脑机接口中植入式无线遥控遥测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑机接口(brain-computer interface, BCI)技术在生物体的神经系统及其周围环境之间建立了一种崭新的通讯模式和交互界面,它的研究在基础医学、临床康复和神经修复等众多领域具有重大的研究价值和广泛的应用价值。植入式脑机接口技术是指将电极置于颅内,直接从大脑皮层提取皮层脑电的研究方法。这种方法具有空间分辨率高、位置稳定性好、特异性强、信噪比高和后处理简单等优点,但该技术困难大、有创伤。植入式无线遥控遥测技术是植入式脑机接口技术中的关键核心技术,它也是未来脑机接口技术十分重要的发展方向之一。以“动物机器人”的发展为例,随着近年来生物材料、微机电系统(micro electromechanical systems, MEMS)加工、集成电路以及微系统封装设计等技术的发展,植入式脑机接口技术正由早期遥控背包式技术向着全植入式无线遥控遥测技术发展。基于上述研究背景,本文围绕着脑机接口中植入式无线遥控遥测的关键技术进行了相关研究。主要研究内容如下:
     首先,结合“动物机器人”相关课题研究,研制了基于嵌入式PDA手持机的便携式植入式无线遥控遥测系统。系统包括植入式微电极及其前置放大器(headstage)、无线遥控遥测背包、PDA手持机以及PC控制系统。构建了BCI动物行为学实验平台并设计了多种BCI动物行为学实验,在上述平台上完成了上述遥控遥测系统的功能测试以及相应的动物行为学实验测试。其次,在上述无线背包系统的基础上,进行了全植入式无线遥控遥测微系统的设计研究,完成了硅基MEMS神经电极阵列、射频无线供能CMOS芯片、单/多通道低噪声神经电信号放大器和低功耗A/D转换器等核心部件的设计制作。这些研究成果为下一步全植入式无线遥控遥测微系统的完整实现奠定了良好的基础。
     本文的研究进展和创新点整理如下:
     1.设计研制了一种用于BCI研究的背包式植入式无线遥控遥测系统,其神经电信号采集与神经电刺激一体化、无线双向通讯、低功耗、重量轻和便携式的特点。为自由活动状态下的BCI动物实验研究和相关神经生理学实验研究提供了一种新的实验手段和方法。
     2.搭建了BCI“动物机器人”动物行为学实验平台,开展了大鼠压杆、八臂迷宫、3D复杂环境导航等实验研究。在国内首次实现了3D复杂环境下的大鼠导航实验,为“动物机器人”的进一步精细化深入研究奠定了基础。
     3.针对植入式BCI技术,提出了一种基于MEMS神经微电极阵列、CMOS集成电路和压缩传感(compressed sensing, CS)技术的全植入式无线遥控遥测微系统整体设计方案。完成了硅基MEMS神经电极阵列、低噪声神经电信号放大器、无线供能等模块的原理及版图设计。部分模块已进行流片和性能测试。相关结果对全植入式BCI技术的继续深入开展具有一定的指导意义。
     4.设计研制了一种新型的CMOS无线供能电源管理集成电路芯片,具有超低功耗待机(待机电流5pA)、无线供能及充电、无线唤醒/关闭的特点。该芯片在植入式装置的无线供能及电源管理方面有广泛的应用价值,属国内首创。
Brain-machine interface (BCI) has established a new way for the central or peripheral nerve system to communicate with outside environment directly which have great value in the research fields of basic medicine, clinical rehabititat ion and nerve repair and so on. Implan table brain-machine interact ion technology refers to the research method of recording neural signal from the cerebral cortex by directly implanting electrodes on the brain. This method has high spatial resolution, location stability, specificity, high signal to noise ratiofor simple post-processing. However, it has technical difficulties, and have a trauma. Implantable wireless telecontrol and telemetry technology is the key technology of brain-computer interaction. It is also one important direction of brain-computer interaction technology in the future. Take the development of "Animal robots" for example, with the development of material, MEMS process, micropackage and ASIC technology, implantable BCI technology is developing toward fully implantable wireless telecontrol and telemetry microsystem from early stage of implantable telecontrol and telemetry backpack system. Based on the above background, the proposed dissertation studied mainly on the key technology of implantable telecontrol and telemetry system. The main research work is followed:
     First, combined with the practical requirements of animal-robot training subject, the proposed dissertation presented an implantable telecontrol and telemetry backpack system developed with embedded technology of PDA. The system consists of implantable electrode, headstage amplifier, backpack, portable PDA and PC control station. Design and implemented the platform for BCI animal behavior experiment and several BCI animal behavior experiments. and tested and verified the implantable telecontrol and telemetry backpack system with the platform. Second, based on the study of the backpack system mentioned above, we studied on the fully implantable wireless telecontrol and telemetry microsystem, and designed and fabricated the MEMS neural microelectrode array, RF energy supply power management unit chip, single/multi-channel low noise neural signal amplifier and low power SAR-ADC. The result laid the foundations for whole realization of fully implantable telecontrol/telemetry microsystem.
     The achievements and creative work is summarized.
     1. Implemented an implantable telecontrol and telemetry backpack system based on portable PDA. The system has the features of bidirectional communication, portable, light weight and simultaneously neural signal recording and electric nerve stimulation. The system provides a new platform for behavioral and neurophys iological experiments and exploi ts new method for BCI unstrained animal experiments study.
     2. Use the implantable telecontrol and telemetry backpack system to build the experiment platform for'animal robots'research in BCI. Confirmed the platform with behavior experiments such as experiments of bar-pressing, eight-arm maze testing, as well as navigating rats through a 3D obstacle route. The result laid the foundations for further study on more precise control of 'animal robots'
     3. The proposed dissertation presented an overall design of fully implantable wireless telecontrol and telemetry microsystem with the technology of MEMS neural microelectrode array, CMOS intergrated circuit and compress sensing (CS). Implemented the schemat ic and layout design of several modules, such as MEMS neural microelectrode array, RF energy supply power management unit chip, single/multi-channel low noi se neural signal amplifier and low power SAR-ADC. Some of these modules have been fabricated and tested. These results have a certain signi f icance for the further research work on fully implantable technology in BCI.
     4. The proposed dissertation presented a novel wireless integrated power management unit (PMU) for implantable biomedical telemetry systems. The presented unit can recharge implanted batteries via radio frequency power transmitted from an RF source. And it provides on/off switching through external wireless control. And it has an ultra low standby current about 5pA. The work is the first in China.
引文
[1]S. K. Talwar, S. Xu, E. S. Hawley, S. A. Weiss, K. A. Moxon, and J. K. Chapin, "Behavioural neuroscience: Rat navigation guided by remote control," Nature, vol.417, pp.37-38,2002.
    [2]Y. Wang, X. Su, and M. Wang, "A telemetry navigation system for animal-robots," Robot, vol.28, pp. 183-186,2006.
    [3]S. Xu, S. K. Talwar, E. S. Hawley, L. Li, and J. K. Chapin, "A multi-channel telemetry system for brain microstimulation in freely roaming animals," Journal of neuroscience methods, vol.133, pp.57-63,2004.
    [4]R. Romo, A. Hernandez, A. Zainos, C. D. Brody, and L. Lemus, "Sensing without Touching:: Psychophysical Performance Based on Cortical Microstimulation," Neuron, vol.26, pp.273-278,2000.
    [5]W. G. Song, J. Chai, T. Z. Han, and K. Yuan, "A remote controlled multimode micro-stimulator for freely moving animals," Acta Physiologica Sinica, vol.58, pp.183-188,2006.
    [6]L. Hermer-Vazquez, R. Hermer-Vazquez, I. Rybinnik, G. Greebel, R. Keller, S. Xu, and J. K. Chapin, "Rapid learning and flexible memory in rats trained with brain stimulation reward," Physiology A behavior, vol.84, pp.753-759,2005.
    [7]T. Kim, P. Troyk, and M. Bak, "Active floating micro electrode arrays (AFMA)," 2006, pp.2807-2810.
    [81 C. C. Wang, C. C. Huang, T. J. Lee. C. M. Wu, G. N. Sung, K. W. Fang, S. L. Tseng, and J. J. Chen, "An Implantable SOC Chip for Micro-stimulating and Neural Signal Recording," 2006, pp.682-685.
    [9]X. Gao, D. Xu, M. Cheng, and S. Gao, "A BCI-based environmental controller for the motion-disabled," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.11, pp.137-140,2003.
    [10]M. Suster, J. Guo, N. Chaimanonart, W. Ko, and D. Young, "A wireless strain sensing microsystem with external RF power source and two-channel data telemetry capability," 2007, pp.380-609.
    [11]Y. Wang, X. Su, R. Huai, and M. Wang, "A telemetry navigation system for animal-robots," Robot, vol.28, pp.183-186,2006.
    [12]K. Abdelhalim, V. Smolyakov, and R. Genov, "A phase synchronization and magnitude processor VLSI architecture for adaptive neural stimulation," in Biomedical Circuits and Systems Conference (BioCAS), 2010 IEEE,2010, pp.5-8.
    [13]J. N. Y. Aziz, K. Abdelhalim, R. Shulyzki, R. Genov, B. L. Bardakjian, M. Derchansky, D. Serletis, and P. L. Carlen, "256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes," Solid-State Circuits, IEEE Journal of, vol.44, pp.995-1005,2009.
    [14]J. N. Y. Aziz, R. Genov, B. L. Bardakjian, M. Derchansky, and P. L. Carlen, "Silicon Interface for High-Resolution Neural Recording," Biomedical Circuits and Systems. IEEE Transactions on, vol.1, pp. 56-62,2007.
    [15]J. N. Y. Aziz, R. Genov, B. R. Bardakjian, M. Derchansky, and P. L. Carlen, "256-channel integrated neural interface and spatio-temporal signal processor," in Circuits and Systems,2006.ISCAS 2006. Proceedings. 2006 IEEE International Symposium on,2006, pp.4 pp.-5078.
    [16]J. N. Y. Aziz, R. Karakiewicz, R. Genov, B. L. Bardakjian, M. Derchansky, and P. L. Carlen, "Real-time seizure monitoring and spectral analysis microsystem," in Circuits and Systems,2006. ISCAS 2006. Proceedings.2006 IEEE Inlet national Symposium on,2006, pp.4 pp.-2136.
    [17]G. Charvet, M. Foerster, S. Filipe, J. Porcherot, J. Beche, R. Guillemaud, P. Audebert, G. Regis, B. Zongo, and S. Robinet, "WIMAGINE:A wireless, low power,64-channel ECoG recording platform for implantable BCI applications," 2011, pp.356-359.
    [18]F. Heer, S. Hafizovic, W. Franks, A. Blau, C. Ziegler, and A. Hierlemann, "CMOS microelectrode array for bidirectional interaction with neuronal networks," Solid-Stale Circuits, IEEE Journal of, vol.41, pp. 1620-1629,2006.
    [19]L. Jongwoo, R. Hyo-Gyuem, D. Kipke, and M. Flynn, "A 64 Channelprogrammable closed-loop deep brain stimulator with 8 channel neural amplifier and logarithmic ADC," in VLSI Circuits,2008 IEEE. Symposium on,2008, pp.76-77.
    [20]F. Shahrokhi, K. Abdelhalim, and R. Genov, "128-channel fully differential digital neural recording and stimulation interface," in Circuits and Systems,2009. JSCAS 2009. IEEE International Symposium on, 2009, pp.1249-1252.
    [21]F. Shahrokhi, K. Abdelhalim, D. Serletis, P. L Carlen, and R. Genov, "The 128-Channel Fully Differential Digital Integrated Neural Recording and Stimulation Interface," Biomedical Circuits and Systems, IEEE Transactions on, vol.4, pp.149-161,2010.
    122] A. Wong, K. Pun, Y. Zhang, and K. Hung, "A near-infrared heart rate measurement IC with very low cutoff frequency using current steering technique," IEEE Transactions on (inuils and Systems I:Regular Papers, vol.52, pp.2642-2647,2005.
    123] S. Brown, "Stealth sharks to patrol the high seas," New Scientist, vol.189,2006.
    [24]R. Holzer and I. Shimoyama, "Locomotion control of a bio-robotic system via electric stimulation," 1997, pp.1514-1519 vol.3.
    [25]Y. Kuwana, I. Shimoyama, and H. Miura, "Steering control of a mobile robot using insect antennae," 1995, p.2530.
    [26]A. Sharma, L. Rieth, P. Tathireddy, R. Harrison, H. Oppermann, M. Klein, M. Topper, E. Jung, R. Normann, and G. Clark, "Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel Utah Slant Electrode Array (USEA):Implications for long term functionality," pp. 1204-1207.
    [27]E. L. Chaffee and R. U. Light, "A method for the remote control of electrical stimulation of the nervous system," The Yale Journal of Biology and Medicine, vol.7, p.83,1934.
    [28]W. H. Gantt, "STIMULATION OF SUBCORTEX OF THE BRAIN," Journal of the American Medical Association, vol.103, p.430,1934.
    [29]J. Delgado, J. Delgado-Garcia, J. Amerigo, and C. Grau, "Behavioral inhibition induced by pallidal stimulation in monkeys," Experimental Neurology, vol.49, pp.580-591,1975.
    [30]J. M. Lafferty and J. J. Farrell, "A technique for chronic remote nerve stimulation," science, vol.110, p. 140,1949.
    131] W. W. L. Glenn, A. Mauro, E. Longo, P. H. Lavietes, and F. J. Mackay, "Remote stimulation of the heart by radiofrequency transmission," New England Journal of Medicine, vol.261, pp.948-951,1959.
    [32]W. W. L. Glenn, J. H. Hageman, A. Mauro, L. Eisenberg, S. Flanigan, and M. Harvard, "Electrical stimulation of excitable tissue by radio-frequency transmission," Annuls of.surgery, vol.160, p.338,1964.
    [33]A. Bozkurt, A. Lai, and R. Gilmour, "Aerial and terrestrial locomotion control of lift assisted insect biobots," in Engineering in Medicine and Biology Society,2009. EMBC 2009. Annual International Conference of the IEEE,2009, pp.2058-2061.
    [34]W. M. Tsang, A. Stone, Z. Aldworth, D. Otten, A.1. Akinwande, T. Daniel, J. G. Hildebrand, R. B. Levine, and J. Voldman, "Remote control of a cyborg moth using carbon nanotube-enhanced flexible neuroprosthetic probe," in Micro Electro Mechanical Systems (MEMS).2010 IEEE 23rd International Conference on,2010, pp.39-42.
    [35]A. Bozkurt, A. Lal, and R. Gilmour, "Radio control of insects for biobotic domestication," in Neural Engineering,2009. NER'09.4th International IEEE/EMBS Conference on,2009, pp.215-218.
    [36]槐瑞托,苏学成,杨俊卿,刘小峰,and于志豪,”动物机器人遥操作导航控制方法,”应用基础与工程科学学报pp.352-358,2010.
    [37]槐瑞托,王勇,and苏学成,”动物机器人的实验研究,”in 第一届全国脑与认知存学学术研讨会,中国广东珠海,2005,p.124.
    [38]王勇,苏学成,槐瑞托,and王敏,”动物机器人遥控导航系统,”机器人,pp.183-186,2006.
    [39]李海鹏,”基于BCI的壁虎动物机器人遥控刺激系统研究,”硕士,南京航空航天大学,2008.
    [40]张春帅,”基于无线单片机的动物机器人遥控刺激系统研制,”硕士,南京航空航天大学,2011.
    [41]张春帅,郭策,and蔡雷,”微小型动物机器人遥控刺激系统的研制,”电子技术应用,pp.134-137,2011.
    [42]李海鹏,戴振东,谭华,郭策,and孙久荣,”壁虎动物机器人遥控系统,”计算机技术与发展,pp.16-19,2008.
    [43]Z. Feng, W. Chen, X. Ye, S. Zhang, X. Zheng, P. Wang, J. Jiang, L. Jin, Z. Xu, and C. Liu, "A remote control training system for rat navigation in complicated environment," Journal of Zhejiang University-Science A, vol.8, pp.323-330,2007.
    [44]张韶岷,王鹏,江君,刘富鑫,叶学松,陈卫东,封洲燕,and郑筱祥,”大鼠遥控导航及其行为训练系统的研究,”中国生物医学工程学报pp.830-836,2007.
    [45]郑筱祥,封洲燕.叶学松,陈卫东,强韶岷,王鹏,郑晓静,刘纯青,刘富鑫,江君,金林,and徐志健,”复杂环境下的生物机器人遥控系统,”in 2007中国生物医学工程联合学术年会,中国陕西西安,2007,pp.79-80.
    [46]E. S. Hawley, E. L. Hargreaves, J. L. Kubie, B. Rivard, and R. U. Muller, "Telemetry system for reliable recording of action potentials from freely moving rats," Hippocampus, vol.12, pp.505-513,2002.
    [47]U. Jurgens and S. R. Hage, "Telemetric recording of neuronal activity," Methods, vol.38, pp.195-201, 2006.
    [48]C. A. Chestek, V. Gilja, P. Nuyujukian, R. J. Kier, F. Solzbacher, S.I. Ryu, R. R. Harrison, and K. V. Shenoy, "HermesC:low-power wireless neural recording system for freely moving primates," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.17, pp.330-338,2009.
    [49]D. SHATIN, K. MULLETT, and G. HULTS, "Totally implantable spinal cord stimulation for chronic pain: Design and efficacy," Pacing and Clinical Electrophysiology, vol.9, pp.577-583,1986.
    [50]A. P. Chandran, K. Najafi, and K. D. Wise, "A new dc baseline stabilization scheme for neural recording microprobes," in [Engineering in Medicine and Biology,1999.21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference,1999. Proceedings of the First Joint,1999, p.386 vol.1.
    [51]J. Ji and K. D. Wise, "An implantable CMOS circuit interface for multiplexed microelectrode recording arrays," Solid-State Circuits. IEEE Journal of. vol.27, pp.433-443,1992.
    [52]B. Qing and K. D. Wise, "Single-unit neural recording with active microelectrode arrays," Biomedical Engineering, IEEE Transactions on. vol.48, pp.911-920,2001.
    [53]C. Moosung, L. Wentai, Y. Zhi, C. Tungchien, K. Jungsuk, M. Sivaprakasam, and M. Yuce, "A 128-Channel 6mW Wireless Neural Recording IC with On-the-Fly Spike Sorting and UWB Tansmitter," in Solid-Slate Circuits Conference.2008. ISSCC 2008. Digest of Technical Papers. IEEE International,2008, pp.146-603.
    [54]R. Harrison, P. Watkins, R. Kier, R. Lovejoy, D. Black, B. Greger, and F. Solzbacher, "A low-power integrated circuit for a wireless 100-electrode neural recording system," IEEE Journal of Solid State Circuits, vol.42, p.123,2007.
    [55]A. M. Sodagar, K. D. Wise, and K. Najafi, "A Wireless Implantable Microsystem for Multichannel Neural Recording," Microwave Theory and Techniques. IEEE Transactions on, vol.57, pp.2565-2573,2009.
    [56]R. Harrison and C. Charles, "A low-power low-noise CMOS amplifier for neural recording applications," IEEE Journal of Sol id-Stale Circuits, vol.38, pp.958-965,2003.
    [57]R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, "A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System," Solid-State Circuits, IEEE Journal of, vol.42, pp.123-133,2007.
    [58]T. Horiuchi, T. Swindell, D. Sander, and P. Abshier, "A low-power CMOS neural amplifier with amplitude measurements for spike sorting," in Circuits and Systems,2004. ISCAS'04. Proceedings of the 2004 International Symposium on,2004, pp. IV-29-32 Vol.4.
    [59]V. Majidzadeh, A. Schmid, and Y. Leblebici, "Energy Efficient Low-Noise Neural Recording Amplifier With Enhanced Noise Efficiency Factor," Biomedical Circuits and Systems, IEEE Transactions on, vol.5, pp.262-271,2011.
    [60]M. Chae, W. Liu, Z. Yang, T. Chen, J. Kim, M. Sivaprakasam, and M. Yuce, "A 128-channel 6mW wireless neural recording ic with on-the-fly spike sorting and uwb tansmittcr," 2009, pp.146-603.
    [61]M. Chae, J. Kim, and W. Liu, "Fully-differential self-biased bio-potential amplifier," Electronics Letters, vol.44, pp.1390-1391,2008.
    [62]M. Chae, W. Liu, and M. Sivaprakasam, "Design optimization for integrated neural recording systems,' IEEE Journal of Solid-State Circuits, vol.43, pp.1931-1939,2008.
    [63]C. Moo Sung, Y. Zhi, M. R. Yuce, H. Linh, and W. Liu, "A 128-Channel 6 mW Wireless Neural Recording IC With Spike Feature Extraction and UWB Transmitter," Neural Systems and Rehabilitation Engineering. IEEE Transactions on, vol.17, pp.312-321,2009.
    [64]任秋实,”视觉假体的研究进展与面临的挑战,”生命科学pp.234-240,2009.
    [65]G. J.P and翁铭庆,”电刺激脑皮质人工视觉现状,”国外医学生物医学工程分册,pp.218-222,1989.
    [66]黄伟昌,”基于无线能量和数据传输的视觉假体刺激器的测试与评估,”硕士,上海交通大学,2011.
    [67]S. Zhang, P. Wang, J. Jiang, F. Liu, X. Ye, W. Chen, Z. Feng, and X. Zheng, "Researches of Control System for Rat Remote Navigation and Behavior Training," Chinese Journal of Biomedical Engineering, vol.26, p.830,2007.
    [68]林婉挥,黄华品,林明星,and陈圣根,”局部高频电刺激海马对海人酸致痫大鼠海马细胞外谷氨酸和γ-氨基丁酸释放的影响,”中国应用生理学杂志,pp.88-92,2011.
    [69]聂梦旬,”经皮神经电刺激治疗癫痫的实验与临床应用研究,”硕士,石河子大学,2009.
    [70]杨丽霞,”单侧低频电刺激梨状脑中间区对杏仁核电点燃癫痫的作用,”硕士,浙江大学,2006.
    [71]曲梅,丁晓宁,刘红兵,and刘延青,”韩氏穴位神经刺激仪2/100Hz疏密波治疗慢性疼痛疗效观察,中国疼痛医学杂志,pp.152-154,2010.
    [72]本.吴若琪,”脊髓电刺激在慢性疼痛治疗中作用广泛,”ed:中国医药报,p.B03.
    [73]T. Gordon, E. Udina, V. Verge, and E. de Chaves, "Brief electrical stimulation accelerates axon regeneration in the peripheral nervous system and promotes sensory axon regeneration in the central nervous system," Motor control, vol.13, p.412,2009.
    [74]E. Asensio-Pinilla, E. Udina, J. Jaramillo, and X. Navarro, "Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury," Experimental Neurology, vol.219, pp.258-265, 2009.
    [75]E. Udina, M. Furey, S. Busch, J. Silver, T. Gordon, and K. Fouad, "Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections," Experimental Neurology. vol.210, pp.238-247,2008.
    [76]张世民,俞光荣,and刁颖敏,”植入式神经电极对周围神经的力学和电学损害及其预防,”中国康复理论与实践,pp.42-43,2004.
    [771 W. F. Agnew and D. B. McCreery, "Considerations for safety with chronically implanted nerve electrodes," Epilepsia, vol.31, pp. S27-S32,1990.
    [78]W. Agnew, D. McCreery, T. Yuen, and L. Bullara, "Local anaesthetic block protects against electrically-induced damage in peripheral nerve," Journal of biomedical engineering, vol.12, pp.301-308, 1990.
    [79]R. L. Weiner, "Peripheral nerve neurostimulation," Neurosurgery Clinics of North America, vol.14, p.401, 2003.
    [80]E. J. Tehovnik, "Electrical stimulation of neural tissue to evoke behavioral responses," Journal of neuroscience methods, vol.65, pp.1-17,1996.
    [81]A. P. Georgopoulos, J. Ashe, N. Smyrnis, and M. Taira, "The motor cortex and the coding of force," science, volt256, p.1692,1992.
    [82]D. M. Taylor, S.1. H. Tillery, and A. B. Schwartz, "Direct cortical control of 3D neuroprosthetic devices," science, vol.296, p.1829,2002.
    [83) S. Martinoia, P. Massobrio, M. Bove, and G. Massobrio, "Cultured neurons coupled to microelectrode arrays:circuit models, simulations and experimental data," Biomedical Engineering. IEEE Transactions on, vol.51, pp.859-863,2004.
    [84]寿天德,”神经生物学,”高等教育出版社,pp.15-50,2006.
    [85]孙斐,”基于CMOS集成电路的BCI微传感系统,”硕士,天津大学,2008.
    [86]X. Ye, P. Wang, J. Liu, S. Zhang, J. Jiang, Q. Wang, W. Chen, and X. Zheng, "A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals," Journal of Neuroscience Methods, vol.174, pp.186-193,2008.
    [87]K. A. Moxon, "Brain-control interfaces for sensory and motor prosthetic devices." in Acoustics, Speech, and Signal Processing,2001. Proceedings. (ICASSP'01).2001 IEEE International Conference on,2001, pp.3445-3448 vol.6.
    [88]R. A. Normann, E. M. Maynard, P. J. Rousche, and D. J. Warren, "A neural interface for a cortical vision prosthesis," Vision Research, vol.39, pp.2577-2587,1999.
    [891 G. T. A. Kovacs, C. W. Storment, and J. M. Rosen, "Regeneration microelectrode array for peripheral nerve recording and stimulation," Biomedical Engineering, IEEE Transactions on, vol.39, pp.893-902,1992.
    [90]P. Dario, P. Garzella, M. Toro, S. Micera, M. Alavi, U. Meyer, E. Valderrama, L. Sebatiani, B. Ghelarducci, and C. Mazzoni, "Neural interfaces for regenerated nerve stimulation and recording," Rehabilitation Engineering, IEEE Transactions on, vol.6, pp.353-363,1998.
    [91]J. B. Ranck, "Which elements are excited in electrical stimulation of mammalian central nervous system:a review," Brain Research, vol.98, pp.417-440,1975.
    [921 Z. B. Zhu-Ge, Y. Y. Zhu, D. C. Wu, S. Wang, L. Y. Liu, W. W. Hu, and Z. Chen, "Unilateral low-frequency stimulation of central piriform cortex inhibits amygdaloid-kindled seizures in Sprague-Dawley rats," Neuroscience. vol.146, pp.901-906, May 2007.
    [93]E. Salinas and T. J. Sejnowski, "Correlated neuronal activity and the flow of neural information," Nature reviews. Neuroscience, vol.2, p.539,2001.
    [94]P. Grohrock, U. H usler, and U. J"'rgens, "Dual-channel telemetry system for recording vocalization-correlated neuronal activity in freely moving squirrel monkeys," Journal of neuroscience methods, vol.76, pp.7-13,1997.
    [95]I. Obeid, M. A. L. Nicolelis, and P. D. Wolf, "A multichannel telemetry system for single unit neural recordings," Journal of neuroscience methods, vol.133, pp.33-38,2004.
    [96]C. N. Chien and F. S. Jaw, "Miniature telemetry system for the recording of action and field potentials," Journal of neuroscience methods, vol.147, pp.68-73,2005.
    [97]D. S. Schregardus, A. W. Pieneman, A. Ter Maat, R. F. Jansen, T. J. F. Brouwer, and M. L. Gahr, "A lightweight telemetry system for recording neuronal activity in freely behaving small animals," Journal of neuroscience methods, vol.155, pp.62-71,2006.
    [98]A. L. Vyssotski, A. N. Serkov, P. M. Itskov, G. Dell'Omo, A. V. Latanov, D. P. Wolfer, and H. P. Lipp, "Miniature neurologgers for flying pigeons:multichannel EEG and action and field potentials in combination with GPS recording," Journal of neurophysiology, vol.95, p.1263,2006.
    [99]T. Ativanichayaphong, J. W. He, C. E. Hagains, Y. B. Peng, and J. C. Chiao, "A combined wireless neural stimulating and recording system for study of pain processing," Journal of neuroscience methods, vol.170, pp.25-34,2008.
    [100]王余峰,吕晓迎,and王志功,“神经信号检测和功能激励微电极,”国外医学(生物医学工程分册),pp.129-133,2005.
    [101]A. E. Kirby and J. C. Middlebrooks, "Auditory temporal acuity probed with cochlear implant stimulation and cortical recording," Journal of neurophysiology, vol.103, p.531,2010.
    [102]J. J. FitzGerald, N. Lago, S. Benmerah, J. Serra, C. P. Watling, R. E. Cameron, E. Tarte, S. P. Lacour, S. B. McMahon, and J. W. Fawcett, "A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo," Journal of neural engineering, vol.9, p.016010,2012.
    [103]P. M. Rossini, S. Micera, A. Benvenulo, J. Carpaneto, G. Cavallo, L. Citi, C. Cipriani, L. Denaro, V. Denaro, and G. Di Pino, "Double nerve intraneural interface implant on a human amputee for robotic hand control," Clinical neurophysiology. vol.121, pp.777-783,2010.
    [104]N. Chaimanonart and D. Young, "Remote RF powering system for wireless MEMS strain sensors," IEEE Sensors Journal, vol.6, p.484,2006.
    [105]N. Chaimanonart, K. R. Olszens, M. D. Zimmerman, W. H. Ko, and D. J. Young, "Implantable RF Power Converter for Small Animal In Vivo Biological Monitoring," in Engineering in Medicine and Biology Society,2005.IEEE-EMBS 2005.27th Annual International Conference of the IEEE,2005, pp.5194-5197.
    [106]N. Chaimanonart and D. J. Young, "A wireless battery less in vivo EKG and body temperature sensing microsystem with adaptive RF powering for genetically engineered mice monitoring," in Solid-State Sensors. Actuators and Microsystems Conference,2009. TRANSDUCERS 2009. International,2009, pp. 1473-1476.
    [107]B. D. Farnsworth, R. J. Triolo, and D. J. Young, "Wireless implantable EMG sensing microsystem," in Sensors,2008 IEEE,2008, pp.1245-1248.
    [108]W. Ko, S. Liang, and C. Fung, "Design of radio-frequency powered coils for implant instruments," Medical and biological engineering and computing, vol.15, pp.634-640,1977.
    [109]C. Peng, N. Chaimanonart, W. H. Ko, and D. J. Young, "A wireless and batteryless 130mg 300uW 10b implantable blood-pressure-sensing microsystem for real-time genetically engineered mice monitoring," in Solid-State Circuits Conference-Digest of Technical Papers,2009. ISSCC 2009. IEEE International,2009, pp.428-429,429a.
    [110]M. D. Zimmerman, N. Chaimanonart, and D. J. Young, "In Vivo RF Powering for Advanced Biological Research," in Engineering in Medicine and Biology Society.2006. EMBS '06.28th Annual International Conference of the IEEE,2006, pp.2506-2509.
    [111]D. J. Young, "Wireless powering and data telemetry for biomedical implants," in Engineering in Medicine and Biology Society.2009. EMBC 2009. Annual International Conference of the IEEE,2009, pp. 3221-3224.
    [112]辛文辉,“人体消化道微型诊查装置无线供能技术研究,”博士,上海交通大学,2010.
    [113]D. Bekiaris, A. Papanikolaou, G. Stamelos, D. Soudris, G. Economakos, and K. Pekmestzi, "A standard-cell library suite for deep-deep sub-micron CMOS technologies," in Design& Technology of Integrated Systems in Nanoscale Era (DTIS),2011 6th International Conference on,2011, pp.1-6.
    [114]R. Muller, S. Gambini, and J. M. Rabaey, "A 0.013 mm^2,5 uW, DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply," Solid-State Circuits, IEEE Journal of vol. PP, pp. 1-1,2011.
    [115]J. Olivo, S. Carrara, and G. De Micheli, "Energy Harvesting and Remote Powering for Implantable Biosensors," Sensors Journal. IEEE. vol.11, pp.1573-1586,2011.
    [116]B. Otis, R. Egbert, S. Haq, J. Holleman, J. Hu, Y. Liao, J. Pandey, S. Rai, and F. Zhang, "Design techniques for self-powered microsystems," in Circuits and Systems,2009. ISCAS 2009. IEEE International Symposium on,2009, pp.1429-1432.
    [117]W. Singer, "Why use more than one electrode at a time," New Technologies for the Life Sciences;"A Trends Guide. Amsterdam:Elsevier, pp.12-17,2000.
    [118]R. H. Olsson III and K. D. Wise, "A three-dimensional neural recording microsystem with implantable data compression circuitry," Solid-State Circuits, IEEE Journal of, vol.40, pp.2796-2804,2005.
    [119]A. B. Schwartz, "CORTICAL NEURAL PROSTHETICS," Annual Review of Neuroscience, vol.27, pp. 487-507,2004.
    [120]E. N. Brown, R. E. Kass, and P. P. Mitra, "Multiple neural spike train data analysis:state-of-the-art and future challenges," Nat Neurosci, vol.7, pp.456-461,2004.
    [121]Z. Xiaoxiang, Z. Qiaosheng, Z. Shaomin, Y. Yi, C. Weidong, Z. Yao, and L. Shuoxin, "Real-time decoding algorithm in brain machine interfaces," in Complex Medical Engineering (CME).2010 IEEE/ICME International Conference on,2010, pp.79-84.
    [122]Z. Fei, M. Aghagolzadeh, and K. Oweiss, "An implantable neuroprocessor for multichannel compressive neural recording and on-the-fly spike sorting with wireless telemetry," in Biomedical Circuits and Systems Conference (BioCAS),2010 IEEE,2010, pp.1-4.
    [123]N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P. Chandrakasan, "A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system," Solid-Stale Circuits, IEEE Journal of, vol.45, pp.804-816,2010.
    [124]S. Yuwen, H. Shimeng, J. J. Oresko, and A. C. Cheng, "Programmable Neural Processing on a Smartdust for Brain-Computer Interfaces," Biomedical Circuits and Systems. IEEE Transactions on. vol.4, pp. 265-273,2010.
    [125]V. Karkare, S. Gibson, Markovic, x, and D., "A 130uW,64-Channel Neural Spike-Sorting DSP Chip," Solid-State Circuits, IEEE Journal of, vol.46, pp.1214-1222,2011.
    [126]S. Aviyente, "Compressed sensing framework for EEG compression," 2007, pp.181-184.
    [127]F. Chen, A. P. Chandrakasan, Stojanovic, x, and V., "A signal-agnostic compressed sensing acquisition system for wireless and implantable sensors," in Custom Integrated Circuits Conference (CICC),2010 IEEE,2010, pp.1-4.
    [128]A. M. Kamboh, K. G. Oweiss, and A. J. Mason, "Resource constrained vlsi architecture for implantable neural data compression systems," 2009, pp.1481-1484.
    [129]Z. Charbiwala, V. Karkare, S. Gibson, D. Markovic, and M. B. Srivastava, "Compressive Sensing of Neural Action Potentials Using a Learned Union of Supports." 2011, pp.53-58.
    [130]S. Craciun, D. Cheney, K. Gugel, J. C. Sanchez, and J. C. Principe, "Wireless Transmission of Neural Signals Using Entropy and Mutual Information Compression," Neural Systems and Rehabilitation Engineering, IEEE Transactions on. pp.1-1,2011.
    [131]K. Sohee, P. Tathireddy, R. A. Normann, and F. Solzbacher, "Thermal Impact of an Active 3-D Microelectrode Array Implanted in the Brain," Neural Systems and Rehabilitation Engineering, IEEE Transactions on. vol.15, pp.493-501,2007.
    [132]S. Kim, R. A. Normann, R. Harrison, and F. Solzbacher, "Preliminary study of the thermal impact of a microelectrode array implanted in the brain," 2006, pp.2986-2989.
    [133]T. M. Seese, H. Harasaki, G. M. Saidel, and C. R. Davies, "Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating," Laboratory investigation, vol.78, pp.1553-1562,1998.
    [134]A. Nieder, "Miniature stereo radio transmitter for simultaneous recording of multiple single-neuron signals from behaving owls," Journal of neuroscience methods. vol.101, pp.157-164,2000.
    [135]F. S. Jaw, "Optimal sampling of electrophysiological signals," Neuroscience Research Communications, vol.28, pp.75-84,2001.
    [136]K. H. Kim and S. J. Kim, "Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier," Biomedical Engineering, IEEE Transactions on, vol.47, pp.1406-1411,2000
    [137]佚名,"蓝牙简介http://www.leadzil.com/lzyzs/qichedian/236507.asp," 2007-03-14.
    [138]重庆金瓯科技发展有限责任公司,"一百米蓝牙串口/内嵌模块http://www.jinoux.com/product2.html.."
    [139]重庆金瓯科技发展有限责任公司,"金瓯蓝牙百米内嵌模块使用手册.”
    [140]孙琼,"嵌入式Linux应用程序开发详解,"人民邮电出版社.2006.
    [141]陈文智,"嵌入式系统开发原理与实践,"清华大学出版社,2005.
    [142]佚名,"嵌入式操作系统介绍及选型原则.http://blog.sina.com.cn/s/blog 4a92ce120100076z.html." 2007-03-14.
    [143]佚名,"嵌入式操作系统简介http://qqsqxvhx.blog.163.com/blog/static/8373090200610123454962/."
    [144]刘淼,"嵌入式系统接口设计与Linux驱动程序开发,"北京航空航天大学出版社.2006.
    [145]杭州立宇泰电子有限公司,"ARMSYS2410开发套件Linux2.6.15内核使用说明(Rev 1.1),"北京航空航天大学出版社,2007.7.
    [146]"S3C2410A-200MHz&266MHz 32-BIT RISC MICROPROCESSOR USER'S MANUAL Revision 1.0," Samsung Electronics,2004.3.
    [147]M. Ghovanloo and S. Atluri, "An Integrated Full-Wave CMOS Rectifier With Built-in Back Telemetry for RFID and Implantable Biomedical Applications," IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers, vol.55, pp.3328-3334,2008.
    [148]C. S.-C. U. t. U. Bridge," SILICON LABORATORIES.'
    [149]S. Electronics. "http://www.sparkfun.com/datasheets/IC/cp2102.pdf."
    [150]C. x. L. Driver," http://www.etheus.net/CP210x Linux Driver."
    [151]何锋,"用CP2101将USB口扩展成串口.应用与设计,”p.19-21,2005.
    [152]佚名,“无线局域网介绍,”http://www.net130.com/2004/6-6/223356.html,2004.
    [153]T. D. TonyBautts," Linux网络管理员指南(第三版),"东南大学出版社.2006.
    [154]佚名, "Welcome to the rt2x00 Project."
    [155]佚名,“无线网卡驱动RT73的移植,”http://www.cnitblog.com/zouzheng/archive/2007/11/16/36358.html.
    [156]深圳远峰,"S3c2410的触摸屏及模数转换," http://www.2lic.com/news/n7851c63.aspx.
    [157]宋宝华, "Linux设备驱动开发详解,"人民邮电出版社.2005.
    [158]佚名,"armlinux学习笔记——触摸屏驱动程序分析.”
    [159]刘利国,“S3C2410下LCD驱动程序移植及GUI程序编写.”
    [160]勤研电子,”嵌入式Linux下彩色LCD驱动的设计与实现,"2005.
    [161]佚名,"Linux环境下USB的原理、驱动和配置,"http://linux.chinaitlab.com/driver/731464.html.
    [162]百度百科,"usb介绍." http://baike.baidu.com/view/854.htm.
    [163]A. R. Jonathan Corbet, Greg Kroah-Hartman, "Linux设备驱动程序(第三版),"中国电力出版社.2006.
    [164]佚名,"介绍Linux操作系统下的USB硬件设备驱动," http://linux.chinaitlab.com/driver/728862. html.
    [165]解超,李善平,"基于LINUX的嵌入式GU1.计算机工程与应用,"p.135-137,2003.
    [166]G. Blanchette, "C++ GUI Qt3编程,”北京航空航天大学出版社.2006.
    [167]佚名," Qt/Embedded简介," http://hi.baidu.com/whyspai/blog/item/4819bfcc4abb461000e92843.html.
    [168]嵌入式工具Qt的安装与使用, "http://blog.csdn.net/vsong/archive/2007/01/26/1494937.aspx.'
    [169]图形界面程序Qt安装及其在2410-s上的移植,"http://blog.csdn.net/vsong/archive/2007/01/26/1494926.aspx."
    [170]C. Inc., "CerebusTM 128-Channel Data Acquisition System USER MANUAL," 2004.
    [171]张韶岷,陈卫东,孙超,于毅,章怀坚,江君,代建华,张恒义,and郑筱祥,”动物脑电-行为同步记录及分析系统,”浙江大学学报(工学版),pp.2028-2033,2009.
    [172]M. Lou, C. C. Eschenfelder, T. Herdegen, S. Brecht, and G. Deuschl, "Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats," Stroke, vol.35, pp.578-583,2004.
    [173]J. N. J. Reynolds, B. I. Hyland, and J. R. Wickens, "A cellular mechanism of reward-related learning," Nature, vol.413, pp.67-70,2001.
    [174]W. Hansford, "http://www.wxic.cn/te subiect/2008-10-21/336.chtml."
    [175]W. Peng, L. Bo, Y. Xuesong, W. H. Ko, and C. Peng, "A Simple Novel Wireless Integrated Power Management Unit (PMU) for Rechargeable Battery-Operated Implantable Biomedical Telemetry Systems," in Bioinformatics and Biomedical Engineering (iCBBE).2010 4th International Conference on, 2010, pp.1-4.
    [176]N. Chaimanonart, M. D. Zimmerman, and D. J. Young, "Adaptive RF power control for wireless implantable bio-sensing network to monitor untethered laboratory animal real-time biological signals," in Sensors,2008 IEEE,2008, pp.1241-1244.
    [177]Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, and H. P. C. Robinson, "A system for MEA-based multisite stimulation," Biomedical Engineering, IEEE Transactions on, vol.50, pp.241-248,2003.
    [178]S. Raghunathan, S. K. Gupta, M. P. Ward, R. M. Worth, K. Roy, and P. P. Irazoqui, "The design and hardware implementation of a low-power real-time seizure detection algorithm," Journal of neural engineering, vol.6, p.056005,2009.
    [179]P. E. Allen and DouglasR.Holberg, "CMOS模拟集成电路设计(第二版)," P.537-541,2009.
    [180]B. Razavi,“模拟CMOS集成电路设计,”西安交通大学出版社.p.345-349,2002.
    [181]B. Razavi,“模拟CMOS集成电路设计,”西安交通大学出版社.p.334-340,2002.
    [182]R. J. Baker, "CMOS电路设计·布局与仿真(第二版),”人民邮电出版社,p.352-354,2008.
    [183]D.A.Johns and K.Martin,"模拟集成电路设计,”机械工业出版社.p.349-352,2005.
    [184]何乐年and王忆,”模拟集成电路设计与仿真,”科学出版社.p.310,2008年01月.
    [185]J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," Information Theory. IEEE Transactions on. vol.53, pp.4655-4666,2007.
    [186]S. Aviyente, "Compressed Sensing Framework for EEG Compression," in Statistical Signal Processing, 2007. SSP'07.IEEE/SP 14th Workshop on,2007, pp.181-184.
    [187]E. J. Candes and T. Tao, "Near-Optimal Signal Recovery From Random Projections:Universal Encoding Strategies?," Information Theory, IEEE Transactions on, vol.52, pp.5406-5425,2006.
    [188]A. Sharma, L. Rieth, P. Tathireddy, R. Harrison, H. Oppermann, M. Klein, M. Topper, E. Jung, R. Normann, and G. Clark, "Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel Utah Slant Electrode Array (USEA):Implications for long term functionality," 2011, pp.1204-1207.
    [189]A. H. D. Graham, J. Robbins, C. R. Bowen, and J. Taylor, "Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors," Sensors, vol. 11, pp. 4943-4971,2011.
    [190]陈芳,”多电极阵列MEA在神经信息学与神经生理学研究中的应用,”硕士,浙江大学,2007.
    [191]陈卫东,张韶岷,金林,and王鹏,”BCI动物实验系统,”vol.CN100515187,2009.
    [192]叶学松,陈默,王鹏,王清波,刘俊,and郑筱祥,”植入式神经微刺激和采集遥控芯片,”CV101185789B.2010.
    [193]叶学松,王鹏,梁波,刘峰,and葛文勋,”无线控制的微型植入式无线供能电源管理集成电路芯片,”CN101632576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700