腰椎旋转手法的生物力学及相关临床解剖学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:(1)研究腰椎旋转手法对腰椎间盘内压力、神经根位移及小关节内应力的影响。(2)观测腰椎间孔韧带和小关节囊的形态及特点,以探讨其在腰腿痛发生机制中的作用及其与手法的关系。方法:(1)7具新鲜尸体腰椎标本定量模拟斜扳、坐位旋转手法和牵扳三种腰椎旋转手法,测量手法前后L_(34)、L_(45)和L_5S_1髓核内压力变化;用引伸仪定量观察旋转手法下L_4、L_5神经根与L_(34)、L_(45)椎间盘之间的位置变化关系;以压敏片测量手法对小关节内压力的影响。(2)取5具正常人体腰椎防腐标本,对椎间孔韧带和小关节囊形态特征进行观测;在2例人体新鲜腰椎标本上对椎间孔韧带和L_5小关节囊进行特殊间苯二酚品红-VG染色,显微观察小关节囊的组织学构成。结果:(1)斜扳手法和坐位旋转手法髓核内压力明显升高,牵扳手法下髓核内压力降低或轻度升高,坐位旋转手法时以L_5S_1髓核内压力升高最明显(P<0.001);神经根与椎间盘之间相对位移的大小分别为(1.34±0.74)mm、(1.30±1.05)m、(1.13±0.92)mm;三种手法时腰椎小关节应力差异无显著性。(2)所有标本均含有椎间孔韧带,韧带以上腰椎多见。椎间孔垂直径、神经根孔垂直径和神经根直径分别为(17.09±2.92)mm、(11.19±3.06)mm、(4.37±1.08)mm;椎间孔韧带由致密结缔组织构成。(3)关节囊上下各部纤维走行方向不同。其外层为致密胶原纤维组织,中层靠近两端有大量弹性纤维分布。结论:(1)腰椎旋转手法难以使突出髓核回纳;适当的手法旋转方向有利于改变突出物与神经根之间的位置关系,从而缓解神经根受压,这可能是手法治疗腰椎间盘突出症的生物力学作用机制。腰椎旋转手法在小关节内产生的应力小于引起小关节骨折的临界应力,因此常规旋转手法是较安全的,其中牵扳手法最为安全。(2)腰椎间孔韧带应为腰椎间孔区正常的组织结构,它对节段血管和神经根具有保护作用。但当椎间孔周围组织退变,椎间孔出现狭窄时,它的存在可能会成为血管和神经根受挤压的危险因素。(3)小关节囊复杂的解剖和组织结构关节的力学特性具有明显的影响作用。结合小关节在手法过程中的运动形式,粗暴的腰椎旋转手法可能会导致小关节囊
    
    损伤,考虑这是临床手法后腰痛加重的原因。
Objective: ( 1 ) To study the effect of Lumbar Rotatory Manipulations(LRM) on the variations of intradiscal pressure, the movements of disc communicating with nerve roots and the changes of stress within lumbar facet joints. (2) To describe the anatomical and histological characteristics of the lumbar joint capsules and the Lumbar foraminal ligaments(LFL), and discuss the effect of LRM
    on the fibers of capsules and LFL. Methods: (1) Seven fresh cadaveric lumbar spines were subjected by three kinds of LRM, such as rotation manipulation, sitting-rotation manipulation and traction-rotation manipulation, while the variations of intradiscal pressure of L34,L45, and L5S1 were measured by pressure sensor, the movements of L34, L45 disc communicating with L4, L5 nerve roots were observed by biomedical
    extensometer, and the changes of stress on lumbar facet joints of L34, L45 and L5S1 were measured by sensitive film. (2) Macroscopic investigations were performed on LFL and facet joint capsules, which dissected from five embalmed cadavers; With microscopic studies, facet joint capsules and LFL, obtained from two fresh cadavers, were stained by the resorzinoroseine-VG method. Results: (1) The pressure of lumbar
    nucleus increased during experimental rotation manipulation and sitting-rotation manipulation, and reduced or slightly increased during traction-rotation manipulation. The increase of the pressures was the most obvious at the segment of L5S1 during sitting-rotation manipulation (P<0.001); The ranges of displacement between L45 disc and L5 nerve roots during the three kinds of manipulations were respectively
    (1. 34±0. 74)mm, (1. 30± 1. 05)mm, (1. 13±0. 92)mm; The changes of stress on lumbar facet joints in these simulating manipulations were no significant difference. (2) The Ligaments had been found in all lumbar objects. More ligaments laid in the upper lumbar region The vertical diameter of the lumbar foramen the nerve root passing pore and the nerve root is ( 17.09 ± 2. 92) mm, (11. 19 ± 3. 06)mm,(4. 37 ± 1. 08)
    mm respectively. Ligaments are consist of dense
    
    
    
    connective tissues. (3) In the superior part of the facet joint capsules, the fibers direction is different from it in the inferior part of the joint. The outer layer of capsules is composed of parallel bundles of collagenous fibers, and in the middle layer bundles of elastic fibers lie in the roots of capsules. Conclusions: (1) LRM can not make the protruded nucleus pulposus replace
    in, but the moderate direction of LRM can change the position of the protruded nucleus puplosus and release the compression of nerve roots which were suffered by protruded nucleus puplosus, and that might be the biomechanic mechanism of LRM in treating for lumbar disc herniation. The stress of lumbar facet was lower than the limitation of lumbar facet fracture during LRM, so the manipulations
    are safe within certain rotation angle, and traction-rotation manipulation is the safest in the three kinds of LRM. (2) LFL are probably normal components of the intervertebral foramen, and the segmental blood vessels and nerve roots are protected by LFL. With the development of spinal segmental degeneration and the narrowing of foramen, the ligaments could become a source of entrapments to the
    passage of spinal nerves, segmental blood vessels. (3) Anatomical and histologic features of the lumbar facet joint capsule are complicated. The complex of morphologic factors can affect the biomechanics of the lumbar facet joints. Rotatory Manipulations in crude way may result in the capsule injury, and this may be the reason, in some cases, that low back pain become severe after LRM.
引文
1. 候筱魁,董凡等.斜搬时腰椎后部结构的动态观察和生物力学分析[J].中华骨科杂志,1993,13(1):51~54
    2. 马达,蒋位庄.脊柱旋转手法治疗腰椎间盘突出症的实验研究[J].中国骨伤,1994,7(5):7~9
    3. 李义凯,朱青安,钟世镇.为脊柱推拿手法提供定量化研究的新装置[J].中国中医骨伤科,1998,6(3):62
    4. Suseki K, Takahashi Y, et al. Sensory nerve fibres from lumbar intervertebral discs pass through rami communicantes. A possible pathway for discogenic low back pain [J]. J Bone Joint Surg Br, 1998, 80 (4): 737~742
    5. 李义凯,李军朋,钟世镇.腰椎小关节“肥大”,“内聚”的解剖学观察[J].颈腰痛杂志,1998,19(1):24~25
    6. Amonoo KHS, EL-B MG et al. ligaments associated with lumbar intervertebral foramina. 2.The fifth lumbar level[J]. J Anat, 1988,159:1~10
    7. Mooney V, Robertson J. The facet syndrom[J], clin orthap, 1996,115:149~156
    8. 胡有谷.腰椎间盘突出症[M].第二版,北京:人民卫生出版社,1998,255
    9. 肖文峰摘.人体腰椎间关节的动态压缩性质:新鲜标本与解冻标本之比较[J].国外医学生物医学工程学分册,1989,12:53
    10. Yamanoto I, Panjabi MM. Three-dimensional movements of the whole lumbar spinal and lumbosacral joint [J]. Spine, 1989; 14(11): 1256~1260
    11. Mcgregor AH, Mccarthy ID, Hughes SP. Motion characteristics of the lumbar spine in the normal population. Spine [J]. 1995,20(22): 2421~2428
    12. Nachemson A. Lumbar interdiscal pressure: Experimental studies on postmortem material [J]. Acta Orthop Scand, 1960, 43 (suppl): 100~104
    
    
    13. Nachemson A, Morris JM. In vivo measurements of intradiscal pressure discs [J]. J Bone Joint Surg (Am), 1964,46: 1077~1092.
    14. Andersson BJG, Ortengren R, Nachemson A, et al. Lumbar disc pressure and myoelectric back muscle activity during sitting [J]. Scan J Rehabil Med, 1974,6:104~114
    15. Nachemson A, Elfstrom G.Intravital dynamic pressure measurements in lumbar disc. Stand J dynamic pressure measurements in lumbar discs [J]. Scan J Rehabil Meal (Suppl), 1970,1: 1~40
    16. Maigne JY, Guillon F. Highlighting if intervertebral movements and variations of intradiscal pressure during lumbar spine manipulation: A feasibility study [J]. J Manipulative Physical Ther, 2000, 23(8): 531~535
    17. Nachemson AL, Schnlts AB, Berkson MH. Mechanical properties of human lumbar spine motion segments [J]. Spine, 1979,4:1~8
    18. Merriam WF, Quimmell RC, Stockdale HP et al. The effect of postural changes on the inferred pressures within the nucleus during lumbar discography [J]. Spine, 1984,9:405~408
    19. Katsuhiko Sato, Shinichi Kikuchi, Takumi Yonezawa. In vivo intradiscal pressure measurement in patients with ongoing back problems [J]. Spine, 1999,24(23): 2468~2474
    20. Michael AA, Stephen M, Brain JCFM, et al. Effect of backward bending on lumbar intervertebral discs [J]. Spine, 2000,25(4): 431~437
    21. Schmidt TA, An HS, Lim TH, et al. The stiffness of lumbar spinal motion segments with a high-intensity zone in the annulus fibrosus[J]. Spine, 1998, 23(20): 2167~2173
    22.李义凯,朱青安,钟世镇.旋转手法对颈椎髓核内压力影响的比较研究[J],中国康复医学杂志,1997,12(5):193~196
    23. Cholewicki J, Crisco JJ, Oxland TR, et al. Effects of posture and structure on three-dimensional coupled rotations in the lumbar spine. A biomechanical analysis [J]. Spine, 1996, 21(21): 2421~2428
    
    
    24.周秉文.突出的腰椎间盘与神经根的关系—解剖及临床观察[J].中华外科杂志,1979,17(5):372~375
    25. Crelin ES. Functional anatomy of the lumbosacral spine [M]. St Louis: C.V. Mosby Co, 1980.57~77.
    26.李义凯,钟世镇.旋转手法对椎管内结构和容积影响的研究[J].中国中医骨伤科,1997,5(6):4~6
    27. Grimes PF; Massie JB; Garfin SR. Anatomic and biomechanical analysis of the lower lumbar foraminal ligaments [J]. Spine. 2000, 25(16): 2009~2014
    28.樊继宏,朱青安,赵卫东,等.压敏片材料在关节生物力学中的应用[J].中国医学物理学杂志,2001,18(2):104~106
    29. Panjabi MM, Oxland T, Takata K, et al. Articular facets of the human spine. Quantitative three-dimensional anatomy[J]. Spine, 1993,18: 1298~1310
    30.董凡,戴魁戎,侯筱魁.关节在腰椎结构刚度中的作用[J].中华外科杂志,1993,31,7:417~420
    31. Adams MA, Hutton WC. The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces[J]. J Bone Joint Surg(Br), 1980,62:358~362
    32. Kummer, Biomechanische Aspekte zur Instabilitat der Wirbelsaule. In Fuchs GA(ed) Die instabile Wirbelsaule[J]. Stuttgart: Thieme, 1991:8
    33. Farfan HF, Cosette JW, Roberson LH, et al. The effect of torsion on the lumbar intervertebral joint: the role of torsion in the production of disc degeneration[J]. J Bone Joint Surg(Am), 1970,52:468~497
    34. Haher TR, O'Brien, Dryer JW, et al. The role of the lumbar facet joints in spinal stability. Identification of alternative paths of loading[J]. Spine 1994,23:2667~2671
    35. Hedman TP.A new transducer for facet force measurement in the lumbar spine: benchmark and in vitro test results [J]. J Biomech, 1992, 25: 69~80
    36. Lirenz M, Qatwardhan A, Vanderby R Jr. Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments [J]. Spine, 1983,8:122~130
    37. Macko VW, Matthews LW, Zwirkoski P, et al. The joint-contact area of the ankle: the contribution of the posterior malleolus [J]. J Bone Joint Surg, 1991,73A: 347~351
    
    
    38. Augsburger S, Necki L, Horton J, et al. A comparison of scaphiod trapezium trapezoid fusion and four-bone tendon weave for scapholunate dissociation [J]. J Hand Surg, 1992,17A: 360~369
    39.汤荣光,盛为,戴可戎.距下关节接触特征及其意义[J] 中华骨科杂志,1999,19:484~487
    40.毕胜,李义凯,赵卫东,等.推拿手法治疗腰椎间盘突出症的机制研究[J].中国康复医学杂志,2001,16(1):8~10
    41. Ueno K, Liu YK. A Three-dimensional nolinear finite element model of lumbar intervertebral joint in torsion [J]. Journal of biomechanical engineering, 1987,109, 200~209
    42. Kerin AJ, Wisnom MR, Adams MA. The compressive strength of articular carilage [J]. Proc Inst Mech Eng, 1998,212(4): 273~280
    43. Golub BS, Silverman B. Transforaminal ligaments of the lumbar spine [J]. J Bone Joint Surg, 1969, 51a: 947~956
    44. Bachop W, Hilgendorf C. Transforaminal ligaments of the human lumbar spine [J]. Anat Rec, 1981,199:14a
    45. Bachop W, Janse J. The corporotransverse ligament at the L5 intervertebral foramen[J]. Anat Rec, 1983,205:13a~14a
    46.岳寿伟,刘树伟.屈曲旋转腰椎牵引对人腰神经通道的影响[J].中国骨伤,2000,13(10):583~584
    47. Maurice-Williams RS. Spinal degenerative disease[M]. Bristol: Join Wright & Son, Ltd, 1981.203~204
    48. Verbiest H. A radicular syndrome from developmental narrowing of the lumbar vertebral canal[J]. J Bone Joint Surg, 1954,36b: 230~237
    49. Verbiest.H. Pathomorphologic aspects of developmental lumbar stenosis [J]. Orthop Clin North Am, 1975,6:177~196
    50. Macnab I. Backache [M]. 1st ed. Baltimore: Williams & Wilkins Co,1977.97~99
    51. Larmon WA. An anatomical study of the lumbosacral region in relation to low back pain and sciatica [J]. Ann Surg, 1944,119: 892~896
    
    
    52. Kadish LJ, Simmons EH. Anomalies of the lumbosacral nerve roots. An anatomical investigation and myelographic study [J]. J Bone Joint Surg, 1984,66b:411~416
    53.侯筱魁,董凡,赵文成.斜扳时完整腰椎三维立体运动的研究[J].中国骨伤,1996,9(4):5~7
    54. Haher TR, O'Brien, Dryer JW, et al. The role of the lumbar facet joints in spinal stability. Identification of alternative paths of loading [J]. Spine, 1994, 23:2667~2671
    55.毕胜,李义凯,汪爱嫒等.不同推拿手法下腰椎小关节应力变化的观察[J].中国康复医学杂志,2001,16(3):144~145
    56. Gertzbein SD. Fractures of the thoracic and lumbar spine [M]. Baltimore: Williams Wilkins. 1992:1~24
    57. Toshihiko Y, Yasuhiko MA. Cuneyt O, et al. A Morphological Study of the Fibrous Capsule if the Human Lumbar Facet Joint[J]. Spine, 1996,21(5): 538~543
    58. Giles LGF. Anatomical basis of low back pain [M]. Baltimore: Williams Wilkins. 1989:12~26
    59.张爱平.脊柱应力的有限元分析[J].福建中医学院学报,1995,9(2):26~29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700