适合国人的微创经骶骨前入路腰骶椎融合内固定系统的初步设计及相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:评估国人应用微创经骶骨前入路腰骶椎融合内固定系统的可行性,初步设计适合国人的微创经骶骨前入路腰骶椎融合内固定系统及手术方式,并研究内固定系统在材料力学和机械性能等方面的特点,同时评估其对腰骶椎运动节段稳定性的生物力学影响,探讨其在保持腰骶椎稳定中的作用和意义,从而对自主设计的适合国人的微创经骶骨前入路腰骶椎融合内固定系统进行评估,为进一步加以改进和临床应用提供实验基础。
     方法:①通过对我国正常男女两组实验对象腰骶椎影像解剖数据的统计学测量和分析,参考国外相关手术操作,对国人应用微创经骶骨前入路腰骶椎融合内固定系统的可行性进行评估。②结合实验中分析所得的我国正常男女腰骶椎影像解剖数据和特点,按照人性化设计的基本要求和人机工程学的设计规范,设计适合国人的微创经骶骨前入路腰骶椎融合内固定系统及手术方式。③通过有限元分析,探讨自行设计的微创经骶骨前入路腰骶椎融合内固定系统在材料力学和机械性能方面的特点。④结合实验动物腰骶椎运动节段进行生物力学测试,在运动节段的不同状态下,检测应用微创经骶骨前入路腰骶椎融合内固定系统所引起的生物力学变化,评估其对腰骶椎运动节段稳定性的影响,探讨其在保持腰骶椎稳定中的作用和意义。
     结果:①腰骶椎影像解剖统计学数据显示,具备满足微创经骶骨前入路腰骶椎融合内固定系统最基本要求的手术路径,但手术切口和骶骨手术进入点的位置均与国外手术方式不同。②初步设计出适合国人的微创经骶骨前入路腰骶椎融合内固定系统及手术方式,其理论上具有合理优化的结构,可以完成椎间盘切除、椎间隙处理、椎间隙撑开、椎间融合和体内固定等手术操作,最大限度的减少对手术入路组织、椎旁软组织和脊柱结构的损伤和破坏。③对设计的适合国人的微创经骶骨前入路腰骶椎融合内固定系统的有限元分析显示,在人体腰骶椎生理和极限两种负荷状态下,以钛合金或不锈钢合金为制造材料,内固定系统均达到了强度设计要求,而且机械性能特点基本相同。④腰骶椎运动节段应用设计的微创经骶骨前入路腰骶椎融合内固定系统后,轴向抗压刚度明显提高,并且在后柱结构稳定的情况下,其在前屈、后伸、左右侧屈及旋转六个方向的运动范围显著缩小;在单侧峡部断裂的情况下,其向健侧旋转的运动范围有所扩大,但仍显著小于正常运动范围;在双侧峡部断裂的情况下,其旋转运动的范围进一步增大,接近正常运动范围,但联合后路椎弓根螺钉固定后,范围即又显著缩小。
     全文结论:在我国正常男女腰骶椎的解剖结构条件下,应用微创经骶骨前入路腰骶椎融合内固定系统是可行的,但其具体实施方式与国外不同,有自己的特点。自行设计的微创经骶骨前入路腰骶椎融合内固定系统及手术方式,理论上达到了人性化设计的基本要求和人机工程学的设计规范,即适合国人、结构优化、能够完成基本腰骶椎手术操作和最大限度的降低手术创伤。不论是以钛合金还是不锈钢合金为制造材料,内固定系统的设计均满足在人体腰骶椎生理和极限状态下的强度要求,并且机械性能特点基本相同。内固定系统能够显著提高腰骶椎的轴向抗压能力。在腰骶椎后柱结构稳定的情况下,内固定系统能够明显限制腰骶椎运动节段的各方向运动,显著增强腰骶椎稳定性;在后柱结构相对不稳的情况下,其限制运动节段旋转运动的作用有所减弱,但仍能明显增强腰骶椎稳定性;在后柱结构绝对不稳的情况下,其限制运动节段旋转运动的作用进一步减弱,不能显著增强腰骶椎在旋转运动方向上的稳定性,需要联合后路椎弓根螺钉固定加以辅助。综上所述,自行设计的适合国人的微创经骶骨前入路腰骶椎融合内固定系统,达到了结构、材料、机械性能、生物力学等多方面的设计要求,是一种合理、可行、优化的新型微创腰骶椎前路轴向融合内固定手术操作系统。同时,我们可以通过其它相关研究和临床实验性应用,对此内固定系统进行进一步的改进和完善,以求最终顺利的应用于临床。
Objective:To analyze the feasibility of a minimally invasive lumbosacral fusion and fixation device via presacral approach used to the native, and to initially design the device fit to the native and its modus operandi, research its characteristics in the mechanics of materials and mechanical function, and reveal its influence and significance in the stabilization of the lumbosacral vertebrae. This study is focus on the design and evaluation of the device, which will offer basic experimental information for its further development and clinical application.
     Method:①To analyze the feasibility of the minimally invasive device used to the native by statistically measuring and observing the related anatomical data of lumbosacral vertebrae in the plain films of normal male and female experimental groups, and conferring to the related foreign surgery.②To design the minimally invasive device fit to the native and its modus operandi at the base of anatomical data and feature of the native lumbosacral vertebrae, according to the basic requirement of humanized design and the design code in Ergonomics.③To research its characteristics in the mechanics of materials and mechanical function by the finite element analysis.④To reveal its influence and significance in the stabilization of the lumbosacral vertebrae through examining the biomechanical changes in the lumbosacral functional unit of experimental animal under the different conditions.
     Result:①It could be discovered in the statistical data of lumbosacral vertebral radiology anatomy in the experimental objects, which a surgery approach corridor was existent, consisted with the essential requirement of the device. But it was different with the foreign in the points of entry on the skin and sacrum.②It has been initially designed that the minimally-invasive presacral lumbosacral fusion and fixation device. The reasonable optimized structure belonged to the device in theory, which could achieve the basic operative procedures successfully in L5–S1 intervertebral space, such as the discectomy, interbody distraction, interbody fusion and fixation, and so on. At the same time, the device could preserve the integrity of the paravertebral tissue, surgical approach tissue and natural spinal structure with minimally invasive injury, such as the muscles, ligaments and vertebral plates etc.③The characteristics of the designed device have been displayed by the finite element analysis that were in the mechanics of materials and mechanical function. Whether made of stainless steel or titanium alloy, the device always met the designing requirement of strength, under the physiological and extreme load states of the lumbosacral vertebrae. And the characteristics in mechanical function were basically identical.④The axial compressive stiffness of the lumbosacral functional unit was obviously increased by using the designed device to the experimental animal model. The ROM in flexion was marked reduced from the normal when the spinal posterior column was stable, and the similar reductions in ROM were observed in extension, right LB, left LB, CK torsion and CCK torsion. When the spinal posterior column had the unilateral isthmectomy, the rage of torsional motion in the rotation to the healty side was increased, but it was still visibly lower than the normal’s. With the biolateral isthmectomy in the spinal posterior column, there was an evident increase in the rage of torsional motion in the both rotations, and it was close to the normal level. While fixed with the pedicle screws, the functional unit immediately had a more marked reduction in the ROM than before.
     Conclusion: It is feasible to the normal native that the minimally invasive lumbosacral fusion and fixation device is used via presacral approach. This is determined by their anatomy construction of the lumbosacral vertebra. The actual operating mode is different with the foreign, and has its own feature. The initially designed device combines four main characteristics, including native application, optimized structure, achieving the basic lumbosacral operative procedures successfully and minimally-invasive injury. It has been attained by the device in theory that the basic requirement of humanized design and the design code in Ergonomics. Whether the making material is stainless steel or titanium alloy, the design of the device always meets the requirements of strength under the physiological and extreme load states of the lumbosacral vertebrae. And basically identical characteristics are displayed in mechanical function. The new designed device has a kind of obvious function to increase the axial compressive stiffness of the lumbosacral functional unit. When the spinal posterior column is stable, the motion of lumbosacral vertebrae is so markedly limited by using the device to strengthen of the unit stability. This function is weakened, especially the limitation in the torsional motion, as the spinal posterior column changes to be partly stable. While it is still firm enough to strengthen the stability visibly. But when the absolute instability occurs in the spinal posterior column, its function of the limitation in the torsional motion is more weakened, even closed to normal level. Then by the device, it has not been strengthened evidently in the torsional rotation which the stability of the unit. The device is necessarily with the auxiliary fixation by the pedicle screws. In summary, various design requests, such as the structure, the material, the mechanical function, biological mechanics, and so on, have been attained by the designed minimally invasive lumbosacral fusion and fixation device via presacral approach fit to the native, which is one kind reasonable, feasible and optimized minimally invasive operative system for the anterior axial lumbosacral fusion and fixation. At the same time, we may through other research correlated and the experimental clinical practice to further improve and consummate it, which is finally applied in the clinical treatment smoothly.
引文
1. Cragg A, Carl A, Castaneda F, Dickman C, Guterman L, Oliveira C. New Percutaneous Access Method for Minimally Invasive Anterior Lumbosacral Surgery. World Spine, Chicago, August 2003.
    2. Marotta N, Cosar M, Pimenta L, Khoo LT. A novel minimally invasive presacral approach and instrumentation technique for anterior L5-S1 intervertebral discectomy and fusion: technical description and case presentations. Neurosurg Focus, 2006, 20(1): E9.
    3.吴恩惠,冯敢生.医学影像学.北京:人民卫生出版社, 2004. 1.
    4.戴力扬.胸腰椎椎体高度的放射学测量及其临床意义.中国临床解剖学杂志, 1995, 13(1): 18-19.
    5.崔志潭,严加和. X线解剖学.北京:北京医科大学出版社, 1989. 9.
    6. Jandric S, Antic B. Low back pain and degenerative disc disease. Med-Pregl, 2006, 59(9-10): 456-61.
    7. Hallett A, Huntley JS, Gibson JN. Foraminal stenosis and single-level degenerative disc disease: a randomized controlled trial comparing decompression with decompression and instrumented fusion. Spine, 2007, 32: 1375-80.
    8. Zdeblick TA, Nachemson A, O'Brien JP. Lumbar disc disease with discogenic pain. What surgical treatment is most effective? Spine, 1996, 21(15): 1835-8.
    9. Eck JC, Hodges S, Humphreys SC. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg, 2007, 15: 321-9.
    10. Shen FH, Samartzis D, Khanna AJ, et al. Minimally invasive techniques for lumbar interbody fusions. Orthop Clin North Am, 2007, 38: 373-86.
    11. Holly LT, Schwender JD, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus, 2006, 20: E6.
    12. Lieberman I, Khoo L, Pimenta L. Least Invasive Access for L5-S1 Lumbar Fusion. The IMAST 2005 Instructional Learning Course, 7-9 July 2005.
    13. Albert T, Lieberman I. Pre-Sacral Approaches & MIS Spine Surgery. Innovative Techniques in Spine Surgery 2nd Annual Meeting, Los Cabos, Mexico, 20-23 July2005.
    14. Cragg A, Carl A, Casteneda F, et al. New Percutaneous Access Method for Minimally Invasive Anterior Lumbosacral Surgery. J Spinal Disord Tech, 2004, 17(1): 21-28.
    15. Oliveira C, Carl A, Dickman C, et al. New Percutaneous Approach For Axial Lumbar Interbody Fusion. The IMAST 2004 Scientific Poster, 1-3 July 2004.
    16. Cragg A, Carl A, Casteneda F, Dickman C, Guterman L, Ledet E. Percutaneous Axial LumbarSpine Surgery (PAxLIF): An Anatomical Approach to Minimally Invasive Spine Surgery. Quality Medical Publishing, 2005, 33(38): 1-17.
    17. Pattison M, McQuaid H, Wilcox A. Incorporating human factors in product design and development. Med Device Technol, 2007, 18(7): 28, 30, 32-3.
    18.丁玉兰.人机工程学.北京:北京理工大学出版社, 2004.
    19. Marsot J, Claudon L. Design and ergonomics: Methods for integrating ergonomics at hand tool design stage. Int J Occup Saf Ergon, 2004, 10(1): 13-23.
    20. Kapural L, Mekhail N, Korunda Z, et al. Intradiscal thermal annuloplasty for the treatment of lumbar discogenic pain in patients with multilevel degenerative disc disease. Anesth Analg, 2004, 99: 472-6.
    21. Mirza S-K, Deyo R-A. Systematic review of randomized trials comparing lumbar fusion surgery to nonoperative care for treatment of chronic back pain. Spine, 2007, 32(7): 816-23.
    22. Fritzell P. Fusion as treatment for chronic low back pain--existing evidence, the scientific frontier and research strategies. Eur-Spine-J, 2005, 14(5): 519-20.
    23. Schafer J, O'Connor D, Feinglass S, Salive M. Medicare Evidence Development and Coverage Advisory Committee Meeting on lumbar fusion surgery for treatment of chronic back pain from degenerative disc disease. Spine, 2007, 32(22): 2403-4.
    24. Boss N, Marchesi D, Zuber K, et al. Treatment of severe spondylolithesis by reduction and pediclefixation: a 4~6 years follow up study. Spine, 1993, 18(15): 1655.
    25. Satomi K, Hirabayashi K, Toyama Y, Fujimura Y. A clinical study of degenerative spondylolisthesis. Radiographic analysis and choice of treatment. Spine, 1992, 17(11): 1329-36.
    26. Maghout JS, Franklin GM, Mirza SK, Wickizer TM, Fulton KD. Lumbar fusion outcomes in Washington State workers' compensation. Spine, 2006, 31(23): 2715-23.
    27. Chen SH, Mo Lin R, Chen HH, Tsai KJ. Biomechanical effects of polyaxial pedicle screw fixation on the lumbosacral segments with an anterior interbody cage support. BMC Musculoskelet Disord, 2007, 10(8): 28.
    28. Skowroński J, Wojnar J, Bielecki M. Interbody fusion and transpedicular fixation in the treatment of spondylolisthesis. Ortop Traumatol Rehabil, 2007, 9(2): 149-55.
    29. Healthcare cost and Utilization project. Agency for Healthcare Research and Quality. 22 January 2004.
    30. Bono CM, Lee CK. Critical analysis of trends in fusion for degenerative disc diseases over the past 20 years-influence of technique on fusion rate and clinical outcome. Spine, 2004, 29: 455-63.
    31. King U. Internal fixation for lumbosacral spine fusions. Am J Surg, 1994, 66: 357-361.
    32. Hanington PR. Treatment of scoliosis, comtion and internal fixation by spine instrumentation. J Bone Joint Surg, 1962, 44: 591-610.
    33. Roy CR, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop Relat Res, 1986, 203: 7-17.
    34. Mandigo CE, Sampath P, Kaiser MG. Posterior dynamic stabilization of the lumbar spine: pedicle based stabilization with the AccuFlex rod system. Neurosurg Focus, 2007, 22(1): E9.
    35. Martin JL, Murphy E, Crowe JA, Norris BJ. Capturing user requirements in medical device development: the role of ergonomics. Physiol Meas, 2006, 27(8): R49-62.
    36. Khalid HM. Embracing diversity in user needs for affective design. Appl Ergon, 2006, 37(4): 409-18.
    37. Israelski EW. Human factors: growing awareness and acceptance. Biomed Instrum Technol, 2005, 39(2): 165-6.
    38. Hyman WA. Let's pay more attention to human factors. Biomed Instrum Technol, 2005, 39(5): 333.
    39. Karwowski W. Ergonomics and human factors: the paradigms for science, engineering, design, technology and management of human-compatible systems. Ergonomics, 2005, 48(5): 436-63.
    40. Pelnik TM. Clearly defined design input is key to product development. Biomed Instrum Technol, 2006, 40(1): 55-9.
    41. Hamilton C. Critical. assessment of new devices. Perfusion, 2007, 22(3): 167-71.
    42. Lai F. Human factors engineering for designing the next in medicine. Stud Health Technol Inform, 2007, 125: 262-4.
    43.刘春荣.人机工程学应用.上海:上海人民卫生出版社, 2004. 7.
    44. Chen ZQ, Yu ZS. Current status and development of spinal internal fixation technique. Zhonghua Yi Xue Za Zhi, 2006, 86(25): 1729-30.
    45. Anderson DG, Samartzis D, Shen FH, Tannoury C. Percutaneous instrumentation of the thoracic and lumbar spine. Orthop Clin North Am, 2007, 38(3): 401-8.
    46. Freslon M, Mosnier T, Gayet LE, Skalli W. Biomechanical evaluation of posterior instrumentation for lumbar burst fracture: comparison of two internal devices. Rev Chir Orthop Reparatrice Appar Mot, 2007, 93(3): 213-21.
    47. Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H. Test protocols for evaluation of spinal implants. J Bone Joint Surg Am, 2006, 88(2): 103-9.
    48. Conrad BP, Cordista AG, Horodyski M, Rechtine GR. Biomechanical evaluation of the pullout strength of cervical screws. J Spinal Disord Tech, 2005, 18(6): 506-10.
    49. Haka?o J, Pezowicz C, Wroński J, Bedziński R, Kasprowicz M. The process of subsidence after cervical stabilizations by cage alone, cage with plate and plate-cage. A biomechanical comparative study. Neurol Neurochir Pol, 2007, 41(5): 411-6.
    50. Johnston TL, Karaikovic EE, Lautenschlager EP, Marcu D. Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J, 2006, 6(6): 667-72.
    51. Crisco JJ, Panjabi MM, Wang E, Price MA, Pelker RR. The injured canine cervical spine after six months of healing. An in vitro three-dimensional study. Spine, 1990, 15(10): 1047-52.
    52. Cornwall GB, Ames CP, Crawford NR, Chamberlain RH, Rubino AM, Seim HB, Turner AS. In vivo evaluation of bioresorbable polylactide implants for cervical graft containment in an ovine spinal fusion model. Neurosurg Focus, 2004, 16(3): E5.
    53. Karthik RM, Vandana KL. FEM in periodontal research. Indian J Dent Res, 2005, 16(1): 3-5.
    54. Ichim I, Kuzmanovic DV, Love RM. A finite element analysis of ferrule design on restoration resistance and distribution of stress within a root. Int Endod J, 2006, 39(6):443-52.
    55. Skalli O, Chou YH, Goldman RD. Intermediate filaments: not so tough after all. Trends Cell Biol, 1992, 2(10): 308-12.
    56. Rohlmann A, Calisse J, Bergmann G, Weber U. Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs. Spine, 1999, 24(12): 1192-5.
    57. Rawlinson JJ, Punga KP, Gunsallus KL, Bartel DL, Wright TM. Wear simulation of the ProDisc-L disc replacement using adaptive finite element analysis. J Neurosurg Spine, 2007, 7(2): 165-73.
    58. Taylor ZA, Cheng M, Ourselin S. Real-time nonlinear finite element analysis for surgical simulation using graphics processing units. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv, 2007, 10(Pt 1): 701-8.
    59. Lesniewska A, Choromanski W, Deszczynski J, Dobrzynski G. Modeling and simulation of physical performance of a external unilateral mechatronic orthopaedic fixator - bone system. Conf Proc IEEE Eng Med Biol Soc, 2006, 1:1533-6.
    60. Grosse IR, Dumont ER, Coletta C, Tolleson A. Techniques for modeling muscle- induced forces in finite element models of skeletal structures. Anat Rec, 2007, 290(9): 1069-88.
    61. Tada M, Yoshida H, Mochimaru M. Geometric modeling of living tissue for subject-specific finite element analysis. Conf Proc IEEE Eng Med Biol Soc, 2006, Suppl: 6639-42.
    62. Shimizu Y, Usui K, Araki K, Kurosaki N, Takanobu H, Takanashi A. Study of finite element modeling from CT images. Dent Mater J, 2005, 24(3): 447-55.
    63. Arola T, Hannula M, Narra N, Malmivuo J, Hyttinen J. Software suite for finite difference method models. Conf Proc IEEE Eng Med Biol Soc, 2006, 1: 1649-52.
    64. Bruck SD, Mueller EP. Reference standards for implantable materials: problems and needs. Med Prog Technol, 1989, 15(1-2): 5-20.
    65. Dubousset J. Spinal instrumentation: source of progress, but also revealing pitfalls. Bull Acad Natl Med, 2003, 187(3): 523-33.
    66. Freiherr SG, Scholz R, Seller K. Interbody metal implants for lumbar fusion. Orthopade, 2005, 34(10): 1033-9.
    67.顾其胜.实用生物医用材料学.上海:上海科学技术出版社, 2005. 9.
    68. Rio J, Beguiristain J, Duart J. Metal levels in corrosion of spinal implants. Eur Spine J, 2007, 16(7): 1055-61.
    69. Villarraga ML, Cripton PA, Teti SD, Steffey DL, Krisnamuthy S, Albert T, Hilibrand A, Vaccaro A. Wear and corrosion in retrieved thoracolumbar posterior internal fixation. Spine, 2006, 31(21): 2454-62.
    70. Haher T, Ottaviano D, Lapman P, Goldfarb B, Merola A, Valdevit A. A comparison of stainless steel and CP titanium rods for the anterior instrumentation of scoliosis. Biomed Mater Eng, 2004, 14(1): 71-7.
    71. Knoch M, Saxler G, Quint U. Titanium as an implant material for rods of transpedicular instrumentation of the lumbar spine. Biomed Tech (Berl), 2004, 49(5): 132-6.
    72. Lisi AJ, O'Neill CW, Lindsey DP, Cooperstein R, Cooperstein E, Zucherman JF. Measurement of in vivo lumbar intervertebral disc pressure during spinal manipulation: a feasibility study. J Appl Biomech, 2006, 22(3): 234-9.
    73. Fryer G, Morris T, Gibbons P. Paraspinal muscles and intervertebral dysfunction. J Manipulative Physiol Ther, 2004, 27(5): 348-57.
    74. McGorry RW, Hsiang SM, Fathallah FA, et al. Timing of activation of the erector spine and hamstrings during a trunk flexion and extension task. Spine, 2001, 26: 418-25.
    75. Arjmand N, Shirazi-Adl A. Role of intra-abdominal pressure in the unloading and stabilization of the human spine during static lifting tasks. Eur Spine J, 2006, 15(8): 1265-75.
    76. Arjmand N, Shirazi A. Biomechanics of changes in lumbar posture in static lifting. Spine, 2005, 30(23): 2637-48.
    77. Haidekker MA, Andresen R, Werner HJ. Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests. Osteoporos Int, 1999, 9(5): 433-40.
    78. Yoganandan N, Larson SJ, Gallagher M, et al. Stiffness and strain energy criteria to evaluate the threshold of injury to intervertebral joints. J Biomech, 1989, 22: 135-42.
    79.赵凤东,范顺武,杨迪生.腰痛的生物力学.北京:北京大学医学出版社, 2005. 8.
    80. Kettler A, Liakos L, Haegele B, Wilke HJ. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur Spine J, 2007, 16(12): 2186-92.
    81. Cotterill PC, Kostuik JP, D'Angelo G, Fernie GR, Maki BE. An anatomical comparison of the human and bovine thoracolumbar spine. J Orthop Res, 1986, 4(3): 298-303.
    82. Wilke HJ, Krischak ST, Wenger KH, Claes LE. Load-displacement properties of the thoracolumbar calf spine: experimental results and comparison to known human data. Eur Spine J, 1997, 6(2): 129-37.
    83. Wilke HJ , Krischak S , Claes L. Biomechanical comparison of calf and human spines. J Orthop Res, 1996, 14(4): 500-3.
    84. Buttermann GR, Beaubien BP, Saeger LC. Mature runt cow lumbar intradiscal pressures and motion segment biomechanics. Spine J, 26 Nov 2007.
    85. Wang JC, Kabo JM, Tsou PM, Halevi L, Shamie AN. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model. Spine J, 2005, 5(1): 64-70.
    86. Dhillon N, Bass EC, Lotz JC. Effect of frozen storage on the creep behavior of human intervertebral discs. Spine, 2001, 26(8): 883-8.
    87. Leone A, Guglielmi G, Cassar-Pullicino VN, Bonomo L. Lumbar intervertebral instability: a review. Radiology, 2007, 245(1): 62-77.
    88. Tsantrizos A, Ito K, Aebi M, Steffen T. Internal strains in healthy and degenerated lumbar intervertebral discs. Spine, 2005, 30(19): 2129-37.
    89. Vernon RB, Moore RJ, Fraser RD. The natural history of age-related disc degeneration: the pathology and sequelae of tears. Spine, 2007, 32(25): 2797-804.
    90. Holzapfel GA, Schulze-Bauer CA, Feigl G, Regitnig P. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol, 2005, 3(3): 125-40.
    91. Bass EC, Ashford FA, Segal MR, Lotz JC. Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation. Ann Biomed Eng, 2004, 32(9): 1231-42.
    92. Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA. Discogenic origins of spinal instability. Spine, 2005, 30(23): 2621-30.
    93. Liu J, Ebraheim NA, Haman SP, Shafiq Q, Karkare N, Biyani A, Goel VK, Woldenberg L. Effect of the increase in the height of lumbar disc space on facet joint articulation area in sagittal plane. Spine, 2006, 31(7): E198-202.
    94. Guo LX, Zhang M, Teo EC. Influences of denucleation on contact force of facet jointsunder whole body vibration. Ergonomics, 2007, 50(7): 967-78.
    95. Little JS, Khalsa PS. Material properties of the human lumbar facet joint capsule. J Biomech Eng, 2005, 127(1): 15-24.
    96. Ianuzzi A, Little JS, Chiu JB, Baitner A, Kawchuk G, Khalsa PS. Human lumbar facet joint capsule strains: During physiological motions. Spine J, 2004, 4(2):141-52.
    97. Scapinelli R, Stecco C, Pozzuoli A, Porzionato A, Macchi V, De CR. The lumbar interspinous ligaments in humans: anatomical study and review of the literature. Cells Tissues Organs, 2006, 183(1): 1-11.
    98. Chen LH, Lai PL, Tai CL, Niu CC, Fu TS, Chen WJ. The effect of interspinous ligament integrity on adjacent segment instability after lumbar instrumentation and laminectomy--an experimental study in porcine model. Biomed Mater Eng, 2006, 16(4): 261-7.
    99. Nachemson AL, Evans JH. Some mechanical properties of the third human lumbar ligamentum flavum. J Biomech, 1968, 1: 211-20.
    100. Tubbs RS, Loukas M, Phantana AA, Shoja MM, Ardalan MR, Shokouhi G, Oakes WJ. Posterior distraction forces of the posterior longitudinal ligament stratified according to vertebral level. Surg Radiol Anat, 2007, 29(8): 667-70.
    101. Chosa E, Totoribe K, Tajima N. A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method. J Orthop Res, 2004, 22(1): 158-63.
    102. Natarajan RN, Garretson RB, Biyani A, Lim TH, Andersson GB, An HS. Effects of slip severity and loading directions on the stability of isthmic spondylolisthesis: a finite element model study. Spine, 2003, 28(11): 1103-12.
    103. Wang JP, Zhong ZC, Cheng CK, Chen CS, Yu CH, Chang TK, Wei SH. Finite element analysis of the spondylolysis in lumbar spine. Biomed Mater Eng, 2006, 16(5): 301-8.
    104. Masharawi YM, Alperovitch ND, Steinberg N, Dar G, Peleg S, Rothschild B, Salame K, Hershkovitz I. Lumbar facet orientation in spondylolysis: a skeletal study. Spine, 2007, 32(6): E176-80.
    105. Ivanov AA, Faizan A, Ebraheim NA, Yeasting R, Goel VK. The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar: anatomic and finite element investigations. Spine, 2007, 32(22): 2462-6.
    106. Denis F. The three column spine and its significance in the classification of acutethoracolumbar spinal injuries. Spine, 1983, 8(8): 817-31.
    107. Ferguson RL, Allen BL. A mechanistic classification of thoracolumbar spine fractures. Clin Orthop Relat Res, 1984, 189: 77-88.
    108. Najarian S, Dargahi J, Heidari B. Biomechanical effect of posterior elements and ligamentous tissues of lumbar spine on load sharing. Biomed Mater Eng, 2005, 15(3): 145-58.
    109. Cripton PA, Jain GM, Wittenberg RH, Nolte LP. Load-sharing characteristics of stabilized lumbar spine segments. Spine, 2000, 25(2): 170-9.
    110. Williamson MB, Aebi M. Biomechanics of the spine and spinal instrumentation. AO ASIF principles in spine surgery. Berlin: Springer-Verlag, 1998: 3-12.
    111. Benzel EC, Kayanja M, Fleischman A, Roy S. Spine biomechanics: fundamentals and future. Clin Neurosurg, 2006, 53: 98-105.
    112. Cunningham BW, Sefter JC, Shono Y, et al. Static and cyclical biomechanical analysis of pedicle screw spinal constructs. Spine, 1993, 18: 1677-88.
    113. Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine, 2007, 32(10): 1077-83.
    1. Hallett A, Huntley JS, Gibson JN. Foraminal stenosis and single-level degenerative disc disease: a randomized controlled trial comparing decompression with decompression and instrumented fusion. Spine, 2007, 32: 1375-80.
    2. Zdeblick TA, Nachemson A, O'Brien JP. Lumbar disc disease with discogenic pain. What surgical treatment is most effective? Spine, 1996, 21(15): 1835-8.
    3. Eck JC, Hodges S, Humphreys SC. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg, 2007, 15: 321-9.
    4. Shen FH, Samartzis D, Khanna AJ, et al. Minimally invasive techniques for lumbar interbody fusions. Orthop Clin North Am, 2007, 38: 373-86.
    5. Brau SA. Mini-open approach to the spine for anterior lumbar interbody fusion: description of the procedure, results and complications. Spine J, 2002, 2(3): 216-23.
    6. Burkus JK, Schuler TC, Gornet MF, Zdeblick TA. Anterior lumbar interbody fusion for the management of chronic lower back pain: current strategies and concepts. Orthop Clin North Am, 2004, 35(1): 25-32.
    7. Olinger A, Hildebrandt U, Vollmar B, Feifel G, Mutschler W, Menger MD. Laparoscopic-transperitoneal and lumboscopic-retroperitoneal surgery of the spine.Developments from animal experiments for use in clinical practice. Zentralbl Chir, 1999, 124(4): 311-7.
    8. Dickman CA, Detweiler PW, Porter RW. Endoscopic spine surgery. Clin Neurosurg, 2000, 46: 526-53.
    9. Inamasu J, Guiot BH. Laparoscopic anterior lumbar interbody fusion: a review of outcome studies. Minim Invasive Neurosurg, 2005, 48(6): 340-7.
    10. Cammisa FP, Girardi FP, Antonacci A, Sandhu HS, Parvataneni HK. Laparoscopic transperitoneal anterior lumbar interbody fusion with cylindrical threaded cortical allograft bone dowels. Orthopedics, 2001, 24(3): 235-9.
    11. Gazzeri R, Tamorri M, Galarza M, Faiola A, Gazzeri G. Balloon-assisted endoscopic retroperitoneal gasless approach (BERG) for lumbar interbody fusion: a validalternative to the laparoscopic approach. Minim Invasive Neurosurg, 2007, 50(3): 150-4.
    12. Park Y, Ha JW. Comparison of one-level posterior lumbar interbody fusion performed with a minimally invasive approach or a traditional open approach. Spine, 2007, 32: 537-43.
    13. Isaacs RE, Podichetty VK, Santiago P, Sandhu FA, Spears J, Kelly K, Rice L, Fessler RG. Minimally invasive microendoscopy assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine, 2005, 3(2): 98-105.
    14. Holly LT, Schwender JD, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus, 2006, 20: E6.
    15.周跃,王建,初同伟等.内窥镜下单神经孔入路腰椎减压、植骨融合内固定术: 42例近期临床结果.中华外科杂志, 2007, 45(14): 967-71.
    16.张超,周跃. MRD治疗腰椎间盘突出症研究进展.中国矫形外科杂志, 2005, 13(23): 1820-2.
    17. Dantas FL, Prandini MN, Ferreira MA. Comparison between posterior lumbar fusion with pedicle screws and posterior lumbar interbody fusion with pedicle screws in adult spondylolisthesis. Arq Neuropsiquiatr, 2007, 65(3): 764-70.
    18. Foley KT, Lefkowitz MA. Advances in minimally invasive spine surgery. Clin Neurosurg, 2002, 49: 499-517.
    19. Meij BP, Suwankong N, Vanderveen AJ, Hazewinkel HA. Biomechanical flexion- extension forces in normal canine lumbosacral cadaver specimens before and after dorsal laminectomy-discectomy and pedicle screw-rod fixation. Vet Surg, 2007, 36(8): 742-51.
    20. Foley KT, Gupta SK, Justis JR, Sherman MC. Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus, 2001, 10(4): E10.
    21. Foley KT, Gupta SK. Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg, 2002, 97(1 Suppl): 7-12.
    22. Ringel F, Stoffel M, Stüer C, Meyer B. Minimally invasive percutaneous pedicle screwfixation of the thoracic and lumbar spine. Neurosurgery, 2006, 59(4): 361-6.
    23. Lee SH, Choi WG, Lim SR, Kang HY, Shin SW. Minimally invasive anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation for isthmic spondylolisthesis. Spine J, 2004, 4(6): 644-9.
    24. German JW, Foley KT. Minimal access surgical techniques in the management of the painful lumbar motion segment. Spine, 2005, 30(16): S52-9.
    25. Thalgott JS, Chin AK, Ameriks JA, et a1. Mininally invasive 360°instrumented lumbar fusion. Eur Spine J, 2000, 9(1): S51-6.
    26. Kandziora F, Schleicher P, Scholz M, Pflugmacher R, Eindorf T, Haas NP, Pavlov PW. Biomechanical testing of the lumbar facet interference screw. Spine, 2005, 30(2): E34-9.
    27. Inamasu J, Guiot BH. Laparoscopic anterior lumbar interbody fusion: a review of outcome studies. Minim Invasive Neurosurg, 2005, 48(6): 340-7.
    28. Gerszten PC, Welch WC. Spine: minimally invasive techniques. Prog Neurol Surg, 2006, 19:135-51.
    29. Nepomnayshy D, Cross S, Pfeifer B, et al. Laparoscopic approach for lumbar spinal fusion. Minim Invasive Ther Allied Technol, 2006, 15: 271-6.
    1. Chen ZQ, Yu ZS. Current status and development of spinal internal fixation technique. Zhonghua Yi Xue Za Zhi, 2006, 86(25): 1729-30.
    2. Freslon M, Mosnier T, Gayet LE, Skalli W. Biomechanical evaluation of posterior instrumentation for lumbar burst fracture: comparison of two internal devices. Rev Chir Orthop Reparatrice Appar Mot, 2007, 93(3): 213-21.
    3. Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomec, 2007, 22(4): 377-84.
    4. Wilke HJ, Kettler A, Wenger KH, et al. Anatomy of the sheep spine and its comparison to the human spine. Anat Rec, 1997, 247: 542.
    5. Wilke HJ, Kettler A, Claes LE. Are sheep spines a valid biomechanical mode for human spines ? Spine, 1997, 22: 2365.
    6. Wilke HJ , Krischak S , Claes L. Biomechanical comparison of calf and human spines. J Orthop Res, 1996, 14(4): 500-3.
    7. Johnston TL, Karaikovic EE, Lautenschlager EP, Marcu D. Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J, 2006, 6(6): 667-72.
    8. Cornwall GB, Ames CP, Crawford NR, Chamberlain RH, Rubino AM, Seim HB, Turner AS. In vivo evaluation of bioresorbable polylactide implants for cervical graft containment in an ovine spinal fusion model. Neurosurg Focus, 2004, 16(3): E5.
    9. Karthik RM, Vandana KL. FEM in periodontal research. Indian J Dent Res, 2005, 16(1): 3-5.
    10. Ichim I, Kuzmanovic DV, Love RM. A finite element analysis of ferrule design on restoration resistance and distribution of stress within a root. Int Endod J, 2006, 39(6): 443-52.
    11. Lesniewska A, Choromanski W, Deszczynski J, Dobrzynski G. Modeling and simulation of physical performance of a external unilateral mechatronic orthopaedicfixator - bone system. Conf Proc IEEE Eng Med Biol Soc, 2006, 1: 1533-6.
    12. Grosse IR, Dumont ER, Coletta C, Tolleson A. Techniques for modeling muscle-induced forces in finite element models of skeletal structures. Anat Rec, 2007, 290(9): 1069-88.
    13. Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H. Test protocols for evaluation of spinal implants. J Bone Joint Surg Am, 2006, 88(2): 103-9.
    14. Lei W, Wu Z. Biomechanical evaluation of an expansive pedicle screw in calf vertebrae. Eur Spine J, 2006, 15(3): 321-6.
    15. Conrad BP, Cordista AG, Horodyski M, Rechtine GR. Biomechanical evaluation of the pullout strength of cervical screws. J Spinal Disord Tech, 2005, 18(6): 506-10.
    16. Murakami H, Yamazaki K, Attallah-Wasif ES, Tsai KJ, Shimamura T, Hutton WC. A biomechanical study of three different types of sublaminar wire used for constructs in the thoracic spine. J Spinal Disord Tech, 2006, 19(6): 442-6.
    17. Pfeiffer FM, Abernathie DL, Smith DE. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Spine, 2006, 31(23): E867-70.
    18. Ledet EH, Tymeson MP, Salerno S, Carl AL, Cragg A. Biomechanical evaluation of a novel lumbosacral axial fixation device. J Biomech Eng, 2005, 127(6): 929-33.
    19. Lindsey C, Deviren V, Xu Z, Yeh RF, Puttlitz CM. The effects of rod contouring on spinal construct fatigue strength. Spine, 2006, 31(15): 1680-7.
    20. Xu HZ, Wang XY, Chi YL, Zhu QA, Lin Y, Huang QS, Dai LY. Biomechanical evaluation of a dynamic pedicle screw fixation device. Clin Biomech, 2006, 21(4): 330-6.
    21. Hsu CC, Chao CK, Wang JL, Hou SM, Tsai YT, Lin J. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res, 2005, 23(4): 788-94.
    22. Esenkaya I, Denizhan Y, Kaygusuz MA, Yetmez M, Kele?temur MH. Comparison of the pull-out strengths of three different screws in pedicular screw revisions: a biomechanical study. Acta Orthop Traumatol Turc, 2006, 40(1): 72-81.
    23. Johnston TL, Karaikovic EE, Lautenschlager EP, Marcu D. Cervical pedicle screws vs. lateral mass screws: fatigue analysis and residual pullout strengths. Spine J, 2006, 6(6): 667-72.
    24. Ashman RB, Bechtold J E, Edwards WT, et al. In vitro spine implant mechanical testing protocol. J Spine Dis, 1989, 2: 274.
    25. Bellini CM, Galbusera F, Raimondi MT, Mineo GV, Brayda-Bruno M. Biomechanics of the lumbar spine after dynamic stabilization. J Spinal Disord Tech, 2007, 20(6): 423-9.
    26. Haka?o J, Pezowicz C, Wroński J, Bedziński R, Kasprowicz M. The process of subsidence after cervical stabilizations by cage alone, cage with plate and plate-cage. A biomechanical comparative study. Neurol Neurochir Pol, 2007, 41(5): 411-6.
    27. Flamme CH, Hurschler C, Heymann C, Heide N. Biomechanical testing of different ventral fixation devices on the bovine lumbar spine. Z Orthop Ihre Grenzgeb, 2004, 142(1): 88-96.
    28. Williamson MB, Aebi M. Biomechanics of the spine and spinal instrumentation. AO ASIF principles in spine surgery. Berlin: Springer-Verlag, 1998: 3-12.
    29. Benzel EC, Kayanja M, Fleischman A, Roy S. Spine biomechanics: fundamentals and future. Clin Neurosurg, 2006, 53: 98-105.
    30. Najarian S, Dargahi J, Heidari B. Biomechanical effect of posterior elements and ligamentous tissues of lumbar spine on load sharing. Biomed Mater Eng, 2005, 15(3): 145-58.
    31. Cripton PA, Jain GM, Wittenberg RH, Nolte LP. Load-sharing characteristics of stabilized lumbar spine segments. Spine, 2000, 25(2): 170-9.
    32. Cunningham BW, Sefter JC, Shono Y, et al. Static and cyclical biomechanical analysis of pedicle screw spinal constructs. Spine, 1993, 18: 1677-88.
    33. Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine, 2007, 32(10): 1077-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700