风压极值分布.第十三届全国结构风工程学术会议, 2007, 303-308,大连,中国.
    136.钱稼茹,过静珺,陈志鹏.地王大厦动力特性及大风时楼顶位移和加速度实测研究.土木工程学报, 1998,31(6):30-38.
    137.陆秋风.深圳地王大厦风特性与风振响应监测研究.哈尔滨工业大学硕士学位论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700