木犀草素对实验性脑缺血大鼠的脑保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑血管病是我国居民死亡的第一原因和成人残疾的第一原因,以缺血性脑血管病最为常见,具有发病率高、病死率高、致残率高、复发率高、恢复缓慢的特点。缺血后继发性脑损伤是患者的病情加重和影响预后的重要原因。近年来,脑缺血后脑损伤的病理生理机制研究已取得了重大进步,然而,临床治疗效果却非常有限。
     脑梗死后的继发性脑损伤常导致病情加重,主要包括氧化应激、炎症反应、凋亡、细胞内钙超载、细胞毒性作用、活性氧及自由基等,这几种因素之间相互作用、相互影响,构成复杂的调控网络,形成恶性循环,造成一系列病理级联反应,其中过度炎症反应、氧化应激和凋亡存在于脑梗死后坏死和缺血区域,成为导致继发损伤的主要原因。因此,抗氧化应激、减轻炎症损伤、抑制凋亡成为治疗脑梗死的主要途径之一。
     木犀草素(Luteolin)是一种天然黄酮类化合物,分子式为:C15H10O6,存在于多种植物中,因最初是从木犀草科(Resedaceae)木犀草属草本植物木犀草(ResedaodorataL)的叶、茎、枝中分离出而得名,具有多种药理活性,如抗炎、抗氧化、抑制凋亡、抗过敏、抗肿瘤、抗菌、抗病毒、增强免疫功能等多种生物学作用,其毒副作用低,具有良好的临床应用潜力。
     本研究选用雄性Sprague-Dawley大鼠,应用改良Longa线栓法建立大鼠右侧大脑中动脉阻塞(middle cerebral artery occlusion, MCAO)模型。在大鼠永久性大脑中动脉阻塞所致的脑缺血模型上观察脑缺血后TLR4,TLR5,P38MAPK,ERK1/2,claudin-5,Bcl-2和Bax的表达,大脑皮层梗塞灶超氧化物歧化酶(Superoxide Dismutase,SOD)与过氧化氢酶(Catalase,CAT)活性及丙二醛(Malondiadehyde,MDA)的含量。确定缺血后与炎症反应、氧化损伤及凋亡的关系,并选用黄酮类化合物木犀草素进行干预,评价干预前后梗死体积、脑含水量、神经功能缺损评分,以及木犀草素对TLR4,TLR5,P38MAPK,ERK1/2,claudin-5,Bcl-2和Bax的表达信号通路的影响,研究木犀草素对缺血损伤后的脑保护作用机制进行初步探讨,并检测木犀草素对氧化应激标志物SOD,CAT活性和MDA含量的影响。本研究分三部分,现将各部分内容概述如下。
     第一部分木犀草素对实验性脑缺血大鼠的抗氧化作用及机制研究
     目的:观察实验性大鼠脑缺血损伤后不同时间点梗死体积、脑含水量、神经功能缺损评分,claudin-5的表达变化以及SOD,CAT的活性和MDA的含量。研究木犀草素对脑缺血大鼠的脑保护作用。探讨木犀草素抗氧化作用的相关机制。
     方法:选用成年健康雄性Sprague-Dawley大鼠为研究对象,应用改良Longa线栓法制备大鼠右侧大脑中动脉梗塞模型(MCAO)。实验1:观察木犀草素的神经保护作用,梗塞后24h和72h分别观察神经功能缺损评分,脑含水量,梗塞体积。实验动物随机分为6组,假手术组(Sham),假手术后腹腔注射等量生理盐水+1%DMSO;手术组(MCAO),缺血术后腹腔注射等量生理盐水;溶剂对照组(MC+DM),缺血术后腹腔注射等量生理盐水+1%DMSO;木犀草素小剂量组(Luteolin-L),缺血术后腹腔注射木犀草素5mg/kg;木犀草素中剂量组(Luteolin-M),缺血术后腹腔注射木犀草素10mg/kg;木犀草素大剂量组(Luteolin-H),缺血术后腹腔注射木犀草素25mg/kg。实验2:观察木犀草素的抗氧化功能。检测脑组织中超氧化物歧化酶(SOD),过氧化氢酶(CAT)的活性,丙二醛(MDA)含量的变化情况。实验动物随机分为5组,假手术组(Sham),手术组(MCAO),溶剂对照组(MC+DM),木犀草素中剂量组(Luteolin-M),木犀草素大剂量组(Luteolin-H)。实验3:观察脑缺血后木犀草素对血脑屏障的影响。实验动物随机分为5组,假手术组(Sham),手术组(MCAO),溶剂对照组(MC+DM),木犀草素中剂量组(Luteolin-M),木犀草素大剂量组(Luteolin-H)。各组取材前进行神经功能评分,干湿重法测定脑组织含水量,TTC染色评价脑梗死体积,分别用RT-qPCR的方法和Westernblot的方法检测缺血脑组织claudin-5mRNA和蛋白水平的变化。
     结果:
     1Sham组无神经功能缺损,神经功能缺损评分为0分;MCAO组和MC+DM组在24h和72h神经功能缺损评分均较严重,Luteolin-L组在24h和72h与MCAO组和MC+DM组相比没有明显降低神经功能缺损,差异无统计学意义(P>0.05),Luteolin-M组和Luteolin-H组在24h和72h与MCAO组和MC+DM组相比均可明显降低神经功能缺损,差异有统计学意义(P<0.05)。
     2Luteolin-L组在24h和72h与MCAO组和MC+DM组相比均没有明显降低脑含水量,差异无统计学意义(P>0.05),Luteolin-M组和Luteolin-H组在24h和72h与MCAO组和MC+DM组相比均可明显降低脑含水量,差异有统计学意义(P<0.05)。
     3Luteolin-L组在24h和72h与MCAO组和MC+DM组相比均没有明显降低脑梗死体积,差异无统计学意义(P>0.05),Luteolin-M组和Luteolin-H组在24h和72h与MCAO组和MC+DM组相比均可明显降低脑梗死体积,差异有统计学意义(P<0.05)。我们可以看到木犀草素在每天10mg/kg(Luteolin-M)和25mg/kg(Luteolin-H)时发挥更好的治疗作用,因此,下面的研究集中在10mg/kg和25mg/kg。
     4Western blot中,与MCAO组和MC+DM组比较,Luteolin-H组在24h和72h均可明显增加claudin-5的蛋白表达,差异有统计学意义(P<0.05)。Luteolin-M组只在72h可明显增加claudin-5的蛋白表达,差异有统计学意义(P<0.05)。
     与Western blot的结果一致,Luteolin-H组在24h和72h与MCAO组和MC+DM组相比均可明显增加claudin-5的mRNA表达,差异有统计学意义(P<0.05)。Luteolin-M组只在72h可明显增加claudin-5的mRNA表达,差异有统计学意义(P<0.05)。
     5与MCAO组和MC+DM组比较,Luteolin-M组和Luteolin-H组在24h和72h均可明显增加SOD,CAT的活性,差异有统计学意义(P<0.05)。与MCAO组和MC+DM组比较,Luteolin-M组和Luteolin-H组在24h和72h均可明显减低MDA的含量,差异有统计学意义(P<0.05)。
     结论:木犀草素对局灶性脑缺血大鼠有较好的神经保护作用,可改善脑缺血损伤后的神经功能缺失,减轻脑含水量,减小脑梗死体积,诱导claudin-5的表达,增加SOD,CAT的活性,减少MDA的含量,因此我们推测木犀草素的神经保护作用可能是通过增加claudin-5的表达,提高SOD,CAT的活性,减少MDA含量实现的;这些是木犀草素发挥其抗氧化作用之一,从而实现其神经保护作用。
     第二部分木犀草素对实验性脑缺血大鼠的抗炎作用及机制研究
     目的:观察脑缺血后不同时间点TLRs/MAPKs/NF-κB的表达变化,研究木犀草素对脑缺血大鼠的抗炎作用,探讨木犀草素抗炎作用的相关信号机制。
     方法:选用成年健康雄性Sprague-Dawley大鼠为研究对象,应用改良Longa线栓法制备大鼠右侧大脑中动脉梗塞模型(MCAO)。实验动物随机分为5组,假手术组(Sham),假手术后腹腔注射等量生理盐水+1%DMSO;手术组(MCAO),缺血术后腹腔注射等量生理盐水;溶剂对照组(MC+DM),缺血术后腹腔注射等量生理盐水+1%DMSO;木犀草素中剂量组(Luteolin-M),缺血术后腹腔注射木犀草素10mg/kg;木犀草素大剂量组(Luteolin-H),缺血术后腹腔注射木犀草素25mg/kg。各组取材前进行神经功能评分,分别用免疫组化,Western-blot和RT-qPCR的方法检测缺血脑组织中TLR4、TLR5、p-p38,p-ERK,NF-κB蛋白和mRNA水平的变化。
     结果:
     1缺血后24h和72h,TLR4、TLR5、p-p38、NF-κB的表达均有升高,而p-ERK的表达在24h时呈逐渐升高趋势,72h后逐渐降低。两种剂量木犀草素干预后均可以降低脑缺血大鼠的炎症表达。免疫组化中,与MCAO组和MC+DM组相比,Luteolin-H组在24h和72h均可明显降低TLR4、TLR5、p-p38、NF-κB的细胞数,增加p-ERK的细胞数。差异有统计学意义(P<0.05)。Luteolin-M组只在72h与MCAO组和MC+DM组相比可明显降低TLR4、TLR5、p-p38、NF-κB的细胞数,增加p-ERK的细胞数,差异有统计学意义(P<0.05)。
     2Western blot中,Luteolin-H组在24h和72h与MCAO组和MC+DM组相比均可明显降低TLR4、TLR5、p-p38、NF-κB的蛋白表达,增加p-ERK的蛋白表达。差异有统计学意义(P<0.05)。Luteolin-M组只在72h与MCAO组和MC+DM组相比可明显降低TLR4、TLR5、p-p38、NF-κB的蛋白表达,增加p-ERK的蛋白表达,差异有统计学意义(P<0.05)。
     3与免疫组化和Western blot的结果一致,Luteolin-H组在24h和72h与MCAO组和MC+DM组相比均可明显降低TLR4、TLR5、p-p38、NF-κB的mRNA表达,增加p-ERK的mRNA表达,差异有统计学意义(P<0.05)。Luteolin-M组只在72h与MCAO组和MC+DM组相比可明显降低TLR4、TLR5、p-p38、NF-κB的mRNA表达,增加p-ERK的mRNA表达,差异有统计学意义(P<0.05)。
     结论:局灶性脑缺血后,缺血脑组织的TLR4、TLR5、p-p38、p-ERK、NF-κB表达的变化过程与脑组织损伤程度一致,提示TLR4/NF-κB通路的炎症损伤参与了脑缺血损伤;木犀草素可下调TLR4、TLR5、p-p38、抑制NF-κB的核转位,上调p-ERK,从而减轻缺血脑组织的过度炎症反应,实现缺血后的神经保护作用。
     第三部分木犀草素对实验性脑缺血大鼠的抗凋亡作用及机制研究
     目的:观察脑缺血损伤后不同时间点Bcl-2/Bax的表达变化,研究木犀草素对脑缺血大鼠的抗凋亡作用,探讨木犀草素抗凋亡作用的相关信号转导机制。
     方法:选用成年健康雄性Sprague-Dawley大鼠为研究对象,应用改良Longa线栓法制备大鼠右侧大脑中动脉梗塞模型(MCAO)。实验动物随机分为5组,假手术组(Sham),假手术后腹腔注射等量生理盐水+1%DMSO;手术组(MCAO),缺血术后腹腔注射等量生理盐水;溶剂对照组(MC+DM),缺血术后腹腔注射等量生理盐水+1%DMSO;木犀草素中剂量组(Luteolin-M),缺血术后腹腔注射木犀草素10mg/kg;木犀草素大剂量组(Luteolin-H),缺血术后腹腔注射木犀草素25mg/kg。各组取材前进行神经功能评分,分别用免疫组化,Western-blot和RT-qPCR的方法检测缺血脑组织中Bcl-2和Bax蛋白和mRNA水平的变化。
     结果:
     1缺血后24h和72h,Bcl-2的表达降低,Bax表达升高,免疫组化中,Luteolin-H组在24h和72h与MCAO组和MC+DM组相比均可明显增高Bcl-2的细胞数,降低Bax的细胞数。差异有统计学意义(P<0.05)。Luteolin-M组只在72h与MCAO组和MC+DM组相比可明显增高Bcl-2的细胞数,降低Bax的细胞数。差异有统计学意义(P<0.05)。
     2Western blot中,Luteolin-H组在24h和72h与MCAO组和MC+DM组相比均可明显增加Bcl-2的蛋白表达,降低Bax的蛋白表达。差异有统计学意义(P<0.05)。Luteolin-M组只在72h与MCAO组和MC+DM组相比可明显增加Bcl-2的蛋白表达,降低Bax的蛋白表达。差异有统计学意义(P<0.05)。
     3与免疫组化和Western blot的结果一致,Luteolin-H组在24h和72h与MCAO组和MC+DM组相比均可明显增加Bcl-2的mRNA表达水平,降低Bax的mRNA表达水平。差异有统计学意义(P<0.05)。Luteolin-M组只在72h与MCAO组和MC+DM组相比可明显增加Bcl-2的mRNA表达水平,降低Bax的mRNA表达水平。差异有统计学意义(P<0.05)。
     结论:局灶性脑缺血后,缺血脑组织的Bcl-2与Bax表达的变化过程与脑组织损伤程度一致,提示Bcl-2与Bax通路参与了脑缺血损伤;木犀草素可上调Bcl-2的表达并下调Bax的表达,从而减轻缺血脑组织的过度凋亡过程,实现缺血后的神经保护作用。
Cerebral ischemia is the most common type of cerebrovascular disease,which is the first leading cause of death and the most frequent cause ofpermanent disability in adults. Ischemic stroke is one of the main diseasesendangering people’s health in our state, which has a high incidence, mortality,morbidity, high recurrence rate, and the characteristics of the slow recovery.Brain tissue injuries secondary to ischemia aggravated the illness and inhibitedthe recovery of patients. Despite advances in the understanding of thepathophysiology of cerebral ischemia in recent years, therapeutic optionsremain limited.
     Brain tissue injuries secondary to ischemia often leads to an aggravatedillness. The pathological mechanisms that trigger ischemic brain damage couldbe related to oxidative stress, inflammation, apoptosis, overproduction ofreactive oxygen species, intracellular acidosis, increased release of excitatoryamion acids, destabilization of intracellular calcium and so on. Thesepathophysiologic processes overlap and intercommunicate then form a viciouscycle which results in a series of pathological cascade. Among them excessiveinflammation, oxidative stress and apoptosis are the main causes of thesecondary injury. Therefore, antioxidant stress, reduce inflammation damage,inhibiting apoptosis treatment become one of the main ways for cerebralinfarction.
     Luteolin (3′,4′,5,7-tetrahydroxyflavone), an important member of theflavonoid family, is present in various fruits and vegetables. Its molecularformula for: C15H10O6. It exhibits a wide spectrum of pharmacologicalproperties including anti-inflammatory, anti-oxidation, inhibiting apoptosis,anti-allergy, anti-tumor, anti-bacterial, anti-viral and enhancing immunefunction and so on. Besides, it has been proven to have little side effects, andwith good potential clinical application.
     Male, healthy Sprague-Dawley rats were used and subjected to modifiedpermanent middle cerebral artery occlusion (pMCAO), as described by Longapreviously. The expression of TLR4, TLR5, P38MAPK, ERK1/2, claudin-5,Bcl-2and Bax were detected in the pMCAO; activites of superoxidedismutase (SOD) and catalase (CAT), and malondiadehyde (MDA) contentwere measured in the ipsilateral cortex. Luteolin’s neuroprotective effect wasanalyzed. Neurological deficits, brain water content and infarct volume wereevaluated. The expression of TLR4, TLR5, P38MAPK, ERK1/2, claudin-5,Bcl-2and Bax were detected; activites of superoxide dismutase (SOD) andcatalase (CAT), and malondiadehyde (MDA) content were measured.
     PartⅠAnti-oxidative effect of luteolin and the underlying mechanism inrat experimental stroke
     Objective: The aim of this study was to evaluate the neuroprotectiveeffects of luteolin and the underlying mechanisms in cerebral ischemia. Brainwater content, infarct volume, the expression of claudin-5, activites ofsuperoxide dismutase (SOD) and catalase (CAT) and malondiadehyde (MDA)content were measured.
     Methods: Male, healthy Sprague-Dawley rats were used and subjected tomodified permanent middle cerebral artery occlusion (pMCAO). Experiment1was used to analyze luteolin’s neuroprotective effect. Neurological deficits,brain water content and infarct volume were evaluated at24h and72h afterpMCAO. Rats were randomly assigned to six groups: Sham-vehicle group(Sham): animals received sham operation and equal volume of DMSO;MCAO group (MCAO): animals received MCAO and equal volume of NaCl0.9%saline; MCAO-vehicle group (MC+DM): animals received MCAO andequal volume of DMSO; and luteolin groups: animals received MCAO andtreated with low dose of luteolin5mg/kg (Luteolin-L), middle dose of luteolin10mg/kg (Luteolin-M) and high dose of luteolin25mg/kg (Luteolin-H).Luteolin was administered immediately after MCAO and then continued with daily injections for2days. Experiment2was used to analyze luteolin’santi-oxidative effect. SOD, CAT activities, and MDA content were measuredat24h and72h after pMCAO. Rats were randomly assigned to five groups:Sham-vehicle group (Sham): animals received sham opera-tion and equalvolume of DMSO; MCAO group (MCAO): animals received MCAO andequal volume of NaCl0.9%; MCAO-vehicle group (MC+DM): animalsreceived MCAO and equal volume of DMSO; and luteolin groups: animalsreceived MCAO and treated with middle dose of luteolin10mg/kg(Luteolin-M) and high dose of luteolin25mg/kg (Luteolin-H). Luteolin wasadministered immediately after MCAO and then continued with dailyinjections for2days. Experiment3was used to detect luteolin's influence onblood-brain barrier (BBB). Rats in this part were assigned to five groups as thesame way of experiment2. Western blotting and RT-qPCR were used to detectthe expression of claudin-5.
     Results:
     1Rats in Sham group had no palsy and a neurological score of zero. Ratsin MCAO group, MC+DM group, low dose group, middle dose group andhigh dose group performed a left palsy. Compared with MCAO group andMC+DM group, there was a significant improvement in neurological functionscores in the Luteolin-H group and Luteolin-M group both at24h and72h (P<0.05). By contrast, there was no significant effect in Luteolin-L groupcompared with MCAO and MC+DM groups both at24h and72h (P>0.05for all).
     2Compared with MCAO group and MC+DM group, Luteolin-H andLuteolin-M group reduced the brain water content significantly both at24hand72h (P <0.05). Luteolin-L group had no effect on brain water contentboth at24h and72h (P>0.05).
     3Compared with MCAO group and MC+DM group, Luteolin-H andLuteolin-M group reduced the infarct volume significantly both at24h and72h (P <0.05). Luteolin-L group had no effect on infarct volume both at24hand72h (P>0.05). Based on the results above, we demonstrated that luteolin delivered at high dose (25mg/kg) and middle dose (10mg/kg) per day have abetter therapeutic effect after stroke, and therefore we focused on the luteolintreatment at high dose (Luteolin-H) and middle dose (Luteolin-M) per day forsubsequent biochemical and molecular analysis.
     4Compared with MCAO group and MC+DM group, Luteolin-H andLuteolin-M group significantly increased the activities of SOD and CAT bothat24h and72h (P <0.05), Luteolin-H and Luteolin-M group significantlydecreased the levels of MDA (P <0.05).
     5Compared with MCAO group and MC+DM group, Luteolin-H groupsignificantly up-regulated the expression of claudin-5both at24h and72h inprotein levels (P <0.05), but only at72h in Luteolin-M group (P <0.05). Inagreement with the results of western blotting, the mRNA expression ofclaudin-5was up-regulated in Luteolin-H group compared with MCAO groupand MC+DM group both at24h and72h (P <0.05), but only at72h inLuteolin-M group (P <0.05).
     Conclusions: Systemic administration of luteolin is effective which canameliorate the neurological deficit, improve the brain edema, decrease theinfarct size and up-regulate the expression of claudin-5. Luteolin significantlyincreased the activities of SOD, CAT, decreased the levels of MDA. Theunderlying mechanism of this neuroprotection may be involved in increasingthe activities of SOD and CAT, decreasing the levels of MDA andup-regulating claudin-5expression.
     PartⅡ Anti-inflammatory effect of luteolin and the underlying
     mechanism in rat experimental stroke
     Objective: This study is to evaluate the expression ofTLRs/MAPKs/NF-κB in experimental rats after ischemic injury at differenttime points. The aim of this etudy is to explore anti-inflammatory effect ofluteolin and the underlying mechanism in rat experimental stroke.
     Methods: Male, healthy Sprague-Dawley rats were used and subjected to modified permanent middle cerebral artery occlusion (pMCAO). Rats wererandomly assigned to five groups: Sham-vehicle group (Sham): animalsreceived sham operation and equal volume of DMSO; MCAO group (MCAO):animals received MCAO and equal volume of NaCl0.9%; MCAO-vehiclegroup (MC+DM): animals received MCAO and equal volume of DMSO; andluteolin groups: animals received MCAO and treated with middle dose ofluteolin10mg/kg (Luteolin-M) and high dose of luteolin25mg/kg(Luteolin-H). Luteolin was administered immediately after MCAO and thencontinued with daily injections for2days. Immunohistochemistry, Westernblotting and RT-qPCR were used to analyse the expression of TLR4, TLR5,NF-κB, p-p38and p-ERK.
     Results:
     1In immunohistochemistry, compared with Sham group, TLR4, TLR5,p-p38, NF-κB were upregulated at protein level in ischemic brain, but theexpression of phospho-ERK1/2was significantly increased only at24h andthen decreased at72h (P <0.05).Compared with MCAO and MC+DM groups,luteolin in high dose group dramatically decreased the positive cells of TLR4,TLR5, p-p38, NF-κB and increased the positive cells of p-ERK1/2in theischemic cortex at all time points (P <0.05), while middle dose group onlyshowed effect at72h (P <0.05).
     2In western blotting, compared with MCAO and MC+DM groups,luteolin in high dose group dramatically decreased the protein level of TLR4,TLR5, p-p38, NF-κB and increased the protein level of p-ERK1/2in theischemic cortex at all time points (P <0.05), while middle dose group onlyshowed effect at72h (P <0.05).
     3In agreement with the results of immunohistochemistry and westernblotting, compared with MCAO and MC+DM groups, luteolin in high dosegroup dramatically decreased the the mRNA expression of TLR4, TLR5,p-p38, NF-κB and increased the mRNA expression of p-ERK1/2in theischemic cortex at all time points (P <0.05), while middle dose group onlyshowed effect at72h (P <0.05).
     Conclusions: Systemic administration of luteolin is effective which candecrease the expression of TLR4, TLR5, p-p38, NF-κB and increase theexpression of p-ERK. Therefore, the excessive inflammation of the brainischemia was alleviated.
     PartⅢ Anti-apoptosis effect of luteolin and the underlying mechanism inrat experimental stroke
     Objective: This study is to evaluate the expression of Bcl-2/Bax inexperimental rats after ischemic injury at different time points. The aim of thisstudy is to explore anti-apoptosis effect of luteolin and the underlyingmechanism in rat experimental ischemic stroke.
     Methods: Male, healthy Sprague-Dawley rats were used and subjected tomodified permanent middle cerebral artery occlusion (pMCAO). Rats wererandomly assigned to five groups: Sham-vehicle group (Sham): animalsreceived sham opera-tion and equal volume of DMSO; MCAO group(MCAO): animals received MCAO and equal volume of NaCl0.9%;MCAO-vehicle group (MC+DM): animals received MCAO and equal volumeof DMSO; and luteolin groups: animals received MCAO and treated withmiddle dose of luteolin10mg/kg (Luteolin-M) and high dose of luteolin25mg/kg (Luteolin-H). Luteolin was administered immediately after MCAO andthen continued with daily injections for2days. Immunohistochemistry,Western blotting and RT-qPCR were used to analyse the expression of Bcl-2and Bax.
     Results:
     1In immunohistochemistry, compared with Sham group, the expressionof Bcl-2was down-regulated at protein level in ischemic brain, but theexpression of Bax was significantly increased (P <0.05).Compared withMCAO and MC+DM groups, luteolin in high dose group dramaticallyincreased the positive cells of Bcl-2and decreased the positive cells of Bax inthe ischemic cortex both at24h and72h (P <0.05), while middle dose group only showed effect at72h (P <0.05).
     2In western blotting, compared with MCAO and MC+DM groups,luteolin in high dose group dramatically increased the protein level of Bcl-2and decreased the protein level of Bax in the ischemic cortex both at24h and72h (P <0.05), while middle dose group only showed effect at72h (P <0.05).
     3In agreement with the results of immunohistochemistry and westernblotting, compared with MCAO and MC+DM groups, luteolin in high dosegroup dramatically increased the the mRNA expression of Bcl-2anddecreased the mRNA expression of Bax in the ischemic cortex both at24hand72h (P <0.05), while middle dose group only showed effect at72h (P <0.05).
     Conclusions: The expression of Bcl-2was down-regulated afterischemia, but the expression of Bax was up-regulated after ischemia. Systemicadministration of luteolin is effective which can increase the expression ofBcl-2and decrease the expression of Bax. Therefore, the excessive apoptosisof the brain ischemia was alleviated.
引文
1Thrift AG, Dewey HM, Macdonell RA, et al. Incidence of the major strokesubtypes: initial findings from the North East Melbourne stroke incidencestudy (NEMESIS). Stroke,2001,32:1732-1738
    2Coyle JT, Puttfarcken P. Oxidative stress, glutamate, andneurodegenerative disorders. Science,1993,262:689-695
    3Lipton, P. Ischemic cell death in brain neurons. Physiol Rev,1999,79:1431-1568
    4Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. JNeurotrauma,2000,17:871-890
    5Rodrigo J, Fernòndez AP, Serrano J, et al. The role of free radicals incerebral hypoxia and ischemia. Free Radic Biol Med,2005,39:26-50.
    6Fiskum G, Rosenthal RE, Vereczki V, et al. Kowaltowski AProtectionagainst ischemic brain injury by inhibition of mitochondrial oxidativestress. J Bioenerg Biomembr,2004,36:347-352
    7Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxidedismutase gene are associated with familial amyotrophic lateral sclerosis.Nature,1993,362:59-62
    8Schettler V, Methe H, Staschinsky D, et al. Review: theoxidant/antioxidant balance during regular low density lipoproteinapheresis.Ther Apher,1999,3:219-226
    9Morita K, Sasaki H, Furuse M, et al. Endothelial claudin:claudin-5/TMVCF constitutes tight junction strands in endothelial cells. JCell Biol,1999,147:185-194
    10Nitta T, Hata M, Gotoh S, et al. Size-selective loosening of the blood-brainbarrier in claudin-5-deficient mice. J Cell Biol,2003,161:653-660
    11Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebralartery occlusion without craniectomy in rats. Stroke,1989,20:84-91
    12张祥建,李春岩,李海燕,等.实验性大鼠脑梗死后脑水肿规律及行为学改变.脑与神经疾病杂志,2005,13:26-28
    13Lipton P. Ischemic cell death in brain neurons. Physiol Rev,1999,79:1431-1568
    14Chan PH. Reactive oxygen radicals in signaling and damage in theischemic brain. J Cereb Blood Flow Metab,2001,21:2-14
    15Zhao J, Yu S, Zheng W, et al. Curcumin improves outcomes and attenuatesfocal cerebral ischemic injury via antiapoptotic mechanisms in rats.Neurochem Res,2010,35:374-379
    16Schinella GR, Giner RM, Recio MC, et al. Anti-inflammatory effects ofSouth American Tanacetum vulgare. Pharm Pharmacol,1998,50:1069-1074
    17Van Zanden JJ, Geraets L, Wortelboer HM, et al. Structural requirementsfor the flavonoid-mediated modulation of glutathione S-transferase P1-1and GS-X pump activity in MCF7breast cancer cells. Biochem Pharmacol,2004,67:1607-1617
    18Hatashita S, Hoff JT, Salamat SM, Ischemic brain edema and the osmoticgradient between blood and brain. J. Cereb. Blood Flow Metab,1988,8:552-559
    19Chiba H, Osanai M, Murata M, et al. Transmembrane proteins of tightjunctions. Biochim Biophys Acta,2008,1778:588-600
    20Tarkowski E, Rosengren L, Blomstrand C, et al. Intrathecal release of pro-and anti-inflammatory cytokines during stroke. Clin Exp Immunol,1997,110:492-499
    21Schachtrup C, Lu P, Jones LL, et al. Fibrinogen inhibits neurite outgrowthvia beta3integrin-mediated phosphorylation of the EGF receptor. ProcNatl Acad Sci USA,2007,104:11814-11819
    22Wang L, Zhang X, Liu L, et al. Tanshinone II A down-regulates HMGB1,RAGE, TLR4, NF-kappaB expr ession, ameliorat es BBB permeab ilityand endothelial cell function, and protects rat brains against focal ischemia.Brain Res.2010,1321:143-151
    23Cui L, Zhang X, Yang R, et al. Neuroprotection of early and short-timeapplying atorvastatin in the acute phase of cerebral ischemia:Down-regulated12/15-LOX, p38MAPK and CPLA2expression,ameliorated bbb permeability. Brain Res,2010,1325:164-173
    24Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxidedismutase gene are associated with familial amyotrophic lateral sclerosis.Nature,1993,362:59-62
    25Schettler V, Methe H, Staschinsky D, et al. Review: theoxidant/antioxidant balance during regular low density lipoproteinapheresis.Ther Apher,1999,3:219-226
    1Akira S. Toll-like recept or signaling. J Biol Chem,2003,278:38105-38108
    2Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol,2004,4:499-511
    3Abreu MT, Arditi M. Innate immunity and toll-like receptors: clinicalimplic ations of basic science research. J Pediatr,2004,144:421-429
    4Okun E, Griffioen KJ, Lathia JD, et al. Toll-like receptors inneurodegeneration. Brain Res Rev,2009,59:278-292
    5Wang L, Zhang X, Liu L, et al. Tanshinone II A down-regulates HMGB1,RAGE, TLR4, NF-kappaB expr ession, ameliorat es BBB permeab ilityand endothelial cell function, and protects rat brains against focal ischemia.Brain Res,2010,1321:143-151
    6Fan H, Li L, Zhang X, et al. Oxymatrine downregu lates TLR4, TLR2,MyD88, and NF-kappaB and protects rat brains against focal ischemia.Mediators Inflamm,2009,2009:704-706
    7Ying Liu, Xiang-jian Zhang, Chen hui Yang, et al. Oxymatrine protects ratbrains against permanent focal ischemia and downregulates NF-κBexpression. Brain Res,2009,1321:143-151
    8Lina Wang, Xiangjian Zhang, Lingling Liu, et al. Atorvastatin protects ratbrains against permanent focal ischemia and downregulates HMGB1,HMGB1receptors (RAGE and TLR4), NF-kappaB expression. NeurosciLett,2010,471:152-156
    9Blohmke CJ, Park J, Hirschfeld AF, et al. TLR5as an anti-inflamma torytarget and modifier gene in cystic fibrosis. J Immunol,2010,185:7731-7738
    10Bsibsi M, Ravid R, Gveric D, et al. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol,2002,61:1013-1021
    11Kielian T. Toll-like receptors in central nervous system glial inflammationand hom eostasis. J Neurosci Res,2006,83:711-730
    12Hayashi F, Smith KD, Ozinsky A, et al. The innate im mune respons e tobacterial flagellin is mediated by Toll-like receptor5. Nature,2001,410:
    1099-1103
    13Allan SM, Rothwell NJ. Cytoki nes and acute neurodegenerati on. NatRev Neurosci,2001,2:734-744
    14Thompson WL, Van Eldik, LJ. Inflammatory cyto kines stimulate thechemo kines CCL2/M CP-1and CCL7/MCP-3through NFkB and MAPKdependent pathwa ys in rat astrocytes. Brain Res,2009,1287:47-57
    15Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK andJNK-p38MAP kinases on apoptosis. Science,1995,270:1326-1331
    16Lawrence T, Willoughby DA, Gilroy DW. Anti-inflammato ry lipidmediators a nd insights i n to the r eso lutio n o f i nf lamma tion. Nat RevImmunol,2002,2:787-795
    17Fan H, Cook JA, Molecular mechanisms of endotoxin tolerance. J Endotoxin Res,2004,10:71-84
    18Soysa NS, Alles N. NF-kappaB functions in osteoclasts. Biochem BiophysRes Commun,2009,378:1-5
    19Van Zanden JJ, Geraets L, Wortelboer HM, et al. Structu ral requirementsfor the flavonoid-medi ated modulation of gl utathione S-transferase P1-1and GS-X pump activity in MCF7breast cancer cells. Biochem Pharmacol,2004,67:1607-1617
    20Theoharides TC. Luteolin as a therape utic option for multiple sclerosis. JNeuroinflammation,2009.6:29
    21Kumazawa Y, Kawaguchi K, Takimoto H. Immunomodula ting effec ts offlavonoids on acute and chronic inflammatory resp onses caused by tumornecrosis factor alpha. Curr Pharm Des,2006,12:4271-4279
    22Cui L, Zhang X, Yang R, et al. Baicalein is neuro protective in rat MCAOmodel: role of12/15-lipoxygena se, mitogen-activated protein kinase andcytosolic phospho lipase A2. Pharmacol Biochem Behav,2010,96:469-475
    23Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral arteryocclusion without craniotomy in rats. Stroke,1989,20:84-91
    24张祥建,李春岩,李海燕,等.实验性大鼠脑梗死后脑水肿规律及行为学改变.脑与神经疾病杂志,2005,13:26-28
    25Yang Y, Zhang XJ, Yin J, et al. Brain damage related to hemorrhagictransformation following cerebral ischemia and the role of K ATPchannels. Brain Res,2008,1241:168-175
    26Cui L, Zhang X, Yang R, et al. Neuroprotection of early and short-timeapplying atorvastatin in the acute phase of cerebral ischemia:Down-regulated12/15-LOX, p38MAPK and CPLA2expression,ameliorated bbb permeability. Brain Res,2010,1325:164-173
    27Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges andopportunities in stroke. Nat Rev Neurosci,2003,4:399-415
    28Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke.Neurol Res,2008,30:783-793
    29Villa P, Triulzi S, Cavalieri B, et al. The interleukin-8(IL-8/CXCL8)receptor inhibitor reparixin improves neurological deficits and reduceslong-term inflammation in permanent and transient cerebral ischemia inrats. Mol Med,2007,13:125-133
    30Zaremba J, Losy J. Early tnf-alpha levels correlate with ischaemic strokeseverity. Acta Neurol Scand,2001,104:288-295
    31Caso JR, Moro MA, Lorenzo P, et al. Involvement of IL-1beta in acutestress-induced worsening of cerebral ischaemia in rats. EurNeuropsychopharmacol,2007,17:600-607
    32Huang SH, Frydas S, Kempuraj D, et al. Interleukin-17and theinterleukin-17family member network. Allergy Asthma Proc,2004,25:17-21
    33Becker KJ. Anti-leukocyte antibodies: LeukArrest (Hu23F2G) andEnlimomab (R6.5) in acute stroke. Curr Med Res Opin,2002,2: s18-22
    34Fan H, Li L, Zhang X, et al. Oxymatrine downregulates TLR4, TLR2,MyD88, and NF-kappaB and protects rat brains against focal ischemiaMediators Inflamm,2009,2009:704-706
    35Cui L, Zhang X, Yang R, et al. Neuroprotection and underlyingmechanisms of oxymatrine in cerebral ischemia of rats. Neurol Res,2011,33:319-324
    36Wang L, Zhang X, Liu L, et al. Tanshinone IIA down-regulates HMGB1,RAGE, TLR4, NF-kappaB expression, ameliorates BBB permeability andendothelial cell function, and protects rat brains against focal ischemia.Brain Res,2010,1321:143-151
    37Mu X, He GR, Yuan X, et al. Baicalein protects the brain against neuronimpairments induced by mptp in c57bl/6mice. Pharmacol Biochem Behav,2011,98:286-291
    38Ji H, Zhang X, Du Y, et al. Polydatin modulates inflammation bydecreasing NF-κB activation and oxidative stress by increasing Gli1,Ptch1, SOD1expression and ameliorates blood-brain barrier permeabilityfor its neuroprotective effect in pMCAO rat brain. Brain Res Bull,2012,87:50-59
    39Caso JR, Pradillo JM, Hurta do O, et al. Toll-like receptor4is involved inbrain damage and inflamma tion after expe rimental stroke. Circulation,2007,115:1599-1608
    40Tang SC, Arumugam TV, Xu X, et al. Pivotal role for neuronal Toll-likereceptors in ischemic brain injury and functional deficits. Proc Natl AcadSci USA,2007,104:13798-13803
    41De Keulenaer GW, Ushi o-Fukai M, Yin Q, et al Convergence ofredox-sensitive and mitogen-activated protein kinase signaling pathwaysin tumor necrosis factor-alpha-mediated monocyt echemo attractantprotein-1induction in vascular smooth muscle cells.Arterioscler.Thromb Vasc Biol,2000,20:385-391
    42Allan SM, Rothwell, NJ. Cytoki nes and acute neurodegenerati on. NatRev Neurosci,2001,2:734-744
    43Thompson WL, Van Eldik LJ. Inflammatory cyto kines stimulate thechemo kines CCL2/M CP-1and CCL7/MCP-3through NFkB and MAPKdependent pathwa ys in rat astrocytes. Brain Res,2009.1287:47-57
    44Davis RJ. MAPKs: new JNK expands the group. Trends Biochem Sci,1994,19:470-473
    45Hershko DD, Robb BW, Wray CJ, et al. Superinduction of IL-6bycycloheximide is associated with mRNA stabilization and sustainedactivation of p38map kinase and NF-kappaB in cultured caco-2cells. JCell Biochem,2004,5:951-961
    46Safirstein R, DiMari J, Megyesi J, et al. Mechanism s of renal repair andsurvival following acute injury. Semin Nephrol,1998,18:519-522
    47Ma ek R, Borowicz KK, Jargie o M, et al. Role of NF-κB in the centralnervous system. Pharmacol Rep,2007,59:25-33
    48Nurmi A, Lindsberg PJ, K oistinaho, et al. Nucl ear factor-kappaBcontribute s to infarction after permanent focal ischemia. Stroke,2004,35:987-991
    49Sironi L, Banfi C, Brioschi M, et al. Activation of NF-κB and ERK1/2after permanent focal ischemia is abolished by simvastatin treatment.Neurobiol Dis,2006,22:445-451
    50Zhang HL, Gu ZL, Savitz SI, et al. Neuropro tective effects of prostaglandinA(1) in rat models of permanent focal cerebral ischemi a areassociated with nuclear factor-kappa B inhibition and peroxisomeproliferator-activ ated receptor-gamma up-regulation. J Neurosci Res,2008,86:1132-1141
    51Yi JH, Park SW, Kapadia R, et al. Role of transcription factors inmediating post-ischemic cerebral inflammation and brain damage.Neurochem Int,2007.50:1014-1027
    52Zheng Z, Yenari MA. Post-ischemic inflamma tion: molecularmechanisms and therapeutic implic ations. Neurol Res,2004,26:884-992
    1Coyle JT, Puttfarcken P. Oxidative stress, glutamate, andneurodegenerative disorders. Science,1993,262:689-695
    2Lipton P. Ischemic cell death in brain neurons. Physiol Rev,1999,79:1431-1568
    3Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J.Neurotrauma,2000,17:871-890
    4Bluhmki E, Chamorro A, Dávalos A, et al. Stroke treatment with alteplasegiven3.0-4.5h after onset of acute ischaemic stroke (ECASS III):additional outcomes and subgroup analysis of a randomised controlledtrial. Lancet Neurol,2009,8:1095-1102
    5Lansberg MG, Bluhmk E, Thijs VN. Efficacy and safety of tissueplasminogen activator3to4.5hours after acute ischemic stroke: ametaanalysis. Stroke,2009,40:2438-2441
    6Graham S H, Chen J. Programmed cell death in cerebral ischemia. CerebBlood Flow Metab,2001,21:99-109
    7Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms aftercerebral ischemia. Stroke,2009,40: e331-339
    8Wattanapitayakul SK, Bauer JA. Oxidative pathways in cardiovasculardisease: Roles, mechanisms, and therapeutic implications. Pharmacol Ther,2001,89:187-206
    9Srivastava M, Ahmad N, Gupta S, et al. Involvement of Bcl-2and Bax inphotodynamic therapy-mediated apoptosis. Antisense Bcl-2oligonucleotide sensitizes RIF1cells to photodynamic therapy apoptosis.J Biol Chem,2001:276:15481-15488
    10Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspaseactivation during apoptosis. Annu Rev Cell Dev Biol,1999,15:269-290
    11Wang X. The expanding role of mitochondria in apoptosis. Genes Dev,2001,15:2922-2933
    12Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral arteryocclusion without craniotomy in rats. Stroke,1989,20:84-91
    13张祥建,李春岩,李海燕,等.实验性大鼠脑梗死后脑水肿规律及行为学改变.脑与神经疾病杂志,2005,13:26-28
    14Yang Y, Zhang XJ, Yin J, et al. Brain damage related to hemorrhagictransformation following cerebral ischemia and the role of K ATPchannels. Brain Res,2008,1241:168-175
    15Cui L, Zhang X, Yang R, et al. Neuroprotection of early and short-timeapplying atorvastatin in the acute phase of cerebral ischemia:Down-regulated12/15-LOX, p38MAPK and CPLA2expression,ameliorated bbb permeability. Brain Res,2010,1325:164-173
    16De Keulenaer GW, Ushio-Fukai M, Yin Q, et al. Convergence ofredox-sensitive and mitogen-activated protein kinase signaling pathwaysin tumor necrosis factor-alpha-mediated monocyte chemoattractantprotein-1induction in vascular smooth muscle cells. Arterioscler ThrombVasc Biol,2000,20:385-391
    17Hershko DD, Robb BW, Wray CJ, et al Superinduction of IL-6bycycloheximide is associated with mRNA stabilization and sustainedactivation of p38map kinase and NF-kappaB in cultured caco-2cells. JCell Biochem,2004,5:951-961
    18Cory S, Adams JM. The Bcl2family: regulators of the cellularlife-or-death switch. Nat Rev Cancer,2002,2:647-656
    19Billen L P, Kokoski C L, Lovell J F, et al. Bcl-XL inhibits membranepermeabilization by competing with Bax. PloS Biol,2008,6: e147
    20Solaroqlu I, Tsubokawa T, Cahill J, et al. Anti-apoptotic effect ofgranulocyte-colony stimulating factor after focal cerebral ischemia in therat. Neuroscience,2006,143:965-974
    21Dlugosz PJ, Billen LP, Annis MG, et al. Bcl-2changes conformation toinhibit Bax oligomerization. EMBO J,2006,25:2287-2296
    22Ruffolo SC, hore GC. Bcl-2selectively interacts with the BID-inducedopen conformer of BAK auto-oligomerization. J Biol Chem,2003,278:25039-25045
    23Brunelle J K, Letai A. Control of mitochondrial apoptosis by the Bcl-2family. J Cell Sci,2009,122:437-441
    24Cao YJ, Shibata T, Rainov N G. Liposome-mediated transfer of the Bcl-2gene results in neuroprotection after in vivo transient focal cerebralischemia in an animal model. Gene Therapy,2002,9:415-419
    25Kitagawa K. CREB and Camp respons element-mediated gene expressionin the ischemiac brain. FEBS J,2007,274:3210-3217
    26Zhang R, Xue YY, Lu SD, et al. Bcl-2enhances neurogenesis and inhibitsapoptosis of newborn neurons in adult rat brain following a transientmiddle cerebral artery occlusion. Neurobio Dis,2006,24:345-356
    27Erin N, Lehman RA, Boyer PJ, et al. In vitro hypoxia and excitotoxicity inhuman brain induce calclneurin-Bcl-2interactions. Neuroscience,2003,117:557-565
    28Chen Q, Chai YC, Mazumder S, et al.The late increse in intracelular freeradical oxygen species during apoptosis is associated with cytochrome Crelease, caspase activition, and mitochondrial dysfunction. Cell DeathDiffer,2003,10:323-334
    29Hockenbery DM, Oltvai ZN, Yin XM, et al. Bcl-2functions in antioxidantpathway to prevent apoptosis. Cell,1993,75:241-251
    30Niwa M, Hara A, Iwai T, et al. Expression of Bax and Bcl-2protein in thegerbil hippocampus following transient forebrain ischemia and itsmodification by phencyclidine. Neurol Res,1997,19:629-633
    31Lin CH, Lu YZ, Cheng FC, et al. Bax-regulated mitochondria-mediatedapoptosis is responsible for the in vitro ischemia induced neuronal celldeath of Sprague Dawley rat. Neurosci Lett.2005,387:22-27
    32Wattanapitayakul SK, Bauer JA. Oxidative pathways in cardiovasculardisease: Roles, mechanisms, and therapeutic implications. Pharmacol Ther,2001,89:187-206
    1Thrift AG, Dewey HM, Macdonell RA, et al. Incidence of the major strokesubtypes: initial findings from the North East Melbourne stroke incidencestudy (NEMESIS). Stroke,2001,32:1732-1738
    2Bluhmki E, Chamorro A, Dávalos A, et al. Stroke treatment with alteplasegiven3.0-4.5h after onset of acute ischaemic stroke (ECASS III):additional outcomes and subgroup analysis of a randomised controlledtrial. Lancet Neurol,2009,8:1095-1102
    3Lansberg MG, Bluhmk E, Thijs VN. Efficacy and safety of tissueplasminogen activator3to4.5hours after acute ischemic stroke: ametaanalysis. Stroke,2009,40:2438-2441
    4Okun E, Griffioen KJ, Lathia JD, et al. Toll-like receptors inneurodegeneration. Brain Res Rev,2009,59,278-292
    5Bsibsi M, Ravid R, Gveric D, et al. Broad expression of Toll-likereceptors in the human central nervous system. J Neuropathol Exp Neurol,2002,61:1013-1021
    6Kielian T. Toll-like receptors in central nervous system glial inflammationand homeostasis. J Neurosci Res,2006,83:711-730
    7Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat RevNeurosci,2001,2:734-744
    8Thompson WL, Van Eldik LJ. Inflammatory cytokines stimulate thechemokines CCL2/MCP-1and CCL7/MCP-3through NFkB and MAPKdependent pathways in rat astrocytes. Brain Res,2009,1287:47-57
    9Akira S, Takeda K, Toll-like receptor signalling. Nat Rev Immunol,2004,4:499-511
    10Youn HS, Lee JY, Saitoh SI, et al. Suppression of MyD88-andTRIF-dependent signaling pathways of Toll-like receptor by(-)-epigallocatechin-3-gallate, a polyphenol component of green tea.Biochem Pharmacol,2006,72:850-859
    11Lee JK, Kim SY, Kim YS, et al. Suppression of the TRIF-dependentsignaling pathway of Toll-like receptors by luteolin. Biochem Pharmacol2009,77:1391-1400
    12Hyakkoku K, Hamanaka J, Tsuruma K, et al. Toll-like receptor4(TLR4),but not TLR3or TLR9, knock-out mice have neuroprotective effectsagainst focal cerebral ischemia. Neuroscience,2010,171:258-267
    13Caso JR, Pradillo JM, Hurtado O, et al. Toll-like receptor4is involved inbrain damage and inflammation after experimental stroke. Circulation,2007,115:1599-1608
    14Tang SC, Arumugam TV, Xu X, et al. Pivotal role for neuronal Toll-likereceptors in ischemic brain injury and functional deficits. Proc. Natl. Acad.Sci. USA,2007,104:13798-13803
    15Gutiérrez-Venegas G, Kawasaki-Cárdenas P, Arroyo-Cruz SR, et al.Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts.Eur J Pharmacol,2006,541:95-105
    16De Keulenaer GW, Ushio-Fukai M, Yin Q, et al. Convergence ofredox-sensitive and mitogen-activated protein kinase signaling pathwaysin tumor necrosis factor-alpha-mediated monocyte chemoattractantprotein-1induction in vascular smooth muscle cells. Arterioscler ThrombVasc Biol,2000,20:385-391
    17Kyriakis JM, Avruch J. Protein kinase cascades activated by stress andinflammatory cytokines. Bioessays,1996,8:567-577
    18Davis RJ. Signal transduction by the c-Jun N-terminal kinase. BiochemSoc Symp,1999,64:1-12
    19Hu BR, Wieloch T. Tyrosine phosphorylation and activation ofmitogen-activated protein kinase in the rat brain following transientcerebral ischemia. J Neurochem,1994,62:1357-1367
    20Mizukami Y, Yoshioka K, Morimoto S, et al. A novel mechanism ofJNK1activation. Nuclear translocation and activation of JNK1duringischemia and reperfusion. J Biol Chem,1997,272:16657-16662
    21Yin T, Sandhu G, Wolfgang CD, et al. Tissue-specific pattern of stresskinase activation in ischemic/reperfused heart and kidney. J Biol Chem,1997,72:19943-19950
    22Davis RJ. MAPKs: new JNK expands the group. Trends Biochem Sci,1994,19:470-473
    23Safirstein R, DiMari J, Megyesi J,et al. Mechanisms of renal repair andsurvival following acute injury. Semin Nephrol,1998,18:519-522
    24Cui L, Zhang X, Yang R, et al. Baicalein is neuroprotective in rat MCAOmodel: role of12/15-lipoxygenase, mitogen-activated protein kinase andcytosolic phospholipase A2. Pharmacol. Biochem Behav,2010,96:469-475
    25Chen ZB, Huang DQ, Niu FN, et al. Human urinary kallidinogenasesuppresses cerebral inflammation in experimental stroke anddownregulates nuclear factor-kappaB. J. Cereb. Blood Flow Metab,2010,30:1356-1365
    26Gutiérrez-Venegas G, Kawasaki-Cárdenas P, Arroyo-Cruz SR, et al.Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts.Eur J Pharmacol,2006,541:95-105
    27Rendeiro C, Guerreiro JD, Williams CM, et al. Flavonoids as modulatorsof memory and learning: molecular interactions resulting in behaviouraleffects. Proc Nutr Soc,2012,14:1-17
    28Choi BM, Lim DW, Lee JA, et al. Luteolin suppresses cisplatin-inducedapoptosis in auditory cells: possible mediation through induction of hemeoxygenase-1expression. J Med Food,2008,11:230-236
    29Hausmann M, Kiessling S, Mestermann S, et al. Toll like receptors2and4are upregulated duringintestinal inflammation. Gastroenterology,2002,122:1987-2000
    30Ma ek R, Borowicz KK, Jargie o M, et al. Role of NF-κ B in the centralnervous syste m. Pharmacol Rep,2007,59:25-33
    31Duckworth EA, Butler T, Collier L, et al. NF-kappaB protects neuro nsfrom ischemic injury after middle cerebral arte ry occlusion in mice. BrainRes,2006,1088:167-175
    32Hill WD, Hess DC, Carroll JE, et al. The NF-kappa B inh ibitordiethyldithiocarb amate (DDTC) increases brain cell death in a trans ientmiddle cerebral artery occlus ion model of ischemia. Brain Res Bull,2001,55:375-386
    33Schneider A, Martin-Vil lalba A, Weih F, et al. NF-kapp aB is activatedand promotes cell death in focal cerebral ische mia. Nat Med,1999,5:554-559
    34Nurmi A, Lindsberg PJ, Koistinaho M, et al. Nuclear factor-kappaBcontributes to infarction after permanent focal ischemia. Stroke,2004,35:987-991
    35Nurmi A, Vartiainen N, Pihlaja R, et al. Pyrrolidin e dithiocarba mateinhib its translocation of nuclear factor kappa-B in neurons and protectsagainst brain ischaemia with a wide therapeutic time window. J.Neurochem,2004,91:755-765
    36Clemens JA, Stephenson DT, Yin T, et al. Drug-induc ed neuroprotectionfrom global ische mia is associated wit h prevent ion of persistent but nottrans ient activation of nuclear factor-kappa B in rats. Stroke,1998,29:677-682
    37Clemens JA, Stephenson DT, Dixon EP, et al. Global cerebral ischemiaactivates nuclear factor-ka ppa B prior to evidence of DNA fragmenta tion.Brai n Res. Mol. Brain Res,1997,48:187-196
    38Sironi L, Banfi C, Brioschi M, et al. Activation of NF-κB and ERK1/2after permanent focal ischemia is abolished by simvastatin treatment.Neurobiol Dis,2006,22:445-451
    39Xu L, Zhan Y, Wang Y, et al. Recombinant adenovira l expression ofdominant nega tive IkappaBalpha protects brain from cerebral ischemicinjury. Biochem. Biophys Res Commun,2002,299:14-17
    40Zhang HL, Gu ZL, Savitz SI, et al. Neuropro tective effects ofprostaglandi nA(1) in rat models of permanent focal cerebral ischemi a areassociated with nuclear factor-kappa B inhibition and peroxisomeproliferator-activ ated receptor-gamma up-regulation. J Neurosci Res,2008,86:1132-1141
    41Zheng Z, Yenari MA. Post-ischemic inflamma tion: molecularmechanisms and thera peutic implic ations. Neurol Res,2004,26:884-892
    42Yi JH, Park SW, Kapadia R, et al. Role of transcription factors inmediating post-ischemic cerebral inflammation and brain damage.Neurochem Int,2007,50:1014-1027
    43Bai L, Chen W, Wang X, et al. Attenuating Smac mimetic compound3-induced NF-kappaB activation by luteolin leads to synergisticcytotoxicity in cancer cells. J Cell Biochem,2009,108:1125-1131
    44Saeed SA, Shad KF, Saleem T, et al. Some new prospects in theunderstanding of the molecular basis of the pathogenesis of stroke. ExpBrain Res,2007,182:1-10
    45Neumar RW. Molecular mechanisms of ischemic neuronal injury. AnnEmerg Med,2000,6:483-506
    46Collino M, Aragno M, Mastrocola R, et al. Modulation of the oxidativestress and inflammatory response by PPAR-gamma agonists in thehippocampus of rats exposed to cerebral ischemia/reperfusion. Eur JPharmacol,2006,530:70-80
    47Barinaga M. Stroke damaged neurons may commit cellular su icide.Science,1998,281:1302-1303
    48Kelly PJ, Morrow JD, Ning M, et al. Oxidative stress and matrixmetalloproteinase-9in acute ischemic stroke: the Biomarker Evaluationfor Antioxidant Therapie s in Stroke (BEAT-Stroke) study. Stroke,2008,39:100-104
    49Zhang HY, Yang DP, Tang GY. Multipotent antioxidants: from screeningto design. Drug Discov Today,2006,11:749-754
    50Ridnour LA, Thomas DD, Mancardi D, et al. The chemistry of nitrosativestress induced by nitric oxide and reactive nitrogen oxide species. Puttingperspective on stressful biological situations. Biol Chem,2004,385:1-10
    51Schettler V, Methe H, Staschinsky D, et al. Review: theoxidant/antioxidant balance during regular low density lipoproteinapheresis.Ther Apher,1999,3:219-226
    52Loh KP, Qi J, Tan BK, et al.Leonurine protects middle cerebral arteryoccluded rats through antioxidant effect and regulation of mitochondrialfunction. Stroke,2010,41:2661-2668
    53Rump AF, Schüssler M, Acar D, et al. Effects of different inotropes withantioxidant properties on acute regional myocardial ischemia in isolatedrabbit hearts. Gen Pharmacol,1995,26:603-611
    54Zhao G, Zang SY, Jiang ZH, et al. Postischemic administration ofliposome-encapsulated luteolin prevents against ischemia-reperfusioninjury in a rat middle cerebral artery occlusion model. J Nutr Biochem,2011,22:929-936
    55Graham S H,Chen J. Programmed cell death in cerebral ischemia. CerebBlood Flow Metab,2001,21:99-109
    56Yang Y, Zhang XJ, Yin J, et al. Brain damage related to hemorrhagictransformation following cerebral ischemia and the role of K ATPchannels. Brain Res,2008,1241:168-175
    57Cui L, Zhang X, Yang R, et al. Neuroprotection of early and short-timeapplying atorvastatin in the acute phase of cerebral ischemia:Down-regulated12/15-LOX, p38MAPK and CPLA2expression,ameliorated bbb permeability. Brain Res,2010,1325:164-173
    58Yu L Y, Miao H S, Hou Y N, et al. Neuroprotective effect of A20onTNF-induced postischemic apoptosis. Neurochem Res,2006,31:21-32.
    59Elmore S. Apoptosis:a review of programmed cell death. Toxicol Pathol,2007,35:495-516
    60Zhang H, Li Q, Li Z, et al. The protection of Bcl-2overexpression on ratcortical neuronal injury caused by analogous ischemia/reperfusion invitro. Neurosci Res,2008,6:140-146
    61Martinon F, Tschopp J. Inflammatory caspases: linking an intracellularinnate immune system to autoinflammatory diseases. Cell,2004,117:561-574
    62Hershko DD, Robb BW, Wray CJ, et al Superinduction of IL-6bycycloheximide is associated with mRNA stabilization and sustainedactivation of p38mapkinase and NF-kappaB in cultured caco-2cells. JCell Biochem.,2004,5:951-961
    63Zhang R, Xue YY, Lu S D, et al. Bcl-2enhances neurogenesis andinhibits apoptosis of newborn neurons in adult rat brain following atransient middle cerebral artery occlusion. Neurobio Dis,2006,24:345-356
    64Erin N, Lehman RA, Boyer PJ, et al. In vitro hypoxia and excitotoxicity inhuman brain induce calclneurin-Bcl-2interactions. Neuroscience,2003,117:557-565
    65Chen Q, Chai YC, Mazumder S, et al. The late increase in intracellularfree radical oxygen species during apoptosis is associated withcytochrome C release,caspase activation,and mitochondrial dysfunction.Cell Death Differ,2003,10:323-334
    66Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspaseactivation during apoptosis. Annu Rev Cell Dev Biol,1999,15:269-290
    67Wang X. The expanding role of mitochondria in apoptosis. Genes Dev,2001,15:2922-2933
    68Choi BM, Lim DW, Lee JA. Luteolin suppresses cisplatin-inducedapoptosis in auditory cells: possible mediation through induction of hemeoxygenase-1expression. J Med Food,2008,11:230-236
    69Van Zanden JJ, Geraets L, Wortelboer HM, et al. Structural requirementsfor the flavonoid-mediated modulation of glutathione S-transferase P1-1and GS-X pump activity in MCF7breast cancer cells. Biochem Pharmacol,2004,67:1607-1617
    70Theoharides TC, Luteolin as a therapeutic option for multiple sclerosis. JNeuroinflammation,2009,6:29
    1Donnan GA, Fisher M, Macleod M, et al. Stroke. Lancet,2008,371:1612-1623
    2Yang Y, Zhang XJ, Yin J, et al Brain damage related to hemorrhagictransformation following cerebral ischemia and the role of K ATPchannels. Brain Res,2008,1241:168-175
    3Cui L, Zhang X, Yang R, et al Neuroprotection of early and short-timeapplying atorvastatin in the acute phase of cerebral ischemia:Down-regulated12/15-LOX, p38MAPK and CPLA2expression,ameliorated bbb permeability. Brain Res,2010,1325:164-173
    4Fan H, Cook JA, Molecular mechanisms of endotoxin tolerance. J Endotoxin Res,2004,10:71-84
    5Soysa NS, Alles N. NF-kappaB functions in osteoclasts. Biochem BiophysRes Commun,2009,378:1-5
    6Kleinig TJ, Vink R. Suppression of inflammation in ischemic andhemorrhagic stroke: Therapeutic options. Curr Opin Neurol,2009,22:294-301
    7Fagan SC, Hess DC, Hohnadel EJ, et al. Targets for vascular protectionafter acute ischemic stroke. Stroke,2004,35:2220-2225
    8Scemes E, Spray DC. Increased intercellular communication in mouseastrocytes exposed to hyposmotic shocks. Glia,1998,24:74-84
    9Fan H, Li L, Zhang X, et al. Oxymatrine downregu lates TLR4, TLR2,MyD88, and NF-kappaB and protects rat brains against focal ischemia.Mediators Inflamm,2009,2009:704-706
    10Lina Wang, Xiangjian Zhang, Lingling Liu, et al. Atorvastatin protects ratbrains against permanent focal ischemia and downregulates HMGB1,HMGB1receptors (RAGE and TLR4), NF-kappaB expression. NeurosciLett,2010,471:152-156
    11Wang L, Zhang X, Liu L, et al. Tanshinone II A down-regulates HMGB1,RAGE, TLR4, NF-kappaB expr ession, ameliorat es BBB permeab ilityand endothelial cell function, and protects rat brains against focal ischemia.Brain Res,2010,1321:143-151
    12Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury.Trends Neurosci,1997,20:132-139
    13Emsley HC, Tyrrell PJ. Inflammation and infection in clinical stroke. JCereb Blood Flow Metab,2002,22:1399-1419
    14Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focalcerebral ischemia. Surg Neurol,2006,66:232-245
    15Ross AM, Hurn P, Perrin N, et al. Evidence of the peripheralinflammatory response in patients with transient ischemic attack. J StrokeCerebrovasc Dis,2007,16:203-207
    16Iadecola C, Alexander M, Cerebral ischemia and inflammation. Curr OpinNeurol,2001,14:89-94
    17Del Zoppo GJ, Microvascular responses to cerebralischemia/inflammation. Ann N Acad Sci,1997,823:132-147
    18Huang J, Upadhyay UM,Tamargo RJ, et al. Inflammation in stroke andfocal cerebral ischemia. Surg Neurol,2006,66:232-245
    19Lv M, Liu Y, Zhang J, et al. Roles of inflammation response in microgliacell through Toll-like receptors2/interleukin-23/interleukin-17pathway incerebral ischemia/reperfusion injury. Neuroscience,2011,176:162-72
    20Bartosik-Psujek H, Belniak E, Stelmasiak Z, et al. Markers ofinflammation in cerebral ischemia. Neurol Sci,2003,24:279-280
    21Benakis C, Bonny C, Hirt L. JNK inhibition and inflammation aftercerebral ischemia. Brain Behav Immun,2010,24:800-811
    22Cui L, Zhang X, Yang R, et al. Baicalein is neuroprotective in rat mcaomodel: Role of12/15-lipoxygenase, mitogen-activated protein kinase andcytosolic phospholipase a2. Pharmacol Biochem Behav,2010,96:469-475
    23Webster CM, Kelly S, Koike MA, et al. Inflammation and NFkappaBactivation is decreased by hypothermia following global cerebral ischemia.Neurobiol Dis,2009,33:301-312
    24Liu Ying, Zhang Xiangjian, Yang Chenhui, et al. Oxymatrine protects ratbrains against permanent focal ischemia and downregulates NF-κBexpression. Brain Res,2009,1268:174-180
    25Kamide T, Kitao Y, Takeichi T, et al. RAGE mediates vascular injury andinflammation after global cerebral ischemia. Neurochem Int,2012,60:220-228
    26Chu LS, Fang SH, Zhou Y, et al. Minocycline inhibits5-lipoxygenaseactivation and brain inflammation after focal cerebral ischemia in rats.Acta Pharmacol Sin,2007,28:763-772
    27Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formationfollowing intracerebral hemorrhage in rats. J Neurosurg,1998,89:991-996
    28Schwendinger MG, Spruth M, Schoch J, et al. A novel mechanism ofalternative pathway complement activation accountsfor the deposition ofC3fragment on CR2-expressing homologous cells. J Immunol,1997,158:5455-5463
    29张丽英,张祥建,李海燕等。实验性脑出血大鼠血肿周围补体C3表达的动态观察。中国全科医学,2004,7(16):1137-1139
    30Okun E, Griffioen KJ, Lathia JD, et al. Toll-like receptors inneurodegeneration. Brain Res Rev,2009,59:278-292
    31Bsibsi M, Ravid R, Gveric D, et al. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol,2002,61:1013-1021
    32Kielian T. Toll-like receptors in central nervous system glial inflammationand hom eostasis. J Neurosci Res,2006,83:711-730
    33Zhang X, Li H, Hu S, et al. Brain edema after intracerebral hemorrhage inrats: the role of inflammation.2006, Ne urology India,54:402-407
    34Li C, Ha T, Kelley J, et al. Modulating Toll-like receptor mediatedsignaling by (1→3)-β-D-glucan rapidly induces cardioprotection.Cardiovas cular Research.2004,61:538-547
    35Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innateimmunity.2006, Ce l l,124:783-801
    36Sironi L, Banfi C, Brioschi M, et al. Activation of NF-κB and ERK1/2after permanent focal ischemia is abolished by simvastatin treatment.Neurobiol Dis,2006,22:445-451
    37Zhang HL, Gu ZL, Savitz SI, et al. Neuropro tective effects of prostaglandinA(1) in rat models of permanent focal cerebral ischemi a areassociated with nuclear factor-kappa B inhibition and peroxisomeproliferator-activ ated receptor-gamma up-r egulation. J Neurosci Res,2008,86:1132-1141
    38Fan H, Cook JA. Molecularmechanismsof endotoxin tolerance. JEndotoxin Res,2004,10:71-74
    39Bradley JR, Pober JS. Tumor necrosis factor receptor associated factors(TRAFs). Oncogene,2001,20:6482-6491
    40Wu H, Arron JR. TRAF6, a molecular bridge spanning adaptive immunity,innate immunity and osteoimmunology. Bioessays,2003,25:1096-1105
    41De Keulenaer GW, Ushi o-Fukai M, Yin Q, et al Convergence ofredox-sensitive and mitogen-activated protein kinase signaling pathwaysin tumor necrosis factor-alpha-mediated monocyt echemo attractantprotein-1induction in vascular smooth muscle cells.Arterioscler.Thromb Vasc Biol,2000,20:385-391
    42Allan SM, Rothwell, NJ. Cytoki nes and acute neurodegenerati on. NatRev Neurosci,2001,2:734-744
    43Thompson WL, Van Eldik LJ. Inflammatory cyto kines stimulate thechemo kines CCL2/M CP-1and CCL7/MCP-3through NFkB and MAPKdependent pathwa ys in rat astrocytes. Brain Res,2009,1287:47-57
    44Hershko DD, Robb BW, Wray CJ, et al Superinduction of IL-6bycycloheximide is associated with mRNA stabilization and sustainedactivation of p38map kinase and NF-kappaB in cultured caco-2cells. JCell Biochem,2004,5:951-961
    45Schwaninger M, Inta I, Herrmann O. NF-kappaB signalling in cerebralischaemia. Biochem Soc Trans,2006,34:1291-1294
    46O’Neill L A, Kaltschmidt C. NF-κB: a crucial transcription factor for glialand neuronal cell function. Trends Neurosci,1997,20:252-258
    47Baeuerle P, Henkel T. Function and activation of NF-κB in the immunesystem. Annu Rev Immunol,1994,12:141-179
    48Baldwin AS Jr. The NF-κB and IκB proteins: New discoveries andinsights. Annu Rev Immunol,1996,14:649-681
    49Ma ek R, Borowicz KK, Jargie o M, et al Role of NF-κ B in the centralnervous system. Pharmacol Rep,2007,59:25-33
    50Takahashi M, Masuyama J, Ikeda U, et al. Effects of endogenousendothelial interleukin-8on neutrophil migration across an endothelialmonolayer. Cardiovasc Res,1995,29:670-675
    51Schwab JM, Nguyen TD, Meyermann R, et al. Human focal cerebralinfarctions induce differential lesional interleukin-16(il-16) expressionconfined to infiltrating granulocytes, cd8+t-lymphocytes and activatedmicroglia/macrophages. J Neuroimmunol,2001,114:232-241
    52LeGrand A, Fermor B, Fink C, et al. Interleukin-1, tumor necrosis factoralpha, and interleukin-17synergistically up-regulate nitric oxide andprostaglandin e2production in explants of human osteoarthritic kneemenisci. Arthritis Rheum,2001,44:2078-2083
    53Allan SM, Rothwell, NJ. Cytoki nes and acute neurodegenerati on. NatRev Neurosci,2001,2:734-744
    54Thompson WL, Van Eldik LJ. Inflammatory cyto kines stimulate thechemo kines CCL2/M CP-1and CCL7/MCP-3through NFkB and MAPKdependent pathwa ys in rat astrocytes. Brain Res,2009.1287:47-55
    55Davis RJ. MAPKs: new JNK expands the group. Trends Biochem Sci,1994,19:470-473
    56Thompson WL, Van Eldik, LJ. Inflammatory cyto kines stimulate thechemo kines CCL2/M CP-1and CCL7/MCP-3through NFkB and MAPKdependent pathwa ys in rat astrocytes. Brain Res,2009,1287:47-57
    57Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK andJNK-p38MAP kinases on apoptosis. Science,1995,270:1326-1331
    58Lawrence T, Willoughby DA, Gilroy DW. Anti-inflammato ry lipidmediators a nd insights i n to the r eso lutio n o f i nf lamma tion. Nat RevImmunol,2002,2:787-795
    59Xu R, Chen J, Cong X, et al. Lovastatin protects mesenchymal stem cellsagainst hypoxia-and serum deprivation-induced apoptosis by activation ofPI3K/Akt and ERK1/2. J Cell Biochem,2008,103:256-269
    60Das A, Salloum FN, Xi L, et al. ERK phosphorylation mediatessildenafil-induced myocardial protection against ischemia-reperfusioninjury in mice. Am J Physiol Heart Circ Physiol,2009,296:H1236-H1243
    61Fredriksson L,Li H,Eriksson U.The FDGF family:four gene products formfive dimeric isoforms.Cytokine Growth Factor Rev,2004,15:197-204
    62Finklestein S, The potential use of neurotrophic growth factors in thetreatment of cerebral ischemia. Adv Neurol,1996,71:413-417
    63Lindahl P, Bostrom H, Karlsson L, et al. Betsholtz, Role ofplatelet-derived growth factors in angiogenesis and alveogenesis. CurrTop Pathol,1999,93:27-33
    64Risau W, Drexler H, Mironov V, et al. Platelet-derived growth factor isangiogenic in vivo. Growth Factors,1992,7:261-266
    65Pierce J, Heidaran M, Yu J, et al. Aaronson, A deletion in the extracellulardomain of the alpha platelet-derived growth factor (PDGF) receptordifferen-tially impairs PDGF-AA and PDGF-BB binding affinities. J BiolChem,1992,267:2884-2887
    66Sasahara A, Kott JN, Sasahara M, et al. Platelet-derived growth factorB-chain-like immunoreactivity in the developing and adult rat brain. BrainRes Dev Brain Res,1992,68:41-53
    67Sakata M, Yanamoto H, Hashimoto N, et al. Induction of infarct toleranceby platelet-derived growth factor against reversible focal ischemia. BrainRes,1998,78:250-255
    68Kawabe T, Wen TC, Matsuda S,etal. Platelet-derived growth factorprevents ischemia-induced neuronal injuries in vivo. Neurosci Res,1997,29:335-343
    69Guan J, Bennet L, George S, et al. Insulin-like growth factor-1reducespostischemic white matter injury in fetal sheep. J Cereb Blood FlowMetab,200121:493-502
    70Aberg MA, Aberg ND, Hedb cker H, et al. Peripheral infusion of IGF-Iselectively induces neurogenesis in the adult rat hippocampus. J Neurosci,2000,20:2896-2903
    71Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischemic stroke:an integrated view. Trends Neurosci,1999,22:391-397
    72Nielsen S, Nagelhus Amiry-Moghaddam EA M, et al. Ottersen,Specialized membrane domains for water transport in glial cells:high-resolution immunogold cytochemistry of aquaporin-4in rat brain. JNeurosci,1997,17:171-180
    73Rollins BJ, Walz A, Baggiolini M. Recombinant human MCP-1/JEinduces chemotaxis, calcium flus, and the respiratory burst in humanmonocytes. Blood,1991,78:1112-1116
    74Beckman JS. The double-edged role of nitric oxide in brain function andsuperoxide-mediated injury. J Dev Physiol,1991,15:53-59
    75Ito Y, Ohkubo T, Asano Y, et al. Nitric oxide production during cerebralischemia and reperfusion in enos-and nnos-knockout mice. CurrNeurovasc Res,2010,7:23-31
    76Bruce AJ, Boling W, Kindy MS, et al. Altered neuronal and microglialresponses to excitotoxic and ischemic brain injury in mice lacking tnfreceptors. Nat Med,1996,2:788-794
    77Zaremba J, Losy J. Early tnf-alpha levels correlate with ischaemic strokeseverity. Acta Neurol Scand,2001,104:288-295
    78Yang C, Zhang X, Fan H, et al. Curcumin upregulates transcription factornrf2, ho-1expression and protects rat brains against focal ischemia. BrainRes,2009,1282:133-141
    79Ji H, Zhang X, Du Y, et al. Polydatin modulates inflammation bydecreasing NF-κB activation and oxidative stress by increasing Gli1,Ptch1, SOD1expression and ameliorates blood-brain barrier permeabilityfor its neuroprotective effect in pMCAO rat brain. Brain Res Bull,2012,87:50-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700