脊柱脊髓型严重多发伤大鼠急性期血流动力学及治疗过程中心血管反应性变化及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通业、工矿业的发展,交通事故、高处坠落、重物砸伤等高能量致伤因素导致的脊髓损伤发病率逐年增高,并表现出多发伤发生率高、伤情复杂、伤情重、高死亡率及伤残率等特点。经过文献检索发现,关于“以脊柱脊髓损伤为主要创伤的严重多发伤”的研究报道很少,相关基础研究缺乏。前期研究中,我们首次将此类型多发伤命名为“脊柱脊髓型严重多发伤”,并将其定义为:在严重多发性损伤中(按简明损伤定级-损伤严重度评分(AIS-ISS)系统评分,ISS>17分),以脊柱脊髓损伤为主,其AIS≥4分,ISS≥16分。同时发现,此类多发伤患者急性期常出现血流动力学紊乱,伤后急性期血流动力学的稳定与否直接关系到救治成功率。但对于脊柱脊髓型严重多发伤伤后急性期血流动力学变化规律和特点尚不清楚。同时,为纠正此类创伤造成的休克,临床一般性救治原则是补足血容量,尽早使用缩血管药物。因而,此阶段心血管对缩血管药物的反应性(简称心血管反应性,cardiovascular reactivity)直接关乎救治结果,但其变化规律亦未见相关研究报道。鉴于脊柱脊髓型严重多发伤发病率日渐增高,因此,积极开展脊柱脊髓型严重多发伤早期血流动力学变化病理生理学相关研究,改进治疗手段,对于改善预后,提高救治成功率,降低死亡率和伤残率均具有重要意义。
     主要方法:由于此类创伤病例收集难度大,同时患者入院时常因伤情重笃,为救治常施加各种干预因素,很难开展相关的采样和药物治疗等临床研究,因此,首先我们以高位脊髓损伤(C7-T1)、骨折(单侧胫骨骨折)、失血为主要致伤因子,建立了脊柱脊髓型严重多发伤大鼠模型;其次,在此模型基础上,利用在体血流动力学检测系统观察了伤后急性期(伤后1-6 h)血流动力学变化规律,并借助彩色微球技术,在微创条件下在体连续的观察了各重要脏器器官血流量变化特点,同时利用酶联免疫吸附实验(ELISA)和放射免疫测定法(RIA)检测了血中三种主要交感缩血管神经递质(去甲肾上腺素、肾上腺素、神经肽Y)变化;再次,为研究伤后心血管反应性变化规律,我们在此模型上先通过检测去甲肾上腺素(NE)升压反应从而评价了心血管总反应性变化特点,继而以内脏血管-肠系膜上动脉(SMA)为研究对象,利用微循环图像计算机分析系统和离体血管环张力测定系统分别从在体和离体两个方面测定了血管反应性变化,并通过血流动力学检测系统在体观察了心脏反应性变化。最后,为初步探讨血流动力学及心脏反应性变化机制,我们利用放射受体配基结合分析(RBA法)观察了伤后急性期左心室心肌细胞膜NE主要作用受体α1-肾上腺素能受体(AR)、β-AR数量及其亲和力变化,并借助非标记底物法和RIA研究了介导NE正性肌力作用、正性传导作用、正性变时作用的主要信号通路-β-AR-腺苷酸环化酶(AC)系统变化。
     主要结果:①我们建立的脊柱脊髓型严重多发伤大鼠模型在伤后急性期即可出现血流动力学紊乱、酸碱失衡、治疗效果差等重症休克表现,和单发伤对比存在多发伤相互加重效应,符合此病早期临床特征;②脊柱脊髓型严重多发伤大鼠平均动脉压(MAP)在伤后1~6 h,心率(HR)在伤后0、0.5、4、5、6 h,左室收缩压(LVSP)在伤后3~6 h,左心室内压最大变化速率(±dp/dtmax)、总外周血管阻力(TPR)、心输出量(CO)在伤后0.5~6 h显著降低。上述指标和其它组相比,差异均存在统计学意义(P<0.05或P<0.01);③脊柱脊髓型严重多发伤大鼠血清肾上腺素(EPI)浓度在伤后0.5、1、2、3、5 h,NE浓度在伤后2、3、6 h轻度高于伤前(P<0.05),神经肽Y(NPY)浓度在伤后0.5~2 h和5~6 h呈小幅双峰增长(和伤前比,P<0.05);伤后各时间点血NE、EPI、NPY浓度均远低于创伤失血组大鼠(P<0.01);④脊柱脊髓型严重多发伤大鼠伤后各时间点各器官血流量均显著降低(和假手术组比,P<0.05),但和创伤失血组大鼠不同的是,伤后各时间点心、脑局部血流量降低幅度和其它器官血流量比无明显差异;⑤脊柱脊髓型严重多发伤大鼠NE升压反应在伤后1~6 h均显著增高(和假手术组及创伤失血组比,P<0.01)。SMA反应性呈现双相变化:休克1~3 h,NE对SMA最大收缩力(Emax)和半数有效浓度(pD2(-log[EC50]))均显著高于假手术组(P<0.05或P<0.01),量效曲线左移。伤后4~6 h,SMA对NE的Emax、pD2显著低于假手术组(P<0.05或P<0.01),量效曲线右移;⑥脊柱脊髓型严重多发伤大鼠伤后1-6 h,给予NE后心功能各项指标(LVSP、±dp/dtmax)增幅始终显著高于伤前和创伤失血组(P<0.05或P<0.01);⑦伤后1h,左心室心肌细胞膜α1-AR和β-AR受体最大结合数目(Bmax)达到最高点,其中,β-AR增加幅度最为显著,至伤后6h,β-AR Bmax依然维持在较高水平(和伤前比,P<0.01)。两种受体Kd(the equilibrium dissociation constants)在伤后1h、3h变化不大,伤后6h则出现明显增高(P<0.01),提示受体亲和力下降。伤后心肌组织AC基础活性及cAMP浓度随着时间延长逐渐降低,二者呈正相关(相关系数r=0.9392,p<0.05)。异丙肾上腺素(ISO)激活AC活性在伤后各时间点均明显最高(P<0.01),提示β-AR-G蛋白-AC-cAMP信号系统在伤后6h内的反应性均增强。从增高程度看,伤后1h高于正常值2.5倍,随着受伤时间的延长,增高程度逐渐下降。法司可林(FSK)激活的AC活性在伤后各时间点变化不大,提示AC催化亚基蛋白自身无显著改变。氟化钠(NaF)激活的AC活性在伤后1 h变化不大,伤后3、6 h,则显著降低(和伤前比,P<0.01),提示伤后3、6h,G蛋白和AC催化亚基出现脱偶联改变。
     结论:①本实验建立的脊柱脊髓型严重多发伤大鼠模型能较好地模拟脊柱脊髓型严重多发伤伤后早期病理生理学变化,能够满足本研究的需要,且具有伤情稳定、操作简便、重复性好等特点;②脊柱脊髓型严重多发伤大鼠伤后急性期血流动力学紊乱出现时间早,持续时间长,程度重,无代偿性增高。各重要脏器器官血流量伤后早期即出现显著降低,未出现代偿性器官血流量重新分布。血中交感缩血管神经递质相对缺乏。血流动力学恶化程度和创伤严重程度呈正比;③和创伤失血性休克不同的是,脊柱脊髓型严重多发伤大鼠心血管总反应性在伤后1~6 h均显著增高,但此阶段血管反应性呈现双相变化,而心脏反应性在伤后1~6 h均显著增高。从时相点及增幅看,心脏反应性增高可能是导致伤后心血管总反应性增高的主要原因;④脊柱脊髓型严重多发伤大鼠伤后急性期一方面出现“血交感缩血管神经递质相对不足”、“AC基础活性降低继发心肌组织cAMP含量下降”、“G蛋白和AC催化亚基脱偶联”等改变,导致伤后出现严重的心功能下降及血流动力学恶化;同时,也出现心肌细胞胞膜AR数目增多(以β-AR最为明显),导致心脏反应性增加,这可能是机体发挥代偿作用的重要机制之一。
With the development of industry and transportation, the cause of spinal cord injury (SCI) are always associated with high energy incidents such as traffic accident, aloft fall, crush or crash by heavy objects. Multiple traumas occur quaque, and the traumatic conditions always are complex and critical. After system literature retrieval, little researches were found about multiple trauma in which SCI was leading cause of trauma. In our formal study, this kind of trauma were named of“multiple trauma headed by SCI”firstly and be defined as“a kind of serious multiple trauma (ISS>17) in which SCI was the main trauma (AIS≥4, ISS≥16)”. At the same time, we found that hemodynamic disorder always occur during acute stage and have great influence on the curative results. Stabilizing hemodynamics is the main goal during emergency medical treatment. But little was known about the change mode of hemodynamics of multiple trauma headed by SCI. This kind of multiple trauma always lead to severe shock whose basic clinical remedy rules are“supplement blood volume and use vaso-excitor drugs early”. Therefore, cardiovascular reactivity to vaso-excitor (cardiovascular reactivity) is crucial to therapeutic result. However, cardiovascular reactivity is still unknown in emergency treatment during acute stage about this kind of trauma. For the above reasons, the hemodynamic and cardiovascular reactivity researches about multiple trauma headed by SCI are needed urgently to improve clinical therapeutic results and decline the mortality and invalidity rate.
     Methods: Firstly, as it is hard to collect cases and to make experiment on those patients for the crisis pathogenetic conditions, a new rat model of experimental multiple trauma headed by SCI had been established according to the main cause factors of this kind of trauma: high level SCI (T1-C7), fracture (lateral tibia) and bleeding. Secondly, the change patterns of hemodynamics were observed by hemodynamic monitor system on this model during acute stage. Catecholamine and neuropeptide Y (NPY) in blood, the main sympathesis vasoconstrictor neurotransmitter, were measured by ELSA or RIA. Organs regional blood flow (RBF) were monitored consecutively by color-labeled microspheres technique in vivo, and total peripheral resistance (TPR) rise and cardiac output (CO) were calculated simultaneously. Thirdly, to investigate cardiovascular reactivity, total cardiovascular reactivity was measured by the pressor effect of norepinephrine (NE) at different time after trauma. Then the vascular reactivity was measured separately by microcirculation monitor system in vivo and by vascular ring tension system in vitro. The cardia reactivity was measured by monitor the heart function after injected NE (3ug/kg) in vivo. The main receptors of NE are beta (β) - and alfa1 (α1)-adenoreceptor (AR) in heart and link to AR-adenylate cyclase (AC)-cAMP signal system. Any changes of reaction to NE of heart must original to this signal system. For this reason, we checked the numbers and affinity ofβ-AR andα1-AR by radioligand binding assay (RBA) of receptors and AC activity by unlabeled substrate assay.
     Results:①This animal model exhibited typical characters of multiple trauma headed by SCI that are include abnormal of hemodynamics, blood gases in early period and high mortality even after resuscitation.②MAP of multiple trauma headed by SCI rats in 1-6 h, HR in 0, 0.5, 4, 5, 6 h, LVSP in 3-6 h,±dp/dtmax , CO and TPR in 0.5-6 h drop dramatically compared with other groups (P<0.05 or 0.01).③The concentration of epinephrine (EPI) in 0.5, 1, 2, 3, 5 h, NE in 2, 3, 6 h rise slightly compared with sham (P<0.05). The concentration of NPY exhibited two peaks compare with normal: the first rise emerges between 0.5-2 h and the second between 5-6 h after trauma (compared with normal, P<0.05). The concentrations of NE, EPI, NPY are far lower than trauma-hemorrhage rats (P<0.05).④Organ RBF drop significantly and simultaneously which did not have significant difference with other organs (P>0.05).⑤The pressor effect of NE in this rats model was significantly higher than sham and trauma-hemorrhage rats at all the time point (P<0.01). The vascular reactivity of SMA to NE was increase significantly 1-3 h after trauma as compared with sham: the Emax and pD2 were significantly increased (P<0.01), the cumulative dose-response curves were shift to the left. The aboved indexes decrease significantly at 4-6 h after trauma and the cumulative dose-response curve were shift to the right.⑥The cardia function indexes of multiple trauma rats rise significantly after i.v. NE in vivo whereas decreased in trauma-hemorrhage rats during 1-6h after trauma(P<0.01).⑦ Bothα1- andβ- AR density reach the summit 1h after trauma (P<0.01) and decrease gradually as the time went on.β-AR density increase more significantly thanα1-AR or sham(P<0.01). It still keep higher level until 6h after trauma. No significant difference in the equilibrium dissociation constants (Kd) for both receptors was observed during 1-3 h and rise simultaneously 6h after trauma. Both basal AC activity and the concentration of cAMP in membrane preparations drop dramatically after trauma and their relationship was significant correlation (r=0.9392,P<0.05). AC activity stimulated by isoproterenol increased during 1-6 h after trauma and the highest rise at 1 h after trauma (by 2.5 times higher over the sham). It implies hyper-reactivity ofβ-AR-G protein-AC-cAMP signal transduction system which persisted 6h after trauma. No significant statistic difference was observed on AC activity stimulated by forskolin. It implies that there are no change on AC catalytic subunit protein itself. AC activity stimulated by NaF showed little increase during 1 h after trauma and a dramatic decreasing appeared during 3-6 h after trauma (P<0.01). It implies uncoupling of G protein and AC catalytic subunit during this period of time.
     Conclusions:①This animal model with trauma of stable degree can be repeated easily and fit for the needs of early pathophysiological study of multiple trauma headed by SCI.②Appearance early, long duration, serious degree and compensation handicap are the characters of hemodynamics and heart function disorder of multiple trauma rats headed by SCI. Organ RBF drop too and did not exhibit redistribution unlike trauma-hemorrhage rats. The deterioration of hemodynamics is positive correlation with the degree of trauma. The concentration of sympathesis vasoconstrictor neurotransmitter show relative deficiency.③The total cardiovascular reactivity rise (hypereactivity) and the vascualar reactivity exhibited biphasic change during 1-6 h after trauma. But the cardia reactivity exhibited hyper-reactive during 1-6 h. With reference to the change time points, tendency and degree, the increased cardia reactivity could be one of the main reasons for the cardiovascular hypereactivity but vascular reactivity.④Multiple trauma rats headed by SCI exhibited high reactivity of AR-AC-cAMP signal transduction system that mainly due to increased density of AR after trauma during acute stage. That could be one of the important compensation mechanisms of cardia hypersensitivity after trauma. At the same time, some changes, such as relative deficency of sympathesis vasoconstrictor neurotransmitter, low activity of basal AC activity and the concentration of cAMP in myocardium, uncoupling G protein and AC catalytic subunit, also occur and could be one of the main reasons of aggravation of heart function and hemodynamics after trauma.
引文
1. Pickett GE, Campos-Benitez M, Keller JL, et al. Epidemiology of traumatic spinal cord injury in Canada [J]. Spine, 2006, 31(7): 799-805.
    2. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? [J]. Spinal Cord, 2006, 44(9): 523-529.
    3.李建军,周红俊,洪毅,等. 2002年北京市脊髓损伤发病率调查[J].中国康复理论与实践, 2004, 10(7): 412-413.
    4. Saboe LA,Reid DC,Davis LA,et a1.Spine trauma and associated injuries [J].J Trauma,1991,31(1):43-48.
    5.王正国.多发伤的救治[J].中华创伤杂志, 2004, 20(1): 1-3.
    6.沈岳,蒋耀光主编.实用创伤救治.人民军医出版社,2005年9月第一版,p1-5.
    7.王爱民,孙红振,杜全印,等. 38例脊柱脊髓型严重多发伤的救治.重庆医学, 2007, 36(11): 1013-1015.
    8. LIU Si-hai, WANG Ai-min, DU Quan-yin .The injury severity score to the application of multiple injuries headed by spinal cord injury [J]. Chin J Trauma , 2007,10(2):125-128.
    9.毛庆,刘艳辉,毛伯镛.脊髓损伤为主的全身多发伤相关因素研究[J].四川大学学报(医学版),2004,35 (2) : 244-246.
    10. Guly HR, Bouamra O, Lecky FE, et al.The incidence of neurogenic shock in patients with isolated spinal cord injury in the emergency department [J]. Resuscitation, 2008, 76(1): 57-62.
    11.刘育杰,沈岳,王爱民.高位脊髓损伤后早期心血管病理生理改变[J],中国脊柱脊髓杂志,2007,17(5):391-394.
    12. Levi AD, Hurlbert RJ, Anderson P, et al. Neurologic deterioration secondary to unrecognized spinal instability following trauma-a multicenter study [J]. Spine,2006,31(4):451-458.
    13.刘思海,王爱民,李主军,等.脊柱脊髓损伤为主严重多发伤的救治探讨[J].重庆医学杂志, 2006, 35(14):1269-1270.
    14.刘思海,王爱民.脊柱脊髓型严重多发伤的救治进展[J].中国矫形外科杂志, 2007,15(12):918-920.
    15. Krassioukov A, Claydon VE. The clinical problems in cardiovascular control following spinal cord injury [J]. Prog Brain Res, 2006, 152:223-229.
    16.赵克森.重症难治性休克发生机制的若干进展[J].解放军医学杂志, 2005, 30(7): 552-555.
    17. O'Brien AJ, Thakur G, Buckley JF, et al. The pore-forming subunit of the K (ATP) channel is an important molecular target for LPS-induced vascular hyporeactivity in vitro [J]. Br J Pharmacol, 2005, 144(3): 367-375.
    1.王正国.多发伤的救治[J].中华创伤杂志, 2004, 20(1): 1-3.
    2.王爱民,孙红振,杜全印,等. 38例脊柱脊髓型严重多发伤的救治[J].重庆医学, 2007, 36(11): 1013-1015.
    3. LIU Si-hai, WANG Ai-min ,DU Quan-yin .The injury severity score to the application of multiple injuries headed by spinal cord injury[J]. Chin J Trauma , 2007,10(2):125-128.
    4. Fehlings MG, Tator CH. The relationships among the severity of spinal cord injury,residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury [J]. Exp Neurol, 1995, 132(2):220-228.
    5. Basso DM, Beattle MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats [J]. J Neurotrauma, 1995, 12(1):1-21.
    6.陈恒胜,刘连生,廖维宏.大鼠脊髓损伤及继发损伤时脊髓诱发电位与运动诱发电位的变化[J].生物医学工程学杂志, 1995,12(2):165-169.
    7.胡志俊,卞琴,王拥军,等.大鼠脊髓慢性压迫伤诱发电位的实验研究[J].中医正骨, 2004, 16(8):1-4.
    8. Vaccaro AR. The cause of neurologic deterioration after acute cervical spinal cord injury [J]. Spine, 2001, 26 (4):340-346.
    9. Guha Ab, Tator CH. Acute cardiovascular effects of experimental spinal cord injury [J]. J Trauma, 1988,28: 481-490.
    10.陈德昌.多发伤救治面临的挑战[J].中华创伤杂志, 2004, 20(1):4-6.
    11. Talac R, Friedman JA, Moore MJ, et al. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies [J]. Biomaterials, 2004, 25(9):1505–1510.
    12. Maiorov DN, Weaver LC, Krassioukov AV. Relationship between sympathetic activity and arterial pressure in conscious spinal rats [J]. Am J Physiol, 1997,272:H625-H631
    13. Bravo G, Guizar-Sahagun G, Ibarra A, et al. Cardiovascular alterations after spinal cord injury: an overview [J]. Curr Med Chem Cardiovasc Hematol Agents, 2004, 2(2):133-148.
    14. Barringer DL, Bung RD. Differential anesthetic depression of chronotropic baroreflexes in rats [J]. J Cardiovasc Pharmacol, 1990, 15(1): 10-15.
    15. Lang RM, Marcus RH, Neumann A, et al. A time-course study of the effects of pentobarbital, fentanyl, and mo rphine chloralose on myocardial mechanics [J]. J Appl Physiol, 1992, 73:143-150.
    16. Girolami A, Little RA, Fo?x BA, et al. Hemodynamic responses to fluid resuscitation after blunt trauma [J]. Crit Care Med, 2002, 30(2):385-392.
    17. Raman R, Sidhom S, Pape HC, et al. Systemic effects of bilateral tibial versus bilateral femoral shaft fractures. Is there a difference? [J]. Acta Orthop Belg, 2004, 70(2): 134-141.
    1. Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation [J]. Ann Rev Neurosci, 2002, 25: 433-469.
    2. Guha Ab, Tator CH. Acute cardiovascular effects of experimental spinal cord injury [J]. J Trauma, 1988, 28: 481-490.
    3.刘育杰,沈岳,王爱民.高位脊髓损伤后早期心血管病理生理改变[J],中国脊柱脊髓杂志,2007,17(5):391-394.
    4.陈德昌.多发伤救治面临的挑战[J].中华创伤杂志, 2004, 20(1):4-6.
    5. Raman R, Sidhom S, Pape HC, et al. Systemic effects of bilateral tibial versus bilateral femoral shaft fractures. Is there a difference? [J]. Acta Orthop Belg, 2004, 70(2): 134-141.
    6. Girolami A, Little RA, Fo?x BA, et al. Hemodynamic responses to fluid resuscitation after blunt trauma [J]. Crit Care Med, 2002, 30(2):385-392.
    7. Bravo G, Guizar-Sahagun G, Ibarra A, et al. Cardiovascular alterations after spinal cord injury: an overview [J]. Curr Med Chem Cardiovasc Hematol Agents, 2004, 2(2): 133-148.
    8. Mathias CJ, Christensen NJ, Corbett JL, et al. Plasma catecholamines during paroxysmal neurogenic hypertension in quadriplegic man [J]. Circ Res, 1976, 39(2): 204-208.
    9. Tibbs PA, Young B, Todd EP, et al. Studies of experimental cervical spinal cord transection Part IV [J]. J Neurosurg, 1980, 52(2): 197-202.
    10. Zoccali C. Neuropeptide Y as a far-reaching neuromediator: from energy balance and cardiovascular regulation to central integration of weight and bone mass control mechanisms. Implications for human diseases [J]. Current Opinion in Nephrology and Hypertension, 2005, 14(1):25-32.
    1. Shimizu T, Choudhry MA, Szalay L, et al. Salutary effects of androstenediol on cardiac function and splanchnic perfusion after trauma-hemorrhage [J]. Am J Physiol Regul Integr Comp Physiol, 2004, 287(2): R386-R390.
    2. Wang P, Ba ZF, Chaudry IH. Increase in hepatic blood flow during early sepsis is due to increased portal blood flow [J]. Am J Physiol, 1991, 261(6 Pt 2): R1507–R1512.
    3. D'Almeida MS, Cailmail S, Lebrec D. Validation of transit-time ultrasound flow probes to directly measure portal blood flow in conscious rats [J]. Am J Physiol, 1996, 271 (6 Pt 2): 2701-2709.
    4. Groszmann RJ, Vorobioff J, Riley E. Splanchnic hemodynamics in portal-hypertensive rats: measurement with gamma-labeled microspheres [J]. Am J Physiol, 1982, 242 (2):156-160.
    5. Hakkinen JP, Miller MW, Smith AH, et al. Measurement of organ blood flow with coloured microspheres in the rat [J]. Cardiovasc Res, 1995, 29 (1):74-79.
    6. Wang P, Ba ZF, Burkhardt J, et al. Trauma-hemorrhage and resuscitation in the mouse: effects on cardiac output and organ blood flow [J]. Am J Physiol, 1993, 264 (4 Pt 2): H1166-H1173.
    7.文亮,毕敏,刘明华.失血性休克期间器官血流量的变化[J].临床麻醉学杂志, 1996, 12(6): 297-298.
    8.赵松,张连阳,李勇,等.肝撞击伤后腹腔镜二氧化碳气腹对胃血流量影响的实验研究[J]. 2007, 9(3):199-201.
    9.陈惠孙主编,现代创伤休克基础与临床.人民军医出版社, 1999年第一版,p43-53.
    10.赵克森.重症难治性休克发生机制的若干进展[J].解放军医学杂志,2005, 30(7):552-555.
    11.刘育杰,沈岳,王爱民.高位脊髓损伤后早期心血管病理生理改变[J],中国脊柱脊髓杂志,2007,17(5):391-394.
    1. Krassioukov A, Claydon VE. The clinical problems in cardiovascular control following spinal cord injury [J]. Prog Brain Res, 2006, 152:223-229.
    2.赵克森.重症难治性休克发生机制的若干进展[J].解放军医学杂志,2005, 30(7): 552-555.
    3.徐竞,刘良明.钙失敏在大鼠失血性休克血管低反应性中的作用[J].中国危重病急救医学, 2005,17(1):20-24.
    4. O'Brien AJ, Thakur G, Buckley JF, et al. The pore-forming subunit of the K (ATP) channel is an important molecular target for LPS-induced vascular hyporeactivity in vitro [J]. Br J Pharmacol, 2005, 144(3):367-375.
    5. St John J, Barbee RW, Sonin N, et al. Inhibition of poly (ADP-ribose) synthetase improves vascular contractile responses following trauma-hemorrhage and resuscitation [J]. Shock, 1999, 12(3):188-195.
    6. Yang G, Liu L, Xu J, et al. Effect of arginine vasopressin on vascular reactivity and calcium sensitivity after hemorrhagic shock in rats and its relationship to Rho-kinase [J]. J Trauma,2006 ,61(6) :1336-1342.
    7. Sun RY, ed. Pharmacological Statistics (定量药理学) [M] . Beijing : People′s Medical Publishing House , 1987, 410 - 415.
    8.刘思海,王爱民,杜全印,等.颈脊髓损伤为主严重多发伤的伤害控制[J].中国矫形外科杂志, 2006, 14(18):1363-1366.
    9. Tordoff SG, Thompson JL, Williams AW. Noradrenaline as a vasoactive agent in septic shock [J]. Intensive Care Med. 2000, 26(5): 648.
    10.王翔,穆心苇,郑曙云.限制性液体复苏联合去甲肾上腺素在失血性休克中的应用[J].中华临床医药与护理, 2005, 3(12): 85-85.
    11. Ertmer C, Westphal M, Bone HG. Norepinephrine in septic shock--does the early bird catch the worm? [J] Crit Care Med,2007,35(7): 1794-1795.
    12. Nouira S, Elatrous S, Dimassi S, et al. Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock [J].Crit Care Med, 2005, 33 (10): 2339-2343.
    13. Zhao K, Liu J, Jin C. The role of membrane potential and calcium kinetic changes in the pathogenesis of vascular hyporeactivity during severe shock [J]. Chin Med J (Engl), 2000, 113(1): 59-64.
    14. Li T, Liu L, Xu J, et al. Changes of Rho kinase activity after hemorrhagic shock and its role in shock-induced biphasic response of vascular reactivity and calcium sensitivity[J]. Shock, 2006, 26(5): 504-509.
    15.李涛,刘良明,杨光明,等.失血性休克大鼠血管平滑肌钙敏感性变化及其在休克双相血管反应性变化中的作用[J].中国危重病急救医学, 2005, 17(11): 647-650.
    16. Md S, Moochhala SM, Siew-Yang KL.The role of inducible nitric oxide synthase inhibitor on the arteriolar hyporesponsiveness in hemorrhagic-shocked rats[J]. Life Sci, 2003, 73(14): 1825-1834.
    17.杨贵远,赵克森,刘杰.一氧化氮降低失血性休克血管反应性的机制[J].中国病理生理杂志, 2000, 16(11): 1163-1166.
    18.开丽,胡德耀,刘良明.病理性血管扩张或反应低下的调控机理[J].中国病理生理杂志, 2003, 19(1): 130-133.
    19. G. Bravo, R. Rojas-Martínez, F. Larios, et al. Mechanisms involved in the cardiovascular alterations immediately after spinal cord injury [J]. Life Sciences, 2001,68:1527–1534
    20.杨红梅,王黎,陈洁,等.失血性休克复苏时心肌损伤和一氧化氮的变化及灵芝多糖的干预作用[J].中国中西医结合急救杂志, 2003, 10(5):304-306.
    21. Mathias CJ, Frankel HL, Christensen NJ, et al. Enhanced pressor response to noradrenaline in patients with cervical spinal cord transection [J]. Brain, 1976, 99(4):757-770.
    22. Kmm H,Brown DJ,Rowe PR,et a1.Steady state plasma [3H]-noradrenaline kinetics in quadriplegic chronic spinal cord injury patients [J]. J Auton Pharmacol,1990,10(4):221-226.
    23. Amold JM,Feng QP,Delaney GA,et a1.Autonomic dysreflexia in tetraplegic patients:evidence for alpha-adrenoceptor hyper-responsiveness [J].Clin Auton Res,1995,5(5):267—270.
    24. Rodriguez GP, Claus-Walker J, Kent MC, et al. Adrenergic receptors in insensitive skin of spinal cord injured patients [J]. Arch Phys Med Rehabil, 1986, 67(3):177-180.
    25. Krassioukov AV, Furlan JC, Fehlings MG. Autonomic dysreflexia in acute spinal cord injury: an under-recognized clinical entity [J]. J Neurotrauma, 2003,20(8):707-716.
    26. Osborn JW, Taylor RF, Schramm LP. Chronic cervical spinal cord injury and autonomic hyperreflexia in rats [J]. Am J Physiol. 1990, 258(1 Pt 2): R169-R174.
    1. Brodde OE, Bruck H, Leineweber K. Cardiac adrenoceptors: physiological and pathophysiological relevance [J]. J Pharmacol Sci, 2006, 100(5): 323-337.
    2. Barcroft H, Konzett H. On the actions of noradrenaline, adrenaline and isopropyl noradrenaline on the arterial blood pressure, heart rate and muscle blood flow in man [J]. J Physiol, 1949,110(1-2): 194-204.
    3. O'connor WJ, Holgate JA. The effects of infusions of adrenaline and noradrenaline on the heart rate and arterial blood pressure of conscious dogs [J]. Q J Exp Physiol Cogn Med Sci, 1958,43(4): 361-367.
    4. Eckstein Jw, Abboud Fm, Pereda Sa.The effect of norepinephrine on cardiac output, arterial blood pressure, and heart rate in dogs treated with chlorothiazide [J]. J Clin Invest, 1962, 41: 1578-1583.
    5.张燕,张旭明,伍卫,等.依那普利对急性心肌梗塞兔心率变异性、压力反射敏感性与心肌电生理特性的影响[J].中华心血管病杂志, 1999, 27(5): 394-398.
    6.单争争,戴生明,苏定冯.自发性高血压大鼠压力反射敏感性与血压变异性的关系[J].中华心血管病杂志, 1998, 26(5): 346-350.
    7. Bravo G, Guizar-Sahagun G, Ibarra A, et al. Cardiovascular alterations after spinal cord injury: an overview [J]. Curr Med Chem Cardiovasc Hematol Agents, 2004, 2(2): 133-148.
    8. G. Bravo, R. Rojas-Martínez, F. Larios, et al. Mechanisms involved in the cardiovascular alterations immediately after spinal cord injury [J]. Life Sciences, 2001, 68:1527–1534
    9.杨青,唐岫,唐朝枢.脓毒症大鼠心肌腺苷酸环化酶活性的变化及其机理探讨[J].生理学报, 1995, 47(2):155-164.
    10. Brodde OE, Bruck H, Leineweber K. Cardiac adrenoceptors: physiological and pathophysiological relevance [J]. J Pharmacol Sci, 2006, 100(5): 323-337.
    11. Zheng M, Zhu W, Han Q, et al. Emerging concepts and therapeutic implications of beta-adrenergic receptor subtype signaling [J]. Pharmacol Ther, 2005, 108(3): 257-268.
    12. O'Brien AJ, Thakur G, Buckley JF, et al. The pore-forming subunit of the K (ATP) channel is an important molecular target for LPS-induced vascular hyporeactivity in vitro [J]. Br J Pharmacol, 2005, 144(3):367-375.
    13. St John J, Barbee RW, Sonin N, et al. Inhibition of poly (ADP-ribose) synthetase improves vascular contractile responses following trauma-hemorrhage and resuscitation [J]. Shock, 1999, 12(3): 188-195.
    14. Yang G, Liu L, Xu J, et al. Effect of arginine vasopressin on vascular reactivity and calcium sensitivity after hemorrhagic shock in rats and its relationship to Rho-kinase [J]. J Trauma,2006 ,61(6) :1336-1342.
    1. Calderone A, Bouvier M, Li K, et al. Dysfunction of the beta- and alpha-adrenergic systems in a model of congestive heart failure- The pacing overdrive dog [J]. Circ Res,1991 ,69(2):332-343.
    2. Anderson KM, Eckhart AD, Willette RN, et al. The myocardial beta adrenergic system in spontaneously hypertensive heart failure (SHHF) rats [J]. Hypertension, 1999, 33:402– 407.
    3. Romano FD, Jones SB. Alterations in beta-adrenergic stimulation of myocardial adenylate cyclase in endotoxic rats [J]. Am J Physiol, 1986, 250(3 Pt 2):R358-R364.
    4. Brodde OE, Bruck H, Leineweber K. Cardiac adrenoceptors: physiological and pathophysiological relevance [J]. J Pharmacol Sci, 2006, 100(5):323-337.
    5. Bers DM. Cardiac excitation-contraction coupling [J]. Nature, 2002, 415(6868): 198-205.
    6. Zheng M, Zhu W, Han Q, et al. Emerging concepts and therapeutic implications of beta-adrenergic receptor subtype signaling [J]. Pharmacol Ther, 2005, 108(3):257-268.
    7. Bylund DB, Toews ML. Radioligand binding methods: practical guide and tips [J]. Am J Physiol Lung Cell Mol Physiol, 1993, 265: L421-L429.
    8. Maisel AS,Ransnas LA,Insel PA.β-adrenergic receptors and the Gs protein in myocardial isehemia and injury [J].Basic Res Cardiol,1990,85(Suppl 1):47-56.
    9. Maisel AS,Motulsky HJ,Insel PA.Externalization ofβ-adrenergic receptors promoted by myocardial isehemia [J].Science, 1985, 230:183-186.
    10. Tomoyuki I,Tomoyuki M,Tetsuya T,et al.Ischemie preconditioning is associated with a delay in ischemic induced reduction ofβ-adrenergie signal transduction in rabit hearts [J].Circulation,1993,88:2827-2837.
    11.兰晓莉,王淑侠,刘影,等.肾上腺素受体腺苷酸环化酶系统在大鼠心肌缺血预适应中的变化[J].中国应用生理学杂志, 2003, 19(3):236-239.
    12. Shen XM, Zhang JY, Cheng B. Effect of calcineurin alpha gene overexpression on the myocardium apoptosis induced by hypoxia-reoxygenation and adrenergic receptors [J]. Nan Fang Yi Ke Da Xue Xue Bao,2006, 26(11):1633-1636.
    13.苗茜,闵苏.β2肾上腺素能受体与心衰相关机制研究进展[J].国际麻醉学与复苏杂志, 2006, 27(3):179-182.
    14. LinksImani A, Faghihi M, Sadr SS, et al. Noradrenaline Reduces Ischemia-Induced Arrhythmia in Anesthetized Rats: Involvement of alpha(1)-Adrenoceptors and Mitochondrial K(ATP) Channels [J]. J Cardiovasc Electrophysiol, 2008, 19(3): 309-315.
    15. Sandhu R,Thomas U,Diaz R J,et al.Effect of ischemic preconditioning of the myocardium on cAMP [J].Circ Res,1996,78:137-147.
    16.杨青,唐岫,唐朝枢.脓毒症大鼠心肌腺苷酸环化酶活性的变化及其机理探讨[J].生理学报, 1995, 47(2):155-164.
    17. Maisel AS, Motulsky HJ, Ziegler MG, et al. Ischemia- and agonist-induced changes in alpha- and beta-adrenergic receptor traffic in guinea pig hearts. Am J Physiol, 1987, 253(5 Pt 2): H1159-H1166.
    18. Lamerist TW, de Zeeuw S, Alberts G, et al. Time course and mechamism of Myocardial Catecholamine Release During Transient ischemia in vivo [J] . Circulation, 2000, 101 : 2645-2650;
    19. Heathers GP, Corr PB, Rubin LJ. Transient accumulation of inositol (1, 3, 4, 5)- tetrakis phosphate in response to alpha 1-adrenergic stimulation in adult cardiac myocytes [J]. Biochem Biophys Res Commun, 1988, 156(1):485-492.
    20. Iwatsubo K, Okumura S, Ishikawa Y. Drug therapy aimed at adenylyl cyclase to regulate cyclic nucleotide signaling [J]. Endocr Metab Immune Disord Drug Targets, 2006, 6(3): 239-247.
    21. Hirata F, Strittmatter WJ, Axelrod J.β-Adreneric receptor agonists increase phospholipid methylation, membrane fluidity, andβ-adrenergic receptor-adenylate cyclase coupling [J]. Proc Natl Acad Sci USA, 1979, 76: 368-372.
    1. Schwab ME. Repairing the injured spinal cord [J]. Science , 2002 , 295 (5557): 1029-1031.
    2. Wecht JM, de Meersman RE, Weir JP, et al. Effects of autonomic disruption and inactivity on venous vascular function [J]. Am J Physiol Heart Circ Physiol,2000,278(2): H515-H520.
    3. King BS, Gupta R, Narayan RK. The early assessment and intensive care unit management of patients with severe traumatic brain and spinal cord injuries [J]. Surg Clin North Am, 2000, 80 (3):855-870.
    4. Harrop J S, Sharan AD, Vaccaro AR, et al. The cause of neurologic deterioration after acute cervical spinal cord injury [J]. Spine, 2001, 26 (4): 340-346.
    5. Bravo G, Guizar-Sahagun G, Ibarra A, et al. Cardiovascular alterations after spinal cordinjury: an overview [J]. Curr Med Chem Cardiovasc Hematol Agents, 2004, 2(2): 133-148.
    6. Krassioukov A, Claydon VE. The clinical problems in cardiovascular control following spinal cord injury [J]. Prog Brain Res, 2006, 152:223-229.
    7. Eidelberg EE. Cardiovascular response to experimental spinal cord compression [J]. J Neurosurg, 1973, 38: 326-331.
    8. Tibbs PA, Young B, Todd EP, et al. Studies of experimental cervical spinal cord transection Part IV [J]. J Neurosurg, 1980, 52: 197-202.
    9. Guha Ab, Tator CH. Acute cardiovascular effects of experimental spinal cord injury [J]. J Trauma, 1988, 28: 481-490.
    10. G Bravo, R Rojas-Martínez, F Larios, et al. Mechanisms involved in the cardiovascular alterations immediately after spinal cord injury [J]. Life Sciences, 2001, 68:1527–1534
    11. Llewellyn-Smith IJ, Weaver LC. Changes in synaptic inputs to sympathetic preganglionic neurons after spinal cord injury [J]. J Comp Neurol, 2001, 435: 226-440.
    12. Collins HL, Rodenbaugh DW, DiCarlo SE. Spinal cord injury alters cardiac electrophysiology and increases the susceptibility to ventricular arrhythmias [J]. Prog Brain Res, 2006, 152:275-288.
    13. Lehmann KG, Lane J G, Piepmeier JM, et al. Cardiovascular abnormalities accompanying acute spinal cord injury in humans: incidence, time course and severity [J]. J Am Coll Cardiol, 1987, 10 (1) :46-52.
    14. Gondim FA, Lopes AC Jr, Oliveira GR, et al. Cardiovascular control after spinal cord injury [J]. Curr Vasc Pharmacol, 2004, 2(1):71-79.
    15. Maignan E, Dong WX, Legrand M, et al. Sympathetic activity in the rat: effects of anaesthesia on noradrenaline kinetics. J Auton Nerv Syst, 2000, 80: 46-51.
    16. David Chau, Namjan Kim, Lawrence P. Schramm. Sympathetically Correlated Activity of Dorsal Horn Neurons in Spinally Transected Rats [J]. J Neurophysiol, 1997, 77: 2966–2974.
    17. Dmitry N. Mayorov, Michael A. Adams, Andrei V. Krassioukov. Telemetric blood pressure monitoriing in conscious rats before and after compression injury of spinal cord [J]. Journal of neurotrauma,2001,18:727-731.
    18. Tank J, Schroeder C, Stoffels M,et al. Pressor effect of water drinking in tetraplegicpatients may be a spinal reflex [J]. Hypertension, 2003, 41(6):1234-1239.
    19. Maiorov DN, Weaver LC, Krassioukov AV. Relationship between sympathetic activity and arterial pressure in conscious spinal rats [J]. Am J Physiol, 1997,272: H625-H631.
    20. Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation [J]. Ann Rev Neurosci, 2002, 25: 433-469.
    21. Llewellyn-Smith IJ, Weaver LC. Changes in synaptic inputs to sympathetic preganglionic neurons after spinal cord injury [J]. J Comp Neurol, 2001,435(2): 226-240.
    22. Krassioukov AC , Weaver LC. Morphological changes in sympathetic preganglionic neurons after spinal cord injury in rats [J]. Neuroscince, 1996, 70:211-226.
    23. Krenz NR, Weaver LC. Effect of spinal cord transection on Nmethyl-D-aspartate receptors in the cord [J]. J Neurotrauma, 1998, 15:1027-1036.
    24. Schramm LP. Spinal sympathetic interneurons: their identification and roles after spinal cord injury [J]. Prog Brain Res, 2006, 152:27-37.
    25. Teasell RW, Arnold JM , Krassioukov A , et al. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury [J] . Arch Phys Med Rehabil, 2000, 81 (4) :506-516.
    26. G. Bravo, E. Hong, G. Rojas,et al. Sympathetic blockade significantly improves cardiovascular alterations immediately after spinal cord injury in rats [J]. Neuroscience Letters, 2002, 319: 95–98.
    27. Krum H, Brown DJ, Rowe PR, et al. Steady state plasma (3H) noradrenaline kinetics in quadriplegic spinal cord injury patients [J]. J Auton Pharmacol, 1990, 10: 221-226.
    28. Hopman MT, Groothuis JT, Flendrie M, et al. Increased vascular resistance in paralyzed legs after spinal cord injury is reversible by training [J]. J Appl Physiol, 2002, 93:1966–1972.
    29. McLachlan EM, Brock JA. Adaptations of peripheral vasoconstrictor pathways after spinal cord injury [J]. Prog Brain Res, 2006, 152:289-297.
    1.王正国.多发伤的救治[J].中华创伤杂志, 2004, 20(1): 1-3.
    2.沈岳,蒋耀光主编.实用创伤救治.人民军医出版社,2005年9月第一版,p1-5.
    3.王爱民,孙红振,杜全印,等.骨关节型严重多发伤的损害控制治疗[J].中华创伤杂志, 2007, 23(2):143-146.
    4. Paul Licina, Adrian M Nowitzke. Approach and considerations regarding the patient with spinal injury [J]. Care Injured ,2005, 36: 2-12.
    5. Pickett GE, Campos-Benitez M, Keller JL, et al. Epidemiology of traumatic spinal cord injury in Canada [J]. Spine, 2006, 31(7): 799-805.
    6. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? [J]. Spinal Cord, 2006, 44(9): 523-529.
    7.李建军,周红俊,洪毅,等. 2002年北京市脊髓损伤发病率调查[J].中国康复理论与实践, 2004, 10(7): 412-413.
    8.毛庆,刘艳辉,毛伯镛.脊髓损伤为主的全身多发伤相关因素研究[J].四川大学学报(医学版),2004,35 (2) : 244-246.
    9.张奎,高劲谋.脊柱脊髓损伤合并严重多发伤的诊断与治疗[J].中国脊柱脊髓杂志,2002, 12(2): 126-129.
    10.王昌桂.严重多发伤合并脊柱损伤的急救与早期处理[J].浙江创伤外科,2005,10(4):312-314.
    11. Dai LY, Yao WF, Cui YM, et al. Thoracolumbar fractures in patients with multiple injuries: diagnosis and treatment-a review of 147 cases [J]. J Trauma. 2004, 56(2): 348-355.
    12. Prasad VS, Schwartz A, Bhutani R. Characteristics of injuries to the cervical spine and spinal cord in polytrauma patient population: experience from a regional trauma unit [J]. Spine, 2000, 25: 55-60.
    13. Holly LT, Kelly DE, Conelis GJ, et al. Cervical spine trauma associated with moderate and severe head injury: incidence, risk factors, and injury characteristics [J ] . J Neurosurg, 2002, 96(3): 285-291.
    14. Robertson A, Giannoudis PV, Branfoot T, et al. Spinal injuries in motorcycle crashes: patterns and outcomes [J] .Trauma, 2002, 53(1): 5-8.
    15.陈德昌.多发伤救治面临的挑战[J].中华创伤杂志, 2004, 20(1):4-6.
    16.王爱民,孙红振,杜全印,等. 38例脊柱脊髓型严重多发伤的救治[J].重庆医学, 2007, 36(11): 1013-1015.
    17. Guille JT, Henry HS. Congenital osseous anomalies of the upper and lower cervical spine in children [J]. J Bone and Joint Surg, 2002, 84: 277-288.
    18. Vaccaro AR, An HS, Lin S, et al. Noncontiguous injuries of the spine [J]. J Spinal Disord, 1992, 5 (3): 320-329.
    19. Shear P, Hugenholtz H, Richard MT, et al. Multiple noncontiguous fracture of the cervical spine [J]. J Trauma, 1988, 28(5): 655-659.
    20.唐三元.多节段脊柱骨折[J].中华创伤骨科杂志. 2007, 9(3): 281-285.
    21. Korres DS, Boscainos PJ, Papagelopoulos PJ, et al. Multiple level noncontiguous fractures of the spine [J]. Clin Orthop Relat Res, 2003, 411: 95-102.
    22. Born CT , Ross SE , Iannnacone WM , et al . Delayed identification of skeletal injury in multisystem trauma: the“missed”fracture [J]. J Trauma, 1989, 29: 1643-1646.
    23. Buduhan G, McRitchie DI. Missed injuries in patients with multiple trauma [J]. J Trauma, 2000, 49: 600-605.
    24. Laiho K, Soini I, Kautiainen H, et al. Can we rely on magnetic resonance imaging when evaluating unstable atlantoaxial subluxation ? [J]. Ann Rheum Dis, 2003, 62:254-256.
    25.周科峰,秦民益,陈君,等. 16排螺旋CT三维重建在寰枢椎损伤中的应用[J].医学影像学杂志, 2006, 16(7):751-753.
    26. Lekovic GP, Harrington TR. Litigation of missed cervical spine injuries in patients presenting with blunt traumatic injury [J]. Neurosurgery, 2007, 60(3): 516-522.
    27. LinksPlatzer P, Hauswirth N, Jaindl M, et al. Delayed or missed diagnosis of cervical spine injuries[J].J Trauma, 2006, 61(1):150-155.
    28. LinksBarrett TW, Mower WR, Zucker MI, et al. Injuries missed by limited computed tomographic imaging of patients with cervical spine injuries[J]. Ann Emerg Med, 2006, 47(2):129-133.
    29. King SW, Hosler BK, King MA, et al. Missed cervical spine fracture-dislocations: the importance of clinical and radiographic assessment [J]. J Manipulative Physiol Ther, 2002, 25(4): 263-269.
    30. Reed MA, Naftel RP, Carter S, et al. Motor vehicle restraint system use and risk of spine injury [J]. Traffic Inj Prev, 2006, 7(3): 256-263.
    31. Smith JA, Siegel JH, Siddiqi SQ. Spine and spinal cord injury in motor vehicle crashes: a function of change in velocity and energy dissipation on impact with respect to the direction of crash [J]. J Trauma, 2005, 59(1): 117-131.
    32. Hebert JS, Burnham RS. The effect of polytrauma in persons with traumatic spine injury [J]. Spine, 2000, 25: 55-60.
    33.戴力扬,蒋雷生,沈雷,等.多发伤患者胸腰椎骨折的手术时机[J].中华创伤骨科杂志, 2004, 6 (1): 84 - 87.
    34. LIU Si-hai, WANG Ai-min, DU Quan-yin. The injury severity score to the application of multiple injuries headed by spinal cord injury [J]. Chin J Trauma , 2007,10(2):125-128.
    35.刘思海,王爱民,孙红振,等.损伤严重度评分在脊柱脊髓型严重多发伤救治中的应用[J].创伤外科杂志, 2006, 8(3): 209-211.
    36. Rotondo MF, Schwab CW, McGonigal MD, et al. "Damage control": an approach for improved survival in exsanguinating penetrating abdominal injury[J] . J Trauma, 1993, 35 (3): 375-382.
    37.王爱民,李起鸿.进一步提高骨关节创伤的治疗水平[J].创伤外科杂志, 2002, 4: 321-323.
    38.刘思海,王爱民,李主军,等.脊柱脊髓损伤为主严重多发伤的救治探讨[J].重庆医学杂志, 2006, 35(14): 1269-1270.
    39. EAwad AA , Othman W, Al-Moutaery KR. Treatment of thoracolumbar fractures[J]. Saudi Med J,2002, 23 (6): 689-694.
    40. McLain RF, Benson DR. Urgent surgical stabilization of spinal fractures in polytrauma patients [J]. Spine, 1999, 24(16):1646-1654.
    41. Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management [J]. Am J Phys Med Rehabil, 2007, 86:142-152.
    42. Krassioukov A, Claydon VE. The clinical problems in cardiovascular control following spinal cord injury: an overview [J]. Prog Brain Res. 2006, 152: 223-229.
    43. Llewellyn Smith IJ, Weaver LC. Changes in synaptic inputs to sympathetic preganglionic neurons after spinal cord injury [J]. J Comp Neurol, 2001, 435: 226-240.
    44. Atkinson PP, Atkinson JL. Spinal shock [J]. Mayo Clin Proc,1996, 71(4):384-389.
    45. Bravo G, Guizar-Sahagun G, Ibarra A, et al. Cardiovascular alterations after spinal cord injury: an overview [J]. Curr Med Chem Cardiovasc Hematol Agents, 2004, 2(2): 133-148.
    46. G Bravo, R Rojas-Martínez, F Larios, et al. Mechanisms involved in the cardiovascular alterations immediately after spinal cord injury [J]. Life Sciences, 2001,
    68:1527–1534
    47. Teasell RW, Arnold JM, Krassioukov A, et al. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury [J]. Arch Phys Med Rehabil, 2000, 81 (4):506-516.
    48. G. Bravo, E. Hong, G. Rojas,et al. Sympathetic blockade significantly improves cardiovascular alterations immediately after spinal cord injury in rats [J]. Neuroscience Letters, 2002, 319: 95–98.
    49. Curt A, Nitsche B, Rodic B, et al. Assessment of autonomic dysreflexia in patients with spinal cord injury[J]. J Neurol Neurosurg Psychiatry. 1997, 62(5):473-477.
    50. Maiorov DN, Krenz NR, Krassioukov AV, et al. Role of spinal NMDA and AMPA receptors in episodic hypertension in conscious spinal rats [J]. Am J Physiol, 1997, 273(3 pt 2): H1266-H1274.
    51. Weaver LC, Marsh DR, Gris D, et al. Autonomic dysreflexia after spinal cord injury: central mechanisms and strategies for prevention[J]. Prog Brain Res, 2006, 152: 245-263.
    52. Gilgoff IS, Ward SL, Hohn AR. Cardiac pacemaker in high spinal cord injury [J]. Arch Phys Med Rehabil, 1991, 72(8): 601-603.
    53. Lehmann KG, Lane JG, Piepmeier JM, et al. Cardiovascular abnormalities accompanying acute spinal cord injury in humans: incidence, time course and severity[J]. J Am Coll Cardiol, 1987, 10(1): 46-52.
    54. Faden AI, Jacobs TP, Holaday JW. Endorphin-parasympathetic interactions in spinal shock [J]. J Auton Nerv Syst, 1980, 2(3): 295-304.
    55. LinksVelmahos GC, Kern J, Chan LS, et al. Prevention of venous thromboembolism after injury: an evidence-based report-part II: analysis of risk factors and evaluation of the role of vena caval filters [J]. J Trauma, 2000, 49(1):140-144.
    56. Janssen TW, van Oers CA, van Kamp GJ, et al. Coronary heart disease risk indicators, aerobic power, and physical activity in men with spinal cord injuries [J]. Arch Phys Med Rehabil, 1997, 78:697-705.
    57. Bauman WA, Kahn NN, Grimm DR, et al. Risk factors for atherogenesis and cardiovascular autonomic function in persons with spinal cord injury [J]. Spinal Cord, 1999, 37: 601-616.
    58. Waring WP, Karunas RS. Acute spinal cord injuries and the incidence of clinically occurring thromboembolic disease [J]. Paraplegia, 1991, 29(1):8-16.
    59. Tribe CR. Causes of death in the early and late stages of paraplegia [J]. Paraplegia, 1963, 1:19-47.
    60. Green D, Chen D, Chmiel JS, et al. Prevention of thromboembolism in spinal cord injury: role of low molecular weight heparin [J]. Arch Phys Med Rehabil, 1994, 75(3):290-292.
    61. LinksRoussi J, Bentolila S, Boudaoud L, et al. Contribution of D-Dimer determination in the exclusion of deep venous thrombosis in spinal cord injury patients [J]. Spinal Cord, 1999, 37(8): 548-552.
    62. Merli GJ, Crabbe S, Paluzzi RG, et al. Etiology, incidence, and prevention of deep vein thrombosis in acute spinal cord injury [J]. Arch Phys Med Rehabil, 1993, 74(11):1199-1205.
    63. Deep K, Jigajinni MV, McLean AN, et al. Prophylaxis of thromboembolism in spinal injuries-results of enoxaparin used in 276 patients [J]. Spinal Cord, 2001, 39(2):88-91.
    64. Thumbikat P, Poonnoose PM, Balasubrahmaniam P, et al. A comparison of heparin/warfarin and enoxaparin thromboprophylaxis in spinal cord injury: the Sheffield experience [J]. Spinal Cord, 2002, 40(8):416-420.
    65. Cyrkowicz A, Fiala J, Kacalski J, et al. Prevention of deep vein thrombosis (DVT) with the low molecular weight heparin (LMWH) and epidural/spinal anesthesia. The efficacy viewpoint [J]. Ginekol Pol, 1998, 69(11): 795-759.
    66. Haut ER, Noll K, Efron DT, et al. Can increased incidence of deep vein thrombosis (DVT) be used as a marker of quality of care in the absence of standardized screening? The potential effect of surveillance bias on reported DVT rates after trauma [J]. J Trauma, 2007, 63(5):1132-1135.
    67. Miranda AR, Hassouna HI. Mechanisms of thrombosis in spinal cord injury [J]. Hematol Oncol Clin North Am, 2000, 14(2): 401-416.
    68. Yelnik A, Dizien O, Bussel B, et al. Systematic lower limb phlebography in acute spinal cord injury in 147 patients [J]. Paraplegia, 1991, 29(4):253-260.
    69. Geerts WH, Pineo GF, Heit JA, et al. Prevention of venous thromboembolism: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy [J]. Chest, 2004, 126(3 Suppl): 338S-400S.
    70. Krassioukov AV, Furlan JC, Fehlings MG. Autonomic dysreflexia in acute spinal cord injury: an under-recognized clinical entity [J]. J Neurotrauma. 2003, 20(8): 707-716.
    71. Mathias CJ, Frankel HL, Christensen NJ, et al. Enhanced pressor response tonoradrenaline in patients with cervical spinal cord transection [J]. Brain, 1976, 99(4): 757-770.
    72. Kmm H,Brown DJ,Rowe PR,et a1.Steady state plasma [3H]-noradrenaline kinetics in quadriplegic chronic spinal cord injury patients [J]. J Auton Pharmacol,1990,10(4):221-226.
    73. Amold JM,Feng QP,Delaney GA,et a1.Autonomic dysreflexia in tetraplegic patients:evidence for alpha-adrenoceptor hyper-responsiveness [J].Clin Auton Res, 1995, 5(5): 267-270.
    74. Rodriguez GP, Claus-Walker J, Kent MC, et al. Adrenergic receptors in insensitive skin of spinal cord injured patients [J]. Arch Phys Med Rehabil, 1986, 67(3):177-180.
    75. Mathias CJ, Christensen NJ, Frankel HL, et al. Renin release during head-up tilt occurs independently of sympathetic nervous activity in tetraplegic man [J]. Clin Sci (Lond), 1980, 59(4):251-256.
    76. Cavigelli A. Cardiovascular disorders in paraplegic patients [J]. Schweiz Med Wochenschr, 2000, 130(22):837-843.
    77. Vallès M, Benito J, Portell E, et al. Cerebral hemorrhage due to autonomic dysreflexia in a spinal cord injury patient [J]. Spinal Cord. 2005, 43(12): 738-740.
    78. Dolinak D, Balraj E. Autonomic dysreflexia and sudden death in people with traumatic spinal cord injury [J]. Am J Forensic Med Pathol, 2007, 28(2): 95-98.
    79. Jones NA, Jones SD. Management of life-threatening autonomic hyper-reflexia using magnesium sulphate in a patient with a high spinal cord injury in the intensive care unit [J]. Br J Anaesth, 2002, 88(3): 434-438.
    80. Papadopoulos SM, Selden NR, Quint DJ, et al. Immediate spinal cord decompression for cervical spinal cord injury: feasibility and outcome [J]. J Trauma, 2002, 52: 323-332.
    81. Rosenfeld JF, Vaccaro AR, Albert TJ, et al. The benefits of early decompression in cervical spinal cord injury [J]. Am J Orthop, 1998, 27: 23-28.
    82. Fehlings MG, Perrin RG. The timing of surgical intervention in the treatment of spinal cord injury: a systematic review of recent clinical evidence [J]. Spine, 2006, 31(11 Suppl): S28-S35;
    83. Mirza SK, Krengel WF 3rd, Chapman JR, et al. Early versus delayed surgery for acutecervical spinal cord injury [J].Clin Orthop Relat Res, 1999, 359: 104-114.
    84. Croce MA, Bee TK, Pritchard E, et al. Does optimal timing for spine fracture fixation exist? [J]. Ann Surg, 2001, 233: 851–858.
    85. Schlegel J, Bayley J, Yuan H, et al. Timing of surgical decompression and fixation of acute spinal fractures [J]. J Orthop Trauma, 1996, 10:323-330.
    86. Pollard ME, Apple DF. Factors associated with improved neurologic outcomes in patients with incomplete tetraplegia [J]. Spine, 2003, 28(1): 33-39.
    87. Tuli S, Tuli J, Coleman WP, et al. Hemodynamic parameters and timing of surgical decompression in acute cervical spinal cord injury [J]. J Spinal Cord, 2007, 30(5): 482-490.
    88. Levi AD, Hurlbert RJ, Anderson P, et al. Neurologic deterioration secondary to unrecognized spinal instability following trauma-a multicenter study [J]. Spine, 2006, 31(4): 451-458.
    89.姜滨,姜长明,刘阳.急性颈髓损伤与神经恶化[J].骨与关节损伤杂志, 2003, 18(12): 849-850.
    90. Frankel HL , Hancock DO , Hyslop G, et al , The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia [J]. Part 1 Paraplegia, 1969, 7: 179-182.
    91. Marshall L F , Knowlton RS , Garfin SR , et al . Deterioration following cervical spine cord injury: A muticenter study [J]. J Neurosurg, 1987, 66: 400-408.
    92.王兰,杨明亮,陈晓中.颈髓损伤后的神经恶化[J].中国矫形外科杂志, 2000, 7(5): 525-527.
    93. Vaccaro AR. The cause of neurologic deterioration after acute cervical spinal cord injury [J]. Spine, 2001, 26 (4):340-346.
    94. Bohlman HH, Anderson PA. Anterior decompression and Arthrodosis of the Cervical Spine: Long-Tern Motor Improvement part II- Improvement in Complete Traumatic. Quadriplegia [J]. J Bone and Joint Surg, 1992, 74 (5): 671-680.
    95. Benzel EC, Larson SJ. Functional Recovery after decompressive Spine Operation for Cervical Spine Fractures [J]. J Neurosurg, 1987, 20(5): 742-750.
    96. Kwon BK, Tetzlaff W, Grauer JN, et al. Pathophysiology and pharmacologic treatment of acute spinal cord injury [J]. Spine, 2004, 4(4): 451-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700