海洋微结构剪切流传感器及其载体设计方法与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋内部运动能量传递过程一般是由大尺度到小尺度、最终以微结构湍流的形式耗散。研究湍流能量耗散过程是建立完善海洋宏观运动物理模型、了解海洋内部混合的基础。此外,微结构湍流还对海水运动速度、温盐特性及水中溶解态、颗粒态物质的分布有显著影响,因此,海洋微结构湍流对于认识海洋内部变化规律具有重要意义。
     研究海洋微结构湍流的关键是得到湍流动能耗散率。剪切流传感器是目前微结构湍流测量的常用仪器,该传感器内部的压电陶瓷片受到海洋湍流的作用产生信号。剪切流传感器安装在其专用载体上,跟随载体以一定的速度在海水中运动,运动过程中剪切流传感器对海洋微结构湍流的水平或竖直方向的脉动进行测量,再根据海水粘度、载体运动速度等物理量可以得到所测量区域的海水微结构湍流耗散率。
     目前,对剪切流传感器结构设计、机械性能以及传感器载体的水动力学性能和相关实验仪器的研究并不多,而这些因素对湍流测量准确性产生影响。另外,我国海洋微结构测量仪器基本依靠引进国外技术,而目前需求量日益增大,因此开展海洋微结构测量仪器的研究非常必要。本文对剪切流传感器结构、传感器载体垂向剖面仪的水动力学性能等方面进行了较为系统的研究,开发出了新型剪切流传感器及其相关的实验仪器,得到了垂向剖面仪的运动特性,相关技术已经通过验收并得到实际应用。
     本文主要研究成果和创新点为:
     1.基于PVDF压电薄膜材料,设计了新型结构剪切流传感器。根据剪切流传感器结构特点和工作环境提出了采用流固耦合、压电耦合理论对传感器性能进行计算的方法,并将计算结果与已有实验数据进行比对,验证了该方法的可行性。
     2.研制出了传感器灵敏度标定系统,以及能够测试剪切流传感器动态性能的压力实验装置,并对其内部工作状态进行了仿真计算和实验研究。
     3.采用计算流体力学方法分析了垂向剖面仪水动力学特性,建立了其一般运动学方程,在此基础上研究了纵平面内剖面仪的运动规律。
Turbulence is responsible for dissipating the kinetic energy in the Ocean at very small scales, and it is essential to set up ocean model that predict global circulation, climate change, and particle dispersal. Microscale turbulent mixing below the sea surface strongly influences the heat, mass and momentum exchange between the ocean and the atmosphere. Water velocity, heat, salinity, and nutrients are primarily dependent upon turbulence. So turbulence has significance to research the motion regularity of the ocean.
     In order to descirbe turbulence in the ocean, the magnitude of the turbulent velocity fluctuations and the rate of dissipation of turbulent kinetic energy should be measured or estimated. The most commonly used and best-suited sensor for measuring microstructure velocity fluctuations is the shear sensor. The sensing element is a piezo-ceramic bimorph beam which generates an electrical charge in response to cross-axial forces. The sensor is installed on the top of the profiler, and move with it. Profiler can be categorized as either vertical or horizontal profiler. Based on the signal and sensitivity of shear sensor, ocean viscosity and velocity of the profiler, dissipation of the turbulence can be computed.
     At present, there are little research on structure design, mechanical properties, and water dynamics of shear sensor and profiler. But such factors are critical to the measurement accuracy of the instruments. In addition,nearly all the ocean turbulence measurement instruments are imported in our country, with the further development on ocean science, more precise measurement instruments need be explored. Supported by national high technology of ocean monitor field, this paper presents a thorough study on the structure of shear probe and dynamics property of vertical profiler. New shear sensors and experiment instruments are explored, and technologies are passed the acceptance and put into practice.
     The main contributions of this thesis are summarized as follows:
     1. New shear sensor made of PVDF is developed. Based on the structure and work environment of shear sensor, fluid solid interaction coupling and piezoelectric coupling are introduced to compute the property of shear sensor. The result is coMPared with experiment, which suggests the method is feasible.
     2. The calibration machine system and dynamic test instrument are develped in order to acquire the sensitivity and test the property of the shear sensor.
     3. The hydrodynamic property of vertical profiler is studied by Computational Fluid Dynamics (CFD). The kinematics and dynamics equation are deduced, trajectory path and velocity of profiler are simulated.
引文
[1] Hans burchard, Karsten Bolding, Tom P.Rippeth, Microstructure of turbulence in the northern North Sea: a coMParative study of observations and model simulations, Journal of Sea Research, 2002,47(3):269-284,
    [2] S. A. Thorpe,An Introduction to Ocean Turbulence, Cambridge UK,Cambridge University, 2007
    [3] Lueck R.G., Wolk. F., and Yamazaki F., Velocity Microstructure Measurements in the 20th Century, Japan Journal of Oceanography, 2001, 58: 153~174
    [4]范值松,海洋内部混合研究基础,北京:海洋出版社,2005
    [5] Mathieu Clabon., Thermocline tracking using an upgraded ocean explorer autonomous underwater vehicle:[Dissertation] , Florida Atlantic University,2003
    [6] Kocsis O., Prandke H., Stips A., Simon A.,CoMParison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure, Journal of Marine Systems, 1999, 27, 67~84
    [7] Leindecker E., Oceanic Turbulence Measurement Using an AUV Platform and Development of Graphical Interfaces for Data Axquisition and Analysis:[Dissertation] , Florida Atlantic University,2001
    [8] Macount P., Lueck R., Modeling the spatial response of the airfoil shear probe using different sized probes, Journal of Atmospheric and Oceanic Technology, 2004, 21: 284~297
    [9]魏皓,武建平,张平,海洋湍流模式应用研究,青岛海洋大学学报,2001,31(1):7~13
    [10]赵亮,魏皓,渤海垂直湍流混合强度季节变化的数值模拟,青岛海洋大学学报,2001,31(3):313~13318
    [11] Hartmut Prandke., Adolf Stips., Micostructure profiler to study mixing and turbulent transport processes, Proceedings of the OCEANS'94 IEEE/OES conference, 1998, 179~184
    [12] Hartmut Prandke., Klaus Pfeiffer., Shear probe for use in operational microstructure measuring systems , Conference Proceedings of the OCEANS'98 IEEE/OES conference, 1998, 179~184
    [13] Kocsis., Hartmut Prandke., Stips., CoMParison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure, Journal of Marine Systems, 1999, 21, 67~84
    [14]魏传杰,黄海西部海洋湍流的观测与分析:[硕士学位论文],青岛:国家海洋局第一海洋研究所,2009
    [15] Fabian Wolk., Rolf G.Lueck., A new free-fall profiler for measuring biophysical microstructure, Journal of Atmospheric and Oceanic Technology, 2002, 19, 780~793
    [16]康建军,邬海强,杨庆轩,付红丽,海洋湍流观测技术,海洋技术,2007,26(3):19~29
    [17] Paul Macoun., Rolf G.Lueck., Modeling the spatical response of the airfoil shear probe using different sized probs, Journal of Atmospheric and Oceanic Technology, 2004, 21, 284~297
    [18] Rolf, G.Lueck., Fabian Wolk., Hidekatsu Yamazaki., Oceanic velocity microstructure measurements in 20th century, Journal of Oceanography, 2002, 58, 153~174
    [19] http://www.rocklandocean.com/resources/TOMIsynopsis.pdf
    [20] Vadim T., Valeri N., Iossif D.,Tomas M., Oceanic microstructure measurements by baklan and grif, Journal of Atmospheric and Oceanic Technology, 1999 16, 1519~1532
    [21] http://www.co2.ulg.ac.be/objects/2005/ppt/ward_poster.pdf
    [22] Ibong Jung., Yongrae Roh., Design and fabrication of piezoceramic bimorph vibration sensors, Sensors and Actuators A Physical, 1998, 69, 259~266
    [23] Hartmut Prandke, KlausPfeiffer, Shear probe for use in operational microstructure measuring systems, Proceedings of the 1994 IEEE, 1999:414~418
    [24]钱世镕,一种测量海洋微结构的托体,海洋技术,1994,13(3):23~29
    [25] Sei-ichi Kanaril., Micro-Scale Profiler(MSP) for Measurement of Small-Scale Turbulence in the Ocean, Journal of the Oceanographical Society of Japan, 1991, 47: 17~25
    [26]杨吉新,张可,党慧慧,基于ANSYS的流固耦合动力分析方法,船海工程,2008,37(6):86~89
    [27]涂远,杜建江,王涛,压电类智能曾合结构的ANSYS仿真分析,广西大学学报,2005,30(4):287~292
    [28]梁磊,王少萍,曹锋,基于ANSYS的压电陶瓷PLZT特性仿真分析,北京航空航天大学学报,2008,34(7):853~856
    [29]沈修成,方华斌,王亚军,刘景全,基于MEMS的压电微能量采集器的电路研究与测试,传感技术学报,2008,21(4):692~694
    [30]陆鑫森,高等结构动力学,上海:上海交通大学出版社,1992
    [31]姚雄亮,舰船结构振动冲击与噪声,北京:国防工业出版社出版社,2007
    [32]陶敏,杨耀文,刘正兴,结构在水下运行过程中的自振特性及动力响应,上海交通大学学报,1997,31(7):137~142
    [33]郝亚娟,白象忠,弹性梁式薄板在横向绕流中的大变形,应用力学学报,2009,26(2):304~307
    [34]金占礼,王宗利,李红云,结构在无限流体域中振动时附连水质量的数值计算方法,上海交通大学学报,2000,34(8):1078~1082
    [35]王三德,水下复杂弹性壳体的相似性研究:[博士学位论文],哈尔滨:哈尔滨工程大学,2005
    [36]徐汉忠,水中悬臂梁的自振频率的简便计算公式,河海大学学报,1986,14(4):10~21
    [37]马烨,单雪雄,数值计算复杂外形物体附加质量的新方法,计算机仿真,2007,24(5):10~21
    [38]张绍文,倪汉根,水中悬臂结构振动与水动力特性研究,大连理工大学学报,1996,36(3):329~333
    [39]姚雄亮,张阿漫,船体振动与噪声,北京:国防工业出版社,2010
    [40]姜德义,郑拯宇,李林,任松,压电陶瓷片耦合振动模态的ANSYS模拟分析,传感技术学报,2003, 4:452~456
    [41]压电陶瓷情报网,压电陶瓷应用,济南:山东大学出版社,1985
    [42]张朝晖,ANSYS11.0结构分析工程应用实例解析,北京:机械工业出版社,2008
    [43]李兵,何正嘉,陈雪峰,ANSYS Workbench设计、仿真与优化,北京,清华大学出版社,2008
    [44]娄立飞,硅基PZT压电薄膜微传感器的关键技术研究:[博士学位论文],西安:西安电子科技大学,2006
    [45]陈璞,基于MEMS技术的微型电源的研究:[硕士学位论文],南京:南京理工大学,2009
    [46]高晓光,杜立群,吕岩,PZT压电薄膜无阀微泵,功能材料与器件学报,2008,14(4):793~798
    [47]尹云,基于触滑觉控制的智能加收关键问题研究:[硕士学位论文],大连:大连理工大学,2004
    [48]王海宁,基于MEMS技术的自吸微泵的研制:[博士学位论文],北京:中科院电子学研究所,2005
    [49]王国力,赵子婴,白金星,PVDF压电薄膜脉搏传感器的研制,传感技术学报,2004,4:688~692
    [50]朱玲,PVDF位移传感器及其应用研究:[硕士学位论文],哈尔滨:哈尔滨工程大学
    [51]卢朝洪,梅涛,骆敏舟等,一种用于机器人手爪的PVDF接触力传感器设计,压电与声光,2006,28(3):311~313
    [52]金观昌,于淼,鲍乃铿等,PVDF多点脉搏波计算机辅助测试系统研究,清华大学学报,1999,39(8):117~120
    [53]金观昌,于淼,压电薄膜压力分布计算机测试系统,清华大学学报,1998,38(2):21~24
    [54]阙君武,吴一辉,杨志刚,宣明等,悬臂梁微型阀特性研究,哈尔滨工业大学学报,2005,37(2):190~193
    [55]卢晓光,压电薄膜微力传感器特性研究:[硕士学位论文],大连:大连理工大学,2006
    [56]娄立飞,杨银堂,樊永祥,李跃进,压电薄膜微传感器振动模态的仿真分析,振动与冲击,2006,25(4):165~169
    [57] Jeffrey Bogin., Design and Testing of an Untethered Vertically Ascending Profiler For Use in Measuring Near Surface Turbulence:[Dissertation] , Florida Atlantic University,2003
    [58] Wolk F., Yamazaki H., Seuront L., Lueck R., A new profiler for measuring bio-phsical microstructure, Journal of Atmospheric and Oceanic Technology, 2002, 19: 780~793
    [59]温秉权,小型浅水域水下自航行器系统设计与试验研究:[博士学位论文],天津:天津大学,2005
    [60]余立中,商红梅,张少永,Argo浮标技术研究初探,海洋技术,2001(8):35~38.
    [61]余立中,我国的海洋剖面探测浮标—COPEX,海洋技术,2003(5):15~18.
    [62]张宏伟,可着陆水下自航行器系统设计与动力学行为研究:[博士学位论文],天津:天津大学,2007
    [63]荣建德,水下运载器性能的分析与设计,北京:国防工业出版社,2008
    [64]何漫丽,水下自航行器水动力学特性数值计算与试验研究[博士学位论文],天津:天津大学,2005
    [65]李天森,鱼雷操纵性,北京:国防工业出版社,1999
    [66] Neil S. Oakey., Epsonde: An instrument to measure Turbulence in the deep ocean, Journal of Oceanic Engineering, 1988, 13(3), 124~128
    [67] Fred Thwaites., Kurt Polzin., Structural design considerations of a profiling free vehicle used to measure ocean turbulence, Proc. Of the IEEE/OES Seventh Working Conference on Current Measurement Technology, 1988, 13(3), 124~128
    [68] Schmitt R.W., J.M. Toole., L.Koehler, The development of a fine and microstructure profiler, Journal of Atmospheric and Atmospheric Technology, 1988, 5(4), 484~500
    [69] Edward R., Rolf G., Turbulence measurement from an autonomous underwater vehicle, Journal of Atmospheric and Oceanic Technology, 1999, 16, 1533~1544
    [70] Lueck R., Huang D., Box J., Turbulence measurement with a moored instrument., Journal of Atmospheric and Oceanic Technology, 1997, 14, 143~161
    [71] Gregg C., Uncertainties and limitations in measuring ? and xT ., Journal of Atmospheric and Oceanic Technology, 1999, 16, 1483~1490
    [72]王晓鸣,混合驱动水下自航行器动力学行为与控制策略研究:[博士学位论文],天津:天津大学,2009
    [73]何漫丽,水下自航行器水动力学特性数值计算与试验研究:[博士学位论文],天津:天津大学,2005
    [74]葛德宏,高启孝,陈永冰等,基于单浮标的水下运载体定位建模与仿真,武汉理工大学学报,2009,33(6):1092~1095
    [75] Jaiman R., Geubelle P., Loth E., Combined interface boundary condition method for unsteady fluid-structure interaction, Computer Methods in Applied Mechanics and Engineering, 2011, 200, 27~39
    [76] Jaehwan Kim, Heung Soo Kim, Finite element analysis of piezoelectric underwater transducers for acoustic characteristics, Journal of Mechanical Science and Technology, 2009, 23, 2452~460
    [77] Sheng Xu, Z. Jane Wang, A 3D immersed interface method for fluid-solid interaction, Computer Methods in Applied Mechanics and Engineering, 2008,197, 2068~2086
    [78]白莹,可着陆水下自航行器外形设计与优化:[硕士学位论文],天津:天津大学,2007
    [79]张大涛,湍流剖面仪系统动力学分析与实验研究,海洋技术,2006,25(1):38~42
    [80]刘习军,贾启芬,张文德,工程振动与测试技术,天津:天津大学出版社,1999
    [81]王瑞金,张凯,王刚,Fluent技术基础与应用实例,北京:清华大学出版社,2007
    [82] Robert L.Street, Gary Z.Watters, John K.Vennard, Elementary Fluid Mechanics 7th Edition, San Francisco USA, John Wiley & Sons,2007
    [83] Haym Benaroya, Mark L. Naqurka, Mechanical Vibration: Analysis, Uncertainties, and Control Third Edition, UK, CRC Press, 2009
    [84] http://www.argo.gov.cn/argo-china/legend/ARGOfloats.htm#003
    [85] Tyagi A, Sen Debabrata.Calculation of transverse hydrodynamic coefficients using computational fluid dynamic approach, Ocean Engineering, 2006, 33(5/6): 798~809.
    [86] Wu Baoshan , Pan Ziyi, XI A Xian, et al, Investigation of the hydrodynamic characteristics of body of revolution with stern ring-wing, Journa l o f Ship Mechanics,2003,12,6(7): 54~59
    [87] P. Bhatta, N. E. Leonard, Nonlinear Gliding Stability and Control for Vehicles with Hydrodynamic Forcing,Automatic, 2008, 44(5): 1240~1250
    [88] P. Bhatta, Nonlinear stability and control of gliding vehicles:[Dissertation], The USA:Princeton University, 2006
    [89] David A. S., Louis L. W., Model-based dynamic positioning of underwater robotic vehicles: theory and experiment,IEEE Journal of Oceanic Engineering,2004, 29(1): 169~186
    [90]康涛,胡克,胡志强,林扬,CFX与USAERO的水下机器人操纵性仿真计算研究,机器人,2005,27(6):535~538
    [91] Kwantny H.G., Salter E., Ammeen E., et al, A computer algebra approach to undersea vehicle dynamics, Proceedings of the 1999 IEEE, 1999:640~645
    [92]崔乃刚,曹春泉,韦常柱,潜射导弹水下运动过程仿真分析,弹道学报,2009,21(2):95~99
    [93]曹辉进,自主式水下航行器建模与运动控制仿真研究:[硕士学位论文],天津:天津大学,2004
    [94] Javad Dargahi, Siamak Najarian, Bin Liu, Sensitivity analysis of a novel tactile probe for measurement of tissue softness with applications in biomedicalrobotics, Journal of Materials Processing Technology, 2007,183:176~182
    [95] http://www.media.mit.edu/resenv/classes/MAS836/Readings/MSI-techman.pdf
    [96] Sedaghati D., Dargahi J. Singh H., Design and modeling of an endoscopic piezoelectric tactile sensor, International Journal of Solids and Structures,, 2005,42:5872~5886
    [97]蒋新松,封锡盛,王棣棠,水下机器人,沈阳:辽宁科学技术出版社,2000
    [98]温秉权,小型浅水域水下自航行器系统设计与试验研究:[博士学位论文],天津:天津大学,2005
    [99]余立中,我国的海洋剖面探测浮标—COPEX,海洋技术,2003(5):15~18.
    [100]王延辉,水下滑翔器动力学行为与鲁棒控制策略研究:[博士学位论文],天津,天津大学,2007.
    [101]王树新,王延辉,张大涛等,温差能驱动的水下滑翔器设计与实验研究,海洋技术,2006,25(1):1~5
    [102]李天森,鱼雷操纵性,北京:国防工业出版社,1999
    [103]丁伯民,蔡仁良,压力容器设计,北京:中国石化出版社,1992
    [104]陶红艳,余成波,传感器与现代检测技术,北京:清华大学出版社,2009
    [105] Dong-Ho Ha, Van Phuoc Phan, Nam Seco Goo,Cheol Heui Han D, Three dimensional electro-fluid-structural interaction simulation for pumping performance evaluation of a valveless micropump, Smart Material and Structures, 2009,18:1~8
    [106]杨广立,张彤,李春明,硅基微结构气体传感器结构的有限元模拟分析,吉林大学学报,2003,41(4):510~512
    [107] Eri-Olivier Leindecker., Oceanic turbulence measurement using an auv platform and development of graphical interfaces for data acquisition and analysis: [Dissertation], Florida Atlantic University,2001
    [108] F.Wolk, R.G.Lueck, L.St.Laurent, Turbulence measurements from a glider, 13th Workshop on Physical Processes in Natural Waters, 2009,9:1-4
    [109] B. Greenan, N.S.Oakey, A tethered free-fall glider to measure ocean turbulence, Journal of Atmospheric and Oceanic Technology, 1999,16:1545-1555
    [110] http://www.oe.fau.edu/~manhar/papers/oceans2000.pdf
    [111] http://www.hydroidinc.com/pdfs/00_resolv_turb.pdf
    [112] Vadim T.Paka., Nikolay N.Golenko., David Y., Turbulence measurements using 3-axis electromagnet turbulent velocity probes and airfoil shear probes, Proc. Of the IEEE/OES Seventh Working Conference on Current Measurement Technology, 2003, 241-255
    [113] K.E.Brainerd., M.C.Gregg., Turbulence and stratification on the tropical ocean global atmosphere coupled ocean atmosphere response experiment microstructure pilot cruise, Journal of Geophysical Research, 1997,102(5):10437-10425
    [114] Jean-Francois Sigrist., Stephane Garreau., Dynamic analysis of fluid-structure interaction problems with modal methods using pressure-based fluid finite elements, Finite Elements in Analysis and Design, 2007,43:287-430
    [115] Thomas R. Osborn., Rolf G. Lueck, Turbulence measurements from a towed body, Journal of Atmospheric and Oceanic Technology, 1985,2:517-5
    [116]边宇枢,高志慧,允超,6自由度水下机器人动力学分析与运动控制,机械工程学报,2007,43(7):87~92
    [117]刘正元,李一平,“CR-02”AUV无动力下潜运动预报,机器人,2002,24(5):385~388
    [118]林俊兴,马玉成,潜艇组合型尾舵的水动力模拟计算及分析,舰船科学技术,2009,31(6):55~59
    [119]梁基照,压力容器优化设计,北京:机械工业出版社,2010
    [120] Yoon H S., Sharp K V., Integrated experimental and computational approach to simulation of flow in a stirred Tank, Chem Eng Sci, 2001, 56: 6635-6649
    [121] Wei Qing-ding, Yan Bin, Chen Jun., A numerical test on the accuracy of particle image velocimetry, Experiments and Measurements in Fluid Mechanics, 2001,1 5(3):47-52
    [122]王福军,计算流体动力学分析—CFD软件原理与应用,北京:清华大学出版社,2004
    [123]张敏革,超高分子量HPAM溶液流变行为与双螺带螺杆桨搅拌流场研究:[博士学位论文],天津:天津大学,2009
    [124] Bakker A., Oshinowo L. M., Marshall E. M., The use of large eddy simulation to study stirred vessel hydrodynamics, Proceedings of 10th European Conference on Mixing, 2000, 247-254
    [125] Lane G. L., Schwarz M. P., Evans G.M., CoMParison of CFD methods for modeling of stirred tanks, Proceedings of 10th European conference on Mixing, 2000,273-280
    [126] Brucato A., Ciofalo M., Grisafi F., Numerical prediction of flow fields in baffled stirred vessels: a coMParison of alternative modelingapproaches. Chem. Eng Sci., 1998, 53:3653-3683
    [127] Thakker, A., Frawley, P., Daly, J., Preliminary 3D computational fluids dynamics analysis of the Wells turbine, Proceedings of the International Offshore and Polar Engineering Conference,2000,1:442-451
    [128] Kelly W., Using Cfd to predict the behavior of power law fluids near axial-flow impellers operating in the transitional fow regime, Chemical Engineering Science, 2003,58(10):2141-2152.
    [129] Tanaka M., Tanaka Y., Chonan S., Measurement and evaluation of tactile sensations using a Pvdf sensor., Journal of Intelligent Material Systems and Structures, 2008,19(1):35-42
    [130] Kim G.., Ahn Y.W., Lee S., Monitoring and characterization of low-velocity iMPact damagein composite laminates using PVDF sensor and Ae signals, Proceedings of the 4th European Workshop on Structural Health Monitoring, 2008, 1163-1172
    [131]Yellapraqada L.S, Fluid-solid interaction finite element modeling of a kinetically driven growth instability in stressed solids, Archive of Applied Mechanics,2009,79(5):457-467
    [132] Dettmer Wulf G.., On the coupling between fluid flow and mesh motion in the modeling of fluid-structure interaction, Computational Mechanics, 2008, 43(1):81-90
    [133] Pita Claudio M., A fluid-structure interaction method for highly deformable solids, Computers and Structures, 2010, 88(3):255-262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700