膨胀式椎弓根螺钉在骨质疏松条件下稳定机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
椎弓根螺钉内固定技术广泛应用于治疗脊柱退行性病变、脊柱骨折、脊柱畸形、脊柱结核及椎体转移瘤等病症。椎弓根螺钉的固定可靠性取决于骨-螺钉界面把持力的维持。但对于骨质疏松症(osteoporosis,OP)患者,由于骨矿物质密度降低(bone mineral density,BMD),骨小梁变薄,骨-螺钉界面连接不牢固,常使患者面临着螺钉松动、固定失败的风险[1]。为强化椎弓根螺钉的稳定性,在钉道内添加聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)、磷酸钙骨水泥(Calcium phosphate cement,CPC)、羟基磷灰石骨水泥(Hyduoyapatite cement,HAC)等强化物质可提高螺钉稳定性,相关的体外实验研究较多[4,5,6],但临床应用并不广泛。主要由于PMMA等存在诸多缺点[7,8],而CPC、HAC等在体内被完全替代之前的这段时间内是否可提供足够的力学强度,亦需进一步评价[5,6,9]。为了简化术中的强化操作过程,避免添加生物材料引起的并发症,本课题组前期的研究、设计了膨胀式椎弓根螺钉[2,3](expansive pedicle screw,EPS),并获专利保护(专利号: CN2647255)。离体的生物力学试验及机械强度试验,表明EPS在强度无下降的情况下,具有更高固定可靠性。但EPS在骨质疏松条件下,是否会实现长期的稳定及EPS的稳定机制仍不清楚,目前也无EPS界面研究的相关报道。
     研究目的:观察在骨质疏松状态下,EPS骨-螺钉界面以及EPS膨胀缝隙内组织学情况,探讨其在体强化稳定的作用机制,为临床应用进一步提供理论依据。
     研究方法:1)建立骨质疏松绵羊的动物模型。采用双侧卵巢切除法(ovariectomy,OVX)对绵羊去势。双能X-线吸收法(dual energy X-ray absorptiometry,DEXA)测定去势前、饲养1年后绵羊的BMD,并进行对比分析,确定本研究的OP绵羊的动物模型的建立。2)EPS在OP绵羊体内界面的显微CT(micro-computed tomography,Micro-CT)评价及组织学分析。植入EPS,饲养3个月、6个月后取材。采用最新的Micro-CT技术和包含螺钉的硬组织切片、染色技术,研究在OP的松质骨内EPS骨-螺钉界面以及EPS膨胀缝隙内的力学及组织学情况。
     研究结果:1)对标本的Micro-CT扫描及三维重建后,发现在EPS膨胀段骨-螺钉界面的骨小梁比界面外的骨小梁浓密,尤其在螺纹间更为明显,而在EPS非膨胀段的骨-螺钉界面的骨小梁稀疏,与周围骨质的浓密程度相似。在相同界值下取相同体积的与EPS螺纹相邻的“感兴趣区(regeon of interest,ROI)”进行骨计量学分析。扫描后的数据自动显示:EPS的膨胀段ROI的组织骨密度(tissure mineral density,TMD )和骨体积分数( bone volume fraction,BVF)、骨表面积体积比( bone surface /bone volume,BS/BV)、骨小梁厚度(trabecular thickness,Tb.Th)、骨小梁间隙( trabecular spacing,Tb.Sp)等骨小梁的三维参数,明显优于非膨胀段,经Mann-Whitney非参数检验,差异有统计学意义。2)切片镜下观察发现,EPS骨-螺钉界面及膨胀缝隙中的骨小梁与EPS紧密无缝隙相接触,界面无结缔组织层。新生骨小梁长入膨胀后的螺钉缝隙中,并与骨-螺钉界面的被压迫而致密化的松质骨相延续、一直延伸至膨胀中心部。
     结论: 1)EPS膨胀段对周围骨质持续的应力,使之变得更加致密,并改变了局部骨小梁的排列趋势,实现了EPS在骨质疏松状态下的早期机械性的稳定。2)EPS形成的“骨中有钉、钉中有骨”立体交叉复合体结构,实现了EPS在骨质疏松状态下的远期生物性的稳定。由于EPS具有独特的机械性稳定和生物性稳定的优点,对于需要进行脊柱融合内固定的骨质疏松患者,EPS是最佳的选择之一。
Pedicle screws with plates or rods have been used to stabilize motion segments, correct spinal deformations and provide segmental fixation to promote graft incorporation in patients with degenerative, traumatic or neoplastic disorders of the spine. But pedicles screw fixation can be challenging in osteoporotic spine as mechanical stability of the pedicles screw-bone contract is affected by Bone mineral density (BMD). Poor rigidity of the bone-screw contract can lead to loosening of implant in osteoporotic patients. Analysis of pull-out strength of pedicles screw in lumbar spine has been performed in the past with a view to optimize the screw size, the screw insertion depth or direction and the screw design. Besides, to improve the strength of the screw-bone interface in osteoporosis (OP), mechanical tests have been performed with augmentation using polymethylmethacrylate (PMMA), Hydroxyapatite stick (HA), calciumphosphate cement (CPC), et al. These screw modification and augmentation strategies have been limited by possible complications and problems such as increased risks of pedicle fracture with resultant neural injury for larger screws, or anterior body penetration with ensuing vascular or visceral injury for longer screws, or potential problems associated with a non-absorbable foreign body in the spinal canal and with uncertain long-term rigidity on the course of substitution for those absorbable cements.
     To address these issues, we had designed expansive pedicle screws (EPS). EPS can improve bone fixation by increasing the screw tip diameter, allowing for greater bone contact without increasing screw diameter or length. Biomechanical studies have demonstrated that the use of an expansive screw design significantly improved the fixation strength compared with conventional pedicle screws. However, no systemic evaluation has been reported concerning the properties of screw-bone interface and the stable mechanism of EPS, especially in a living OP body.
     Objective To investigate the properties of the screw-bone interface and the stable mechanism of EPS in osteoporotic sheep, using three-dimensional (3D) imaging and reconstruction by micro-CT and histological analysis of microtome sections by microscope.
     Methods 1) Eves were ovariectomized bilaterally. Before ovariectomy(OVX)and 12 months after OVX, lumbar BMD was measured by dual energy X-ray absorptiometry(DEXA)to ensure the establishment of OP sheep model for this study.2) After EPS insertion in each femoral condyles of 6 OP sheep, 3 sheep were bred for 3 months, while another 3 sheep 6 months. Femoral condyles with EPS were 3D imaged and reconstructed by micro-CT. Histology was evaluated thereafter.
     Results 1) The trabecular microstructure was denser at the screw-bone interface than in the distant parts in expansive section, especially within spiral marking. In the non-expansive section, however, there was no significant difference between the interface and the distant parts. The regions of interest (ROI) adjacent to EPS were reconstructed and analyzed by micro-CT using the same thresholds. The 3D parameters generated, including tissue mineral density (TMD), bone volume fraction (BVF, BV/TV), bone surface/bone volume (BS/BV) ratio, trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), in expensive sections were better than those in non-expensive sections. Each pair of these parameters was compared using Mann-Whitney analyses, and were considered statistically significant(P<0.05). 2) Histologically, newly formed bony trabeculae crawled along the expansive fissures and into the center of EPS. The newly-formed bones, as well as the bone at the bone-screw interface, closely contacted the EPS without connective tissue layer, it concluded that EPS had excellent biocompatibility, and they constructed four compartments and wrapped up the pins tightly.
     Conclusions 1) The fins’continuous pressure to the bony trabeculae of the expensive section ensured the EPS’s mechanical stabilization at earlier stage. 2) The special 3D structure, which bone contained pin as well as pin contained bone, kept on biological fixation and stiffness of EPS enduringly. EPS is one of the best chooses in OP patients for its special properties of mechanical stabilization and biological fixation, if segmental fixation of spine is needed.
引文
[1] Reinhold M, Schwieger K, Goldhahn J, Linke B, Knop C, Blauth M.Influence of screw positioning in a new anterior spine fixator on implant loosening in osteoporotic vertebrae. Spine, 2006, 31(4):406-413.
    [2] LEI Wei,WU Zi xiang. Biomechanical evaluation of an expansive pedicle screw in calf vertebrae .Chin J Traumatol.2005, 8 (1): 39-45.
    [3] LEI Wei,WU Zi xiang. Biomechanical evaluation of an expansive pedicle screw in calf vertebrae. Eur Spine J .2006, 15(3): 321-326.
    [4] Sarzier JS, Evans AJ, Cahill DW.Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg, 2002, 96(3):309-312.
    [5] Leung KS,Siu WS,Li SF,Qin L,Cheung WH,Tam KF,Lui PP. An in vitro optimized injectable calcium phosphate cement for augmenting screw f ixation in osteopenic goats. J Biomed Mater Res B Appl Biomater,2006,78(1):153-160.
    [6] Lotz JG,Hu SS,Chiu DF, Yu M, Colliou O, Poser RD.Carbonated apatite cement augmentation pedicle screw fixation in the lumbar spine[J].Spine,1997,22(23):2716-2723.
    [7] Wilkes RA, Mackinnon J, Thomas W. Neurologic deterioration after cement injection into a vertebral body. J Bone Joint Surg [Br], 1994, 76(1):155.
    [8] Ryken TC, Clausen JD, Traynelis VC, Goel VK. Biomechanical analysis of bone mineral density, insertion technique, screw torque, and holding strength of anterior cervical plate screws. J Neurosurg, 1995, 83(2): 325-329.
    [9] Moore DC, Maitra RS, Farjo LA, Graziano GP, Goldstein SA. Restoration ofpedicle screw fixation with an in situ setting calcium phosphate cement. Spine, 1997, 22(15): 1696-1705.
    [10] Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD. Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J, 2004, 4(4):402-408.
    [11] Cook SD, Salkeld SL, Whitecloud TS 3rd, Barbera J.Biomechanical testing and clinical experience with the OMEGA-21 spinal fixation system.Am J Orthop.2001, 30(5):387-394.
    [12] Cook SD, Barbera J, Rubi M, Salkeld SL, Whitecloud TS 3rd. Lumbosacral fixation using expandable pedicle screws. an alternative in reoperation and osteoporosis.Spine J. 2001, 1(2):109-114.
    [13] Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD.Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J. 2004, 4(4):402-408.
    [14] 李宏伟,马远征,鲍达,孙继桐,陈兴,刘海容.膨胀与普通椎弓根钉治疗脊柱胸腰段骨折合并骨质疏松的对比研究,中国骨质疏松杂志,2006,12(1):13-16.
    [15] Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD.Effects of bone mineral density on pedicle screw fixation . Spine, 1994, 19 (21): 2415-2420.
    [16] Reitman CA, Nguyen L, Fogel GR. Biomechanical evaluation of relationship of screw pullout strength, insertional torque, and bone mineral density in the cervical spine. J Spinal Disord Tech. 2004, 17(4):306-311.
    [17] Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability oftranspedicle screwing for the osteoporotic spine, An in vitro study of the mechanical stability. Spine, 1993, 18(15): 2240-2245.
    [18] Sarzier JS, Evans AJ, Cahill DW.Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg, 2002, 96(3):309-312.
    [19] 樊仕才,朱青安,王柏川,赵卫东,周燕莉,金大地,刘大庸.聚甲基丙烯酸甲酯强化对骨质疏松椎弓根螺钉固定的生物力学作用.中华骨科杂志, 2001,21(2): 93-96.
    [20] 樊仕才,刘世学,邓月兴,黄蔼丽,王旭,章敏之.强化骨质疏松椎弓根螺钉对脊柱稳定性影响的生物力学研究.中国修复与重建外科杂志,2004,18(3):168-170.
    [21] Wittenberg RH, Lee KS, Shea M, White AA 3rd, Hayes WC .Effect of screw diameter,insertion technique,and bone cement augmentation of pedicular screw fixation strength.Clin Orthop,1993,(296):278-287.
    [22] Lotz JC, Hu SS, Chiu DF, Yu M, Colliou O, Poser RD. Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine. Spine, 1997, 22(23):2716-2723.
    [23] Yerby SA, Toh E, Mclain RF. Revision of failed pedicle screws using hydroxyapatite cement.A biomechanical analysis. Spine, 1998, 23(15): 1657-1661.
    [24] Moore DC, Maitra RS, Farjo LA, Graziano GP, Goldstein SA. Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine, 1997, 22(15): 1696-1705.
    [25] 杨述华,傅德皓,刘昌胜,李进,刘国辉,许伟华,杨操,李鲲,汪岚.磷酸钙骨水泥强化椎弓根螺钉对骨质疏松性椎体骨折的意义.中国矫形外科杂志.2003,11(23):1616-1618.
    [26] Bai B, Kummer FJ, Spivak J.Augmentation of anterior vertebral body screw fixation by an injectable,biodegradable calcium phosphate bone substitute.Spine,2001, 26(24):2679-2683.
    [27] 邵景范,Sarkar MR,Claes LE,Kinzl L,罗永湘. 可吸收陶瓷改善椎弓根螺钉稳定性的体外生物力学试验. 中华骨科杂志,2001,21(10):319-621.
    [28] Rohmiller MT, Schwalm D, Glattes RC, Elalayli TG, Spengler DM. Evaluation of calcium sulfate paste for augmentation of lumbar pedicle screw pullout strength. Spine J, 2002, 2(4):255-260.
    [29] Milcan A, Ayan I, Zeren A, Sinmazcelik T, Yilmaz A, Zeren M, Kuyurtar F. Evaluation of Cyanoacrylate Augmentation of Transpedicular Screw Pullout Strength. Spinal Disord Tech, 2005, 18(6):511-514.
    [30] Wuisman PI, Van Dijk M, Staal H, Van Royen BJ.Augmentation of (pedicle) screws with calcium apatite cement in patients with severe progressive osteoporotic spinal deformities: an innovative technique.Eur Spine J. 2000,9(6):28-533.
    [31] Polly DW Jr, Orchowski JR, Ellenbogen RG. Revision pedicle screws. Bigger, longer shims-what is best? Spine.1998, 23(12):1374-1379.
    [32] Brantley AG, Mayfield JK. The effects of pedicle screw fit. An in vitro study. Spine, 1994, 19(15):1752-1758.
    [33] Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichiya M, Ikeda M.Structural characteristics of the pedicleand its role in screw stability. Spine , 1997 , 22(21):2504-2510.
    [34] Weinstein JN, Spratt KF, Spengler D, Brick C, Reid S.Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine, 1988, 13(9):1012-1018.
    [35] Lehman RA Jr, Kuklo TR, Belmont PJ Jr, Andersen RC, Polly DW Jr. Advantage of pedicle screw fixation directed into the apex of the sacral promontory over bicortical fixation: a biomechanical analysis. Spine, 2002, 27(8):806-811.
    [36] McKinley TO, McLain RF, Yerby SA, Sharkey NA, Sarigul-Klijn N, Smith TS. Characteristics of pedicle screw loading.Effect of surgical technique on intravertebral and intrapediclar bending moments. Spine, 1999, 24(1):18-24.
    [37] 王正,沈国平,陈伟兵,王以进.椎弓根螺钉内固定稳定性的生物力学测试.医用生物力学,2002, 17(2):80-84.
    [38] Panjabi MM, Abumi K, Duranceau J, Crisco JJ. Biomechanical evaluation of spinal fixation devices. Spine, 1988, 13(10):1135-1140.
    [39] Barber JW, Boden SD, Ganey T, Hutton WC. Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? J Spinal Disord, 1998, 11(3):215-220.
    [40] 杨惠林,唐天驷,朱国良,陈荣发,洪天禄,许立,郑祖根,王以进.钉杆角椎弓根内固定系统治疗胸腰椎骨折的研究.中华骨科杂志,1995,15(9):570-572.
    [41] 魏美钢 ,王坤正,侯德门,倪国骅.椎弓根螺钉器械应力分析.西安交通大学学报( 医学版),2002,23(6):547-549.
    [42] Suzuki T, Abe E, Okuyama K, Sato K. Improving the pullout strength ofpedicle screws by screw coupling.J Spinal Disord. 2001, 14(5):399-403.
    [43] Hsu CC,Chao CK,Wang JL, Hou SM, Tsai YT, Lin J.Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses.J Orthop Res. 2005, 23(4):788-794.
    [44] McKoy BE,An YH. An injectable cementing screw for fixation in osteoporotic bone. J Biomed Mater Res, 2000, 53(3):216-220.
    [45] Klein SA,Glassman SD, Dimar JR 2nd, Voor MJ.Evaluation of the fixation and strength of a "rescue" revision pedicle screw. J Spinal Disord Tech. 2002, 15(2):100-104.
    [46] Herbert TJ, Fisher WE. Management of the fractured scaphoid using a new bone screw. J Bone Joint Surg [Br], 1984, 66(1):114-123.
    [47] Mummaneni PV, Haddock SM, Liebschner MA, Keaveny TM, Rosenberg WS.Biomechanical evaluation of a double-threaded pedicle screw in elderly vertebrae. J Spinal Disord Tech. 2002, 15(1):64-68.
    [48] 杨述华,胡勇,陈中海,杜靖远,杨操,许伟华,肖宝均,邵增务,李进,胡天喜,汪岚.空心侧孔椎弓根螺钉添加聚甲基丙烯酸甲酯骨水泥的生物力学研究.中华创伤杂志,2002,18(1): 17-22.
    [49] Sanden B, Olerud C, Petren-Mallmin M, Larsso S.Hydroxyapatite coating improves fixation of pedicle screws. A clinical study. J Bone Joint Surg Br,2002,84(3):387-391.
    [50] Fini M,Giavaresi G, Greggi T,Martini L, Aldini NN, Parisini P, Giardino R.Biological assessment of the bone-screw interface after insertion of uncoated and Hydroxyapatite-coated pedicular screws in the osteopenic sheep.J Biomed Mater Res, 2003, 66(1):176-183.
    [51] Hasegawa T, Inufusa A, Imai Y, Mikawa Y, Lim TH, An HS. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J. 2005, 5(3):239-243.
    [52] 孙长英,安洪,蒋电明.螺钉固定松质骨界面研究活体模型. 长治医学院学报,2001,15(4):243-245.
    [53] Schatzker J, Horne J G, Sunmer-Smith G. The effect of movement on the holding power of screws in bone . Clin Orthop Rela Res, 1975, 111(9):257-262.
    [54] Schatzker J, Horne J G,Sunmer-Smith G. The reaction of cortical bone to compression by screw threads.Clin Orthop Relat Res, 1975, 111(9):263-265
    [55] Branemark R, Ohrnell LO, Nilsson P, Thomsen P. Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials. 1997, 18(14):969-978.
    [56] Yamazaki M, Shirota T, Tokugawa Y, Motohashi M, Ohno K, Michi K, Yamaguchi A. Bone reactions to titanium screw implants in ovariectomized animals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999, 87(4):411-418.
    [57] Viljanen JT, Pihlajamaki HK, Tormala PO, Rokkanen PU.Comparison of the tissue response to absorbable self-reinforced polylactide screws and metallic screws in the fixation of cancellous bone osteotomies: an experimental study on the rabbit distal femur. J Orthop Res. 1997, 15(3):398-407.
    [58] 王祥善,孙保国,刘建民,陈金华,母心灵,雷哲,郭小伟. 膨胀式椎弓根螺钉在骨质疏松椎体的生物力学研究. 实用诊断与治疗杂志,2005,19(8):552-554.
    [59] 王祥善,鲍朝辉,赵卫东,孙保国,刘建民.膨胀式脊柱内固定系统椎弓根螺钉翻修作用的生物力学研究,中国脊柱脊髓杂志,2005,15(7):436-439.
    [60] Yahiro MA. Comprehensive literature review: pedicle screw fixation devices. Spine 1994, 9(Suppl 20):2274–2278.
    [61] 郭卫春,彭昊,陶海鹰,明江华.强化膨胀式椎弓根螺钉翻修作用的生物力学评价,临床外科杂志,2006,14(8):508-509.
    [62] Ding M, and Hvid I. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone, 2000, 26(3): 291-295.
    [63] Muller R. The Zurich experience: one decade of three-dimensional high-resolution computed tomography. Top Magn Reson Imaging, 2002, 13(5):307-322.
    [64] Martin-Badosa E ,Amblard D ,Nuzzo S Elmoutaouakkil A, Vico L, Peyrin F. Excised bone structures in mice : imaging at three-dimensional synchrotron radiation microCT. Radiology, 2003, 229(3):921-928.
    [65] Holdsworth DW, Thornton MM. Micro-CT in small animal and specimen imaging. Trends Biotechnol, 2002, 20(8): 34-39.
    [66] David V ,Laroche N ,Boudignon B ,Lafage-Proust MH, Alexandre C, Ruegsegger P,Vico L. Noninvasive in vivomonitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography. J Bone Miner Res, 2003, 18(9):1622-1631.
    [67] Ford NL, Thornton MM, Holdsworth DW. Fundamental image quality limits for microcomputed tomography in small animals. Med Phys. 2003, 30(11):2869-2877.
    [68] Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler JM, Aguado E, Daculsi G.In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005, 26(27):5444-5453.
    [69] Ho ST, Hutmacher DW.A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006, 27(8):1362-1376.
    [70] Jones AC, Sakellariou A, Limaye A.Investigation of microstructural features in regenerating bone using micro computed tomography. J Mater Sci Mater Med. 2004, 15(4):529-532.
    [71] Knackstedt MA, Arns CH, Senden TJ, Gross K. Structure and properties of clinical coralline implants measured via 3D imaging and analysis. Biomaterials. 2006, 27(13):2776-2786.
    [72] Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007, 28(15):2491-2504.
    [73] Jaecques SV, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Vander Sloten J.Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone.Biomaterials 2004, 25(9): 1683-1696.
    [74] Yang J, Pham SM, Crabbe DL. High-resolution Micro-CT evaluation of mid- to long-term effects of estrogen deficiency on rat trabecular bone.Acad Radiol.2003, 10(10):1153-1158.
    [75] Hu JH, Ding M, Soballe K Bechtold JE, Danielsen CC, Day JS, Hvid I. Effects of short-term alendronate treatment on the three-dimensional microstructural, physical, and mechanical properties of dog trabecular bone. Bone. 2002, 31(5):591-597.
    [76] 汪爱嫒,彭江,孙明学,原新成,赵斌,许文静,卢世璧.股骨颈骨折病人的股骨头样本结构的Micro-CT评估. 中国矫形外科杂志,2006,14(12):909-911.
    [77] 卢飙,邱明才,郑虎,翁玲玲,刘景生.四环素-雌酮和雌酮作用去势大鼠的骨形态计量学对照研究.中华妇产科杂志,1998,33(1):31-34.
    [78] Mori H, Manabe M, Kurachi Y, Nagumo M. Osseointegration of dental implants in rabbit bone with low mineral density. J Oral Maxillofac Surg, 1997, 55 (4):357-362.
    [79] Southard TE , Southard KA , Krizan KE , Hillis SL, Haller JW, Keller J, Vannier MW. Mandibular bone density and fractal dimension in rabbits with induced osteoporosis.Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000, 89 (2):244-249.
    [80] Akkas N , Yeni YN , Turan B , Delilbasi E, Gunel U. Effect of medication on biomechanical properties of rabbit bones: Heparin induced osteoporisis.Clin Rheumatol, 1997, 16 (6):585-595.
    [81] Southard KA, Southard TE. Detection of simulated osteoporosis in dog alveolar bone with the use of digital subtraction. Oral Surg Oral Med OralPathol ,1994 ,77(4):412-418.
    [82] Fukuda S, Lida H. Effects of orchidectomy on bone metabolism in beagle dogs. J Vet Med Sci, 2000, 62 (1):69-73.
    [83] Shen V , Dempster DW, Birchman R , Mellish RW, Church E, Kohn D, Lindsay R. Lack of changes in histomorphometric , bone mass , and biochemical parameters in ovariohysterectomized dogs.Bone ,1992 ,13 (4) :311-316.
    [84] Mosekilde L, Weisbrode SE, Safron JA, Stills HF, Jankowsky ML, Ebert DC, Danielsen CC, Sogaard CH, Franks AF, Stevens ML. Paddock CL,Boyce RW.Calcium–restricted ovariectomized sinclair S-1 minipigs: an animal model of osteopenia and trabecular plate perforation. Bone, 1993, 14 (3):379- 382.
    [85] 李良,陈槐卿,何成明,吴文超,谭建三,杨定焯,郑虎.双侧卵巢切除山羊不同时间段骨形态计量学与骨密度的变化.中国骨质疏松杂志,2000,6(2):10-12.
    [86] Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia:Current status and comparison with other animal models. Bone, 1995, 16 (4 Suppl):277-284.
    [87] 李良,陈槐卿,陈孟诗,谭建三,吴文超,翁玲玲,郑虎.建立骨质疏松山羊模型初探. 中国骨质疏松杂志,1998,4(2):12-16.
    [88] 李亚男,刘洪臣,倪紫砚,杨丽.绵羊绝经后骨质疏松动物实验模型的建立.口腔颌面修复学杂志,2000,1(2):75-77.
    [89] 秦林林,马海波,张卫,葛崇华,李大为,肖艳霞.中国北方汉族健康人骨密度正常值.中国骨质疏松杂志.2002,8(2):110-111.
    [90] 刘忠厚,潘子昂,王石麟. 原发性骨质疏松症诊断标准的探讨. 中国骨质疏松志,1997 ,3(1):1.
    [91] Genant HK,Grampp S ,Gluer CC , Faulkner KG, Jergas M, Engelke K, Hagiwara S, Van Kuijk C.Universal standardization of dual X-ray absorptiometry : patient and phantom cross-calibration results. J Bone Miner Res, 1994, 9(10):1503-1514.
    [92] 陈兴,马远征,薛海滨. 骨密度对椎弓根螺钉系统内固定影响的临床研究. 中国骨质疏松杂志,2003,9(2):143-145.
    [93] Yamagata M,Kitahara H ,Minami S Takahashi K, Isobe K, Moriya H, Tamaki T.Mechanical stability of thepedicle screw fixation systems for the lumbar spine. Spine, 1992, 17(3 Suppl):51-54.
    [94] Okuyama K,Sato K,Abe E , Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporotic spine .An in vitro study of the mechanical stability.Spine ,1993 ,18(5):2240-2245.
    [95] 黎本丰,姜维平,李大成,周维彬,罗刚,龚自力.QCT 骨密度测量的质量控制及意义.中国骨质疏松杂志.2005 ,11(4):456-463.
    [96] 吕荣,徐新智,王军. 塑料包埋不脱钙大块骨组织切片及染色. 临床与实验病理学杂志,2002,18(3):342.
    [97] Reitman CA, Nguyen L, Fogel GR. Biomechanical evaluation of relationship of screw pullout strength, insertional torque, and bone mineral density in the cervical spine. J Spinal Disord Tech, 2004, 17(4):306-311.
    [98] Reinhold M, Schwieger K, Goldhahn J, Linke B, Knop C, Blauth M. Influence of screw positioning in a new anterior spine fixator on implant loosening in osteoporotic vertebrae. Spine, 2006, 31(4):406-413.
    [99] Christensen FB, Dalstra M,Sejling F,Overgaard S,Bunger C. Titanium-alloy enhances bone-pedicle screw fixation:mechanical and histomorphometrical results of titanium-alloy versus stainless steel. Eur Spine J. 2000, 9(2):97-103.
    [100] Patel V, lssever AS, Burghardt An. Micro CT evaluation of normal and osteoarthritic bone structure in human knee specimens. J Orthop Res, 2003, 21(1):6-13.
    [101] Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Mills BG. Bone loss induced by dietary magnesium reduction to 10 % of the nutrient requirement in rat is associated with increased release of substance P and tumor necrosis factor-alpha.The Journal of Nutrition, 2004, 134(1):79-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700