经皮椎弓根钉螺钉的基础和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经皮椎弓根螺钉技术的基础和应用研究
     随着新千年的到来后,暮然回首,我们有趣地发现,通过最小的破坏途径,用最精确的内植物对脊柱进行手术的观念最早始于1937年。Pool描述了一种用改良的耳境通过一个简单的套管对背侧神经根进行检查,用以诊断椎间盘突出、黄韧带肥厚、蛛网膜粘连、良性肿瘤以及转移性肿瘤。而早在1939年,Love倡导显微椎间盘切除的理念,即用小切口通过椎板间切除椎间盘组织,而不需切除骨质,这应该是最早的微创脊柱外科。近二十年来,由于医学影像学的发展以及由此而致的计算机导航技术的出现,同时又由于激光技术和内镜、腔镜技术的发展,人们试图寻求一种最少的侵袭和最小的生理干扰达到最佳外科疗效的外科新技术,这就使得微创脊柱外科取得真正意义上的迅猛发展。
     椎弓根螺钉技术在脊柱外科手术中的应用是相当常见的,当然是由于其在脊柱三柱固定生物力学方面的优越性。人们在力求椎弓根螺钉植入的安全和准确的同时,又探索着运用微创的手段经皮植入椎弓根螺钉。最早描述腰椎经皮穿刺固定术的是Magerl,当时起于脊柱外固定诊断下腰痛。Mathews、Lowery等报道在经皮植入椎弓根螺钉的同时辅以纵向连接器,因而使得该具有挑战性的技术得以发展和完善。近年,经皮椎弓根途径穿刺并行椎体成形或后凸成形治疗骨质疏松性脊柱骨折已成为逐渐推广的治疗手段,尤其是随着经皮椎弓根螺钉技术被结合计算机辅助外科技术(CAS computer assisted surgery)和内窥镜技术,从而开始被更多地应用于腰椎滑脱、脊柱骨折、慢性下腰痛、脊柱肿瘤的外科诊断和治疗,成为微创脊柱外科(MISS,minimally invasive spinal surgery)的基本技术手段。2001年得克萨斯州立大学神经外科研究中心的Kevin T.Foley在当年的Neurosurgery报道经前路进行腰椎的椎间融合,数周后再进行后路的经皮植入椎弓根螺钉微创固定系统治疗腰椎滑移症,其可视化的椎弓根螺钉植入设备以及固定装置,被Medtronic公司采用并生产,成为Sextant系列,且新近又有应用该系列行经椎间孔的椎间微创融合术(TLIF)。应该说该项技术无论在设备要求上,还是在技术要求上均具有相当的挑战性。本研究旨在此前提下运用医学图像知识在非导航条件下经皮植入椎弓根螺钉,创造性地治疗胸腰段脊柱骨折,并设计固定装置和手术辅助器械,试图寻求除后正中切口以外的脊柱后路手术新径路。
     作者在第一部分研究中选用10具经防腐固定,灌注红色乳胶的正常人胸腰段脊
    
    军二几军医大学们卜.士学位翻七文
    中文擒要
    骨外科学专业
    柱标本,在放大10倍的解剖显微镜下对胸腰段脊柱后部结构进行逐层解剖,重点观测
    脊神经后支及其分支、脊柱节段动静脉后支的来源、走行以及分布规律。发现脊神经
    后支的内侧支经下位椎体的横突根部及上关节突外侧向下经骨纤维管下行三个椎体,
    沿途支配横突棘肌,在中线附近穿胸腰筋膜至皮下,支配下方相隔一、二节段的小关
    节突、筋膜和韧带。外侧支向外下行走,沿途支配背部深肌,下行三个节段穿胸腰筋
    膜至皮下。临床开放的脊柱椎弓根螺钉固定手术时,为寻得进钉标志常需显露关节突
    关节的外缘,甚至横突,较易损伤走向比较固定的脊神经后支的内侧支,同时脊神经
    后支主干和外侧支也由于使用椎板撑开器而处于高张力状态而较易损伤。节段动脉主
    要分为肋间动脉、前支和后支。其后支在椎间孔的上外方绕向后下方,相当于椎体的
    下方水平,走行于脊神经的下方和下位脊椎上关节突的外方,分为内外两支穿行于腰
    部深层肌肉,主要滋养腰背部深层肌肉、关节突、棘突、椎板以及相关的韧带。节段
    静脉后支与同名动脉伴行,并与对侧、相邻节段同名静脉在棘突和横突部位构成静脉
    丛。在脊柱后路常规的后正中切口操作时因需向侧方显露,极易招致节段动静脉后支
    的出血,有时盲目使用电凝止血而损伤脊神经后支的内侧支或外侧支。椎旁肌的神经
    失营养所致的相应节段强直和顽固性腰背疼痛,甚至慢性椎旁骨筋膜室综合症与脊神
    经后支的内侧支或外侧支多节段损伤和椎旁肌与脊柱后方骨性结构的自然结合广泛
    破坏相关。经皮椎弓根螺钉技术由于近似于垂直操作且无侧向牵拉,损伤脊神经后支
    的机会较少,在这方面较采用脊柱后路常规的后正中切口植入椎弓根螺钉有可比的优
    越性。
     第二部分的研究主要是在非导航条件下经皮植入椎弓根螺钉时,术前运用现代医
    学影像学技术建立脊柱三维立体计算机模型,模拟手术仿真平台并设计个体化手术方
    案,并对精确度要求进行估计,从而指导手术定位。方法:术前对于手术节段的脊柱
    进行CT扫描时要求层厚为1.0~1.5幻nn。,不同输出格式的数据均应转换成统一的
    Dicom格式,在计算机上应用MedgraPhic软件做胸腰段脊柱的三维重建,将三维造
    型结果转化成快速成形所需要的STL格式,并在MagicRP平台上进行测量同时可应
    用UnigraPhi。、Pro/E软件模拟手术,设计个体化手术方案。三维重建的目的是选择
    合适的进钉点、方向以及合适直径、长度的螺钉,做到个体化椎弓根螺钉植入优化的
    原则。在MagicRP软件支持下的STL三维重建图像有一个与在CT?
To provide minimally invasive spinal surgery with the anatomical basis for the percutaneous pedicle screw. The origin,branch and distribution of the posterior rami of spinal nerves and the dorsal branches of the segmental artery,vein in the thoracolumbar region were observed on 10 adult specimens. The posterior branch of the segmental artery in the thoracolumbar region asises lateral to the intervertebral foramen and runs dorsocaudal,inferior to the superior articular process of the vertebral below,and the dorsal branchs of the segmental veins parallel their corresponding arteries.The posterior rami emerge from the intervertebral foramen posterior to the superior articular process of the vertebral below,and divide into their terminal medial and lateral branchs.The medial branch of the posterior ramus of the spinal nerve courses dorsally from the lateral aspect of the superior articular process to the root of the transverse,and it is attached to the periosteum by fibers,and the lateral one enters into the deep muscles of the the back. Only the percutaneous pedicle screw can we avoid mechanical damage to the posterior ramus of the spinal nerve as well as intraopretive bleeding that may require cautery.
    To derive theoretical accuracy requirements for spinal pedicle screw placement without navigation system. A geometric model was developed relating spinal pedicle anatomy to accuracy requirements for pedicle screw insertion without navigation system.This model was used to derive error tolerances for pedicle screw placement when using clinically relevant screw diameters in thoracolumbar spine (6.5 mm ; 6.0mm or 5.5mm).The error tolerances were represented as the permissible rotational and translational deviations from the ideal screw trajectory that would avoid pedicle wall perforation. As anticipated, accuracy requirements were greatest at spinal levels where the relevant screw diameter approximated the dimensions of the pedicle. The translational deviation requirements were highest for T12 followed in descending order by T11, L1, L2,L3 and the rotational deviation requirements were highest for L1 followed in descending order by T12, T11, L2,L3 in thoracolumbar spine with the pedicle screw
    
    
    
    diameter 6.5mm. These results demonstrate that extremely high accuracy is necessary for the pedicle screw insertion at certain levels of the spine without perforating the pedicle wall. The relevant dimensions of the pedicle and the distance from entry point to ismuths should be measured before operation for these accuracy requirements .
    The use of pedicle screws for spinal stabilization has become increasingly popular worldwide. Pedicle screw systems engage all three columns of the spine and can resist motion in all planes. Several studies suggest that pedicle screw fixation is a safe and effective treatment for many spinal disorders. Standard techniques for pedicle screw placement, however, require extensive tissue dissection to expose entry points and to provide for lateral-to-medial orientation for optimal screw trajectory. Open pedicle fixation and spinal fusion have been associated with extensive blood loss, lengthy hospital stays, and significant cost. The purpose of this paper is to describe a new technique and instrumentation designed by the research team for minimally invasive posterior fixation of the thoracolumbar spine by using percutaneous screws and rods. Our initial clinical experience will also be included. Although percutaneous lumbar pedicle screw insertion has been previously reported, a minimally invasive approach to inserting a longitudinal connector for these screws and treating thoracolumbar fracture has proven more challenging. An cannula pedicle screw system was designed so that screws could be placed percutaneously by using a guided K-wire that would allow for manipulation of the angular screw-rod conjunction and reduction of the injured segment . The insertion of the rod can be placed through a small wound. Because the thoracolumbar spine is more nearly to the skin than other segments and the rod
引文
1. Benzel EC, Rupp FW, Mc Cormack, etal. A comparison of fluoroscopy and computed tomography-derived volumetric multiple exposure transmission holography for the guidance of lumbar pedicle screw insretion.Neurosurgery, 1995, 37(4):711-717.
    2.陈志伸,邵振海.脊神经后支性腰痛的解剖学和生物力学研究.骨与关节损伤杂志,1994,9:116-118.
    3. Sihvonen T, Herno A, Paljarvi L, etal. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine, 1993,18:575-581.
    4. Carr D, Gilbertson L, Frymoyer J W, Lumbar paraspinal compartment syndrome. Spine, 1984, 10: 816-820.
    5. Ebraheim NA, Rollins JR, Xu R, etal. Projection of the lumbar pedicle and its morphometric analysis. Spine, 1996, 21(11): 1296

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700