经骶骨空心钉纵向固定腰骶部的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     比较通常的的L_5S_1椎弓根钉固定方法和经骶骨空心钉纵向固定腰骶部方法的生物力学强度。
     背景资料
     腰骶固定是脊柱外科的难题,目前尚无理想可靠的手术固定方法。结合骨盆骨折内固定经验及其解剖学研究的基础,我们设计和应用了后路经骶骨空心钉纵向固定腰骶部技术。这种新的内固定技术需要在生物力学方面进行充分相关的研究,以使其更安全广泛的应用于腰骶滑脱的内固定治疗。
     材料和方法
     1.尸体材料
     6具由甲醛溶液固定的成年尸体脊柱标本(男4具,女2具,死亡年龄32-78岁,平均62.3岁),取L_3-S_4的活动节段,除外结构异常(如椎体部分缺陷,压缩性骨折)者。每具标本保留骨膜,椎间盘,关节囊及所有的韧带组织,剔除椎旁的肌肉。标本两端用骨水泥(PMMA)固定于自制钛合金夹具(沈阳铸造研究所制作)上。
     2.生物力学试验
     本实验采用的方法属于稳定性实验,生物力学加压最大载荷500N,最大扭矩7.5Nm,属于非破坏试验,每具标本可以重复利用。将脊柱标本固定于BIONIX 858生物力学实验机上(Material Test System,Eden,Prairie,MN,中科院沈阳金属研究所提供),每个标本均连续测试5种状态,首先测量完整标本的三维运动(包括轴向加压,屈曲,伸展,右侧弯,左侧弯试验),反复测量三次并记录最后一次的载荷-位移曲线。然后按同样的方法分别
    
    依次测量损伤后滑脱标本,空心钉固定标本,空心钉联合应用椎弓根钉
    (USS)固定标本和椎弓根钉(USS)固定标本的三维运动。为消除生物力学
    测试对脊柱的影响,每次测试完毕后都给予标本一个周期性的压载负荷
    (大小500土150N,频率IHz,次数1以X)次),以去除弹性蠕变和测试的影
    响,使其恢复到测试前的状态。
     滑脱标本的制作采用Panjabi法,切断玛、,玩,魏S:棘上韧带,棘间韧
    带及黄韧带,离断双侧甄椎体峡部,坑S,小关节囊,将玩椎体后弓完整游
    离取出,于几S,椎间隙切断后纵韧带并摘除后半髓核。
     通过载荷一变形位移曲线上的斜率确定sooN载荷下各标本活动节段的
    刚度,用标本固定后的刚度比其完整时的刚度,得出相对比率进行比较。
     应用配对t检验进行统计学分析,p<0.05认为有统计学意义。
    结果
     在所有的模式测试中(加压、屈曲、伸展、右侧弯、左侧弯),经能骨空心
    钉纵向固定明显比通常的腰骸椎弓根钉固定牢固。伸展测试的差异是最显
    著的。经骸骨空心钉纵向固定比通常的腰能椎弓根钉固定牢固1.2一1.4
    倍。
     经能骨空心钉纵向固定与经骸骨空心钉纵向固定联合应用椎弓根钉固
    定在刚度值上没有显著差异。这两组在固定强度上几乎相等。
    结论
     在模拟LS一S,滑脱的尸体标本中,经能骨空心钉纵向固定刚度强于通
    常的的腰骸椎弓根钉固定刚度。经能骨空心钉纵向固定产生的刚度与经能
    骨空心钉纵向固定联合应用椎弓根钉固定产生的强度相等。
The purpose of the current study was to compare the biomechanical stiffness of traditional pedicle screw fixation and transdiscal longitudinal lumbosacral cannulated screws fixation in a cadaveric model of simulated L5-S1 spondylolisthesis.
    Summary of background data
    The surgical management of L5-S1 spondylolisthesis is a challenge because of the difficulties in achieving a reliable arthrodesis in the face of high mechanical forces. A method of lumbosacral fixation that has been used successfully in severe spondylolisthesis at our institution involves the use of 2 cannulated screws which were longitudinal inserted through lateral mass of the sacrum, sacral body, L5S1 disc to L5 vertebral body combinding lumbosacral pedicle screws. The biomechanical study related to this procedure need to be performed in detail.
    Methods
    Cadaveric Material
    Six human formaldehyde preservative cadaveric L3-S4 motion segments (mean age 62.3 years; range 32-78 years 2 females, 4 males) were harvested. Each motion segment was radiographed to ensure that no major structural abnormalities were present ( e. g. , pars defects, compression fractures). Specimens were then carefully stricped of soft tissues with the intact of bone membrane, in-
    
    
    
    tervertebral disc, facet sac and all ligaments- The end of the each motion segment was fixed to the materials testing machine using the self-made clamp and bone cement (PMMA).
    Biomechanical Loading Sequence
    The currentstudy was to compare the biomechanical stability in cadaveric models. The specimen was positioned and clamped in a materials testing machine (BIONIX 858, Material Test System, Eden, Prairie, MN, USA). The intact specimen was then biomechanically tested as follows: 1) axial compression (500 N) , 2) flexion (7.5 Nm) , 3) extension (7.5Nm) , 4) right lateral bending (7.5 Nm) , and 5) left lateral bending (7. 5Nm). Stiffness values were calculated from the load-deflection curves obtained.
    After the intact specimen had been tested according to the six-step loading sequence, an L5 laminectomy, a bilateral L5-S1 facetectomy, and a radical dis-cectomy ( with resection of both anterior and posterior longitudinal ligaments) were performed. All the simulated Spondylolisthesis specimens were biomechanically tested as above, Stiffness values were calculated from the load-deflection curves obtained. The specimens with 3 different flxational techniques, transdis-cal longitudinal lumbosacral cannulated screws fixation, traditional L5S1 pedicle screws ( USS) fixation, and combining of above two fixation, were tested respectively. Load-deflection curves were obtained each time, and stiffness values were calculated from the curve. A cyclic compression force was applied as conditioning (500 ?150 N at 1 Hz for 1000 cycles) to remove excess fluid from the disc and return the disc to its predeath height.
    Load-Displacement Curves
    The stiffness of the motion segment was determined each time from the slope of the load-displacement curve obtained. To adjust for variations in stiffness between motion segments, a normalized stiffness ratio was calculated by dividing the value of stiffness obtained for the experimental condition ( e. g. , after transdiscal longitudinal lumbosacral cannulated screws fixation or pedicle fixation or combined fixation) by the stiffness value obtained for the intact specimen.
    Statistics
    
    Statistical analysis consisted of analysis of variance and paired t test. Statistical significance was defined at the p <0.05 level.
    Results
    The experiments showed that transdiscal longitudinal lumbosacral cannulated screws fixation was significantly stiffer (p <0.01) than traditional L5S1 pedicle screws in all modes tested ( compression, flexion, extension, right lateral bending, and left lateral bending). The greatest difference was noted in extension. The normalized stiffness values for the transdiscal longitudinal lumbosacral cannulated screws were 1.2-1,4 times greater than the values for the traditional L5S1 pedicle screws. In contrast, no significant differences i
引文
1. Bohlman HH, Cook SS. One-stage decompression and posterolateral and interbody fusion for lumbosacral spondyloptosis through a posterior approach. J Bone Joint Surg Am 1982;64:415-8.
    2. Brantigan JW, Steffee AD, Lewis ML, et al. Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and variable pedicle screw placement system. Spine 2000;25:1437-46.
    3. Elias WJ, Simmons NE, Kaptain GJ, et al. Complications of posterior lumbar interbody fusion when using a titanium-threaded cage device. J Neurosurg 2000;93(suppl 1):45-52.
    4. Esses SI, Natout N, Kip P. Posterior interbody arthrodesis with a fibular strut graft in spondylolisthesis. J Bone Joint Surg Am 1995;77:172-6.
    5. Faciszewski T, Winter RB, Lonstein JE, et al. The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. Spine 1995;20:1592-9.
    6. Freeman B J, Licina P, Mehdian SH. Posterior lumbar interbody fusion combined, with instrumented postero-lateral fusion:5-year results in 60 patients. Eur Spine J 2000;9:42-6.
    7. Ishihara H, Osada R, Kanamori M, et al. Minimum 10-year follow up study of anterior lumbar interbody fusion for isthmic spondylolisthesis. J Spinal Disord 2001;14:91-9.
    8. Jones AA, McAfee PC, Robinson RA, et al. Failed arthrodesis of the spine for severe spondylolisthesis: salvage by interbody arthrodesis. J Bone Joint Surg Am 1988;70:25-30.
    9. Kuslich SD, Ulstrom CL, Griffith SL, et al. The Bagby and Kuslieh method of lumbar interbody fusion: history, techniques and 2-year follow-up results of a United States prospective, multicenter trial. Spine 1998;23:1267-78.
    10. Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine 1997;22:691-9.
    11. McAfee PC. Interbody fusion cages in reconstructive operations of the
    
    spine. J Bone Joint Surg Am 1999;81:859-80.
    12. Power ET, Krengel WF, King HA, et al. Comparison of same-day sequential anterior and posterior spinal fusion with delayed twostage anterior and posterior spinal fusion. Spine 1994;19:1256-9.
    13. Rajaraman V, Vingan R, Both P, et al. Visceral and vascular omplications resulting from anterior lumbar interbody fusion. J Neurosurg 1999;91(suppl 1):60-4.
    14. Roca J, Ubiema MT, Caceres E, et al. One-stage decompression and posterolateral and interbody fusion for severe spondylolisthesis: an analysis of 14 patients. Spine 1999;24:709-14.
    15. Smith MD, Bohlman HH. Spondylolisthesis treated by a single-stage operation combining decompression with in situ posterolatera] and anterior fusion: an analysis of eleven patients who had long-term follow-up. J Bone Joint Surg Am 1990;72:415-21.
    16. Suk SI, Lee CK, Kim WJ, et al. Adding posterior lumbar interbody fusion to pedicle screw fixation and posterolateral fusion after compression in spondylolytic spondylolisthesis. Spine 1997;22:210-9.
    17. Wetzel FT, LaRocca H. The failed posterior lumbar interbody fusion. Spine 1991;16:839-45.
    18. Whitecloud TS, Butler JC. Anterior lumbar fusion utilizing transvertebral fibular graft. Spine 1988;13:370-4.
    19. Wilke HJ, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants[J]. Eur Spine J, 1998,7:148-154.
    20. Davne S.H. Complication of lumbarspinal fusion with transpedicular lnstrumentation[J]. Spine, 1992,17:S_184-189.
    21. Edwards C.C. Bradford D S. Controversies instrumented reduction of spondylolisthesis [J]. Spine, 1994,19 : 1535-1537.
    22. Wilke H J,Wenger K,Claes L. Testing criteria for spinal implants: recommendations for the standar dization of invitro stability testing of spinal implants,[J] Eur Spine, 1998,7:148.
    23. Wilke HJ,Jungkunz B,Wenger K,etal. Spinal segment range of motion as a
    
    function of in vitro test conditions;sffscts of exposure period, accumulat-ed cycles, angular-deformation rate, and moisture condition. Anat Rec, 1998, 251 : 15.
    24. Shirado O, Zdeblick TA, Mcafee PC, et al. Biomechanical eval-uation of methods of posterior stabilization of the spine and the posterior lumbar interbody arthrodesis for lumbosacral isthmic spondylolisthesis Calf-spine model [J]. J Bone Joint Surg (Am), 1991, 73:518-525.
    25.侯树勋.正确掌握腰椎滑脱的治疗原则.中国脊柱脊髓杂志,1999,9(4):183.
    26. O Brien J P, Mehdian H. Reduction of scvere lumbosacral spon-dylolisthesis. Clin Orthop [J], 1994,300:64.
    27. Loubress C G. Posterolateral fusion for radicular pain in isthmic spondylolisthesis. Clin Orthop [J], 1996,323:194.
    28. Abdu. WA. Pedieular transvertebral screw fixation of the lumbosaeral spine in spondylolisthesis [J]. Spine, 1994,19:710-715.
    29. Davne S H. Complication of lumbar spinal fusion with transpedicular Instrumentation [J]. Spine, 1992,17:S_184-189.
    30. Glazer P A, Colliou O, Klisch S M, etal. Biomechanical analysis of multilevel fixation methods in the lumbarspine[J]. Spine, 1997, 22(2): 171-187.
    31. Vahldiek M J, Panjabi M M. Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. [J] Spine, 1998,23 (5):543- 550.
    32.唐天驷,钱忠来.腰椎崩裂和滑脱症.中华骨科杂志,1997,17:5-7.
    33.邹德威,海涌,马华松.重度腰椎滑脱的治疗.中华骨科杂志,1998,18:259-62.
    34.王春,王以进,郭卫忠.“U”型棒椎弓根钉的生物力学实验与临床应用.颈腰痛杂志,1998,19:162-5.
    35.侯树勋,史亚民,刘汝落.腰椎滑脱复位固定器的设计与应用.中华骨科杂志,1996,16:747-9.
    36. Esses SI, Botsford DJ, Huler RJ, et al. Sugical anatomy of the sacrum: a guide for rational screw fixtion[J]. Spine 1991, 16 Suppl 6: 283-288.
    37. Stovall DO Jr , Goodrich JA,Lundy D et al. Scral fixtion technique in lure-
    
    barsacral fusion[J]. Spine,1997, 22:32-37.
    38. Esses SI,Saehs BL, Complications associatated with the technique in of pedical screw fixtion: a selected survey of ABS members[J]. Spine, 1993,18:2231-2239.
    39. Comp JF, Candle R, Ashmum RD, etal Immediate complication of CotrelDubousset instrumentation to the sacro-pelvis: a clinical and biomcehnical study[J]. Spine, 1990,15:932-941.
    40. Vahldiek M J, Panjabi M M. Stabilityr potential of spinal instrmentations in tumor vertebral body replacement surgery [J]. Spine, 1998,23 (5):543- 550.
    41.黄继锋朱青安钟世镇.5种后路脊柱内固定器械的生物力学评价中华骨科杂志1997,17:539-543.
    42.金大地瞿东滨,等.STB胸腰椎后路椎弓根钉板系统的生物力学评价及临床观察医用生物力学2001,16(4):231-234.
    43. Leong, John C. Y. Lu, William W. Comparison of the Strengths of Lumbosacral Fixation Achieved With Techniques Using One and Two Triangulated Sacral Screws[J]. Spine, 23(21) ,1998:2289-2294.
    44. Rohlmann A, Calisse J, Bergmann G, etal. Internal spinal fixatorstiffnessh as only a minor influence on stresses in the adjacent discs [J]. Spine, 1999, 24(12):1192-1196.
    45. Natarajan RH, Andersson GB J. The influence of lumhar disc heidht and cross sectionalareaon the mechanical response of the disc to physiologic loading[J]. Spine, 1999,24(18):1873-1881.
    46. Dick JC,Brodke DS,Zdeblick TA,etal. Anterior instrumentation of the thoracolumbar spine: a biomechanical comparison [J]. Spine, 1997,22(8):744.
    47. Goh J CH,Wong HK. Influence of PLIF cage size on lumbar spine stability [J]. Spine,2000,25 (1):35-40.
    48. Bryan W. Cunningham MSc, LTC David W. Polly. The use of interbody Cage devices for spinal deformity: A biomechanical perspective. Clin Orthop 2002; 394: 73-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700