电针对局灶性脑缺血再灌注大鼠脑血管再生及血脑屏障变化影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本课题在导师前期研究成果基础上,采用改良线栓法建立大鼠局灶性脑缺血再灌注模型,以“益气活血,祛瘀生新”为法则,取“百会”、“水沟”、“足三里”穴,观察电针对局灶性脑缺血再灌注大鼠神经行为学,脑TTC染色、HE染色,脑组织中HIF-1α表达,MVD(cD34+细胞)计数,血清白蛋白(Alb)水平及血脑屏障通透性指标——S100β蛋白血清含量的影响,从而探讨电针对大鼠局灶性脑缺血再灌注后血管再生的调节机制,并试图初步探索电针治疗促血管新生与血脑屏障保护之间的相互关系。
     方法:
     将84只180g~220g清洁级雄性SD大鼠按照数字表随机分为4组,分别为正常对照组12只(不予处理,正常饲养);假手术组12只(仅分离CCA及IPA至PPA,不插线栓);模型组30只(改良线栓法制备局灶性脑缺血再灌注模型,按照缺血/再灌注24h、48h、72h又分为3个亚组,每亚组10只);电针组30只(改良线栓法制备局灶性脑缺血再灌注模型,按照缺血/再灌注24h、48h、72h又分为3个亚组,每亚组10只,加电针治疗)。电针组使用HANS-200A型韩式穴位神经刺激仪,采用疏密波(频率2Hz/15Hz),电流强度约1mA,以引起局部肌肉稍稍颤动为度,刺激“百会”、“水沟”、“足三里”穴,每次持续刺激30min,缺血再灌注2h后行第1次电针刺激,每隔12h再电针刺激1次。分别采用Zea-longa评分法观察实验大鼠神经行为学变化;取脑组织,制片,HE染色,普通光镜下观察脑大体结构变化;TTC染色计算脑梗死体积比例;免疫组化SP法检测HIF-1α表达,MVD(CD34+细胞)计数(Weidner法);取血清标本,溴甲酚氯(BcG)法测定白蛋白浓度水平,ELISA去测定S-100β蛋白含量;干湿重法计量脑含水量(%)
     结果:
     (1)脑组织HE染色光镜观察:正常对照组、假手术组无异常。模型组、电针组大鼠脑组织HE染色显示缺血后神经元损伤病理改变随再灌注时间的延长由轻至重。电针组大鼠脑组织缺血坏死区结构较正常对照组、假手术组疏松,但间质水肿不明显,坏死细胞数量较模型组有所减少,排列较模型组规则。
     (2) Zea-longa评分:正常对照组、假手术组大鼠均未出现神经功能缺失症状。在我们设定的观察时间窗内(缺血/再灌注24h~72h),模型组大鼠神经功能评分在缺血/再灌注24h最高,处于峰值,随后逐渐下降,至缺血/再灌注72h神经功能评分仍然较高,与正常对照组、假手术组大鼠比较,P<0.01,有非常显著差异性。电针组大鼠神经功能评分在缺血/再灌注24h也是最高,该峰值与模型组峰值比较,P<0.05,有显著差异。电针组大鼠与模型组相比较,缺血/再灌注24h时间点它们的神经功能评分之间出现显著差异,P<0.05;缺血/再灌注48h~72h时间段内它们的神经功能评分之间出现非常显著差异,P<0.01。电针组大鼠在缺血/再灌注72h时间点神经功能评分并未能恢复到正常水平,与正常对照组、假手术组大鼠比较还是有非常显著差异,P<0.01。
     (3)HIF-1α的表达:正常对照组、假手术组大鼠脑内出现微量HIF-1α的表达,两者之间无统计差异性,P>0.05。模型组大鼠脑内HIF-1α的表达随缺血/再灌注时间延长不断增加,在我们设定的观察时间窗内至缺血/再灌注72h时出现最高点,并在各个时间点均与正常对照组、假手术组形成非常显著差异,P<0.01。而电针组大鼠脑内HIF-1α的表达也是随缺血/再灌注时间延长不断增加,且势头较模型组强劲,在我们设定的观察时间窗内至缺血/再灌注72h同样出现最高点,该峰值与模型组峰值比较出现显著差异,P<0.05;同样在各个时间点电针组大鼠脑内HIF-1α的表达也与正常对照组、假手术组形成非常显著差异,P<0.01。
     (4)脑梗死体积比:正常对照组、假手术组大鼠均未出现脑梗死。在我们设定的观察时间窗内(缺血/再灌注24h-72h),模型组和电针组大鼠脑梗死体积比呈现一个基本正态分布,都是在缺血/再灌注48h最大,处于峰值。在缺血/再灌注24h时间点,电针组与模型组比较,大鼠脑梗死体积比之间有显著差异,P<0.05;在缺血/再灌注48h~72h时间段内,电针组与模型组比较,大鼠脑梗死体积比之间有非常显著差异,P<0.01。与模型组比较,电针组在缺血/再灌注24h时间点大鼠脑梗死体积比减少幅度较小,缺血/再灌注48h~72h时间段大鼠脑梗死体积比减少幅度增大,以缺血/再灌注72h时间点为最大。
     (5)缺血脑区MVD计数:正常对照组、假手术组大鼠脑内MVD极小,几乎为零,且它们之间无统计差异,P>0.05。模型组大鼠脑内缺血区MVD随缺血/再灌注时间延长而增加,但是增长幅度有限,其在各个时间点(缺血/再灌注24h~72h)与正常对照组、假手术组比较形成非常显著性差异,P<0.01。电针组大鼠脑内缺血区MVD也随缺血/再灌注时间延长而增加,且增长幅度很大,在各个时间点(尤其是缺血/再灌注72h),与模型组比较形成非常显著性差异,P<0.01;同时其与正常对照组、假手术组比较也在各个时间点上形成非常显著差异,P<0.01。
     (6)血清白蛋白水平:正常对照组大鼠血清白蛋白水平稳定;与正常对照组比较,假手术组大鼠血清白蛋白水平除在缺血/再灌注24h时间点有轻度下降(但无统计学差异,P>0.05)外,其余时间段无明显变化与正常对照组十分接近。模型组和电针组(特别是模型组)大鼠血清白蛋白水平在整个观察时间窗内都呈现明显下降趋势,与正常对照组、假手术组比较,均具有非常显著差异,P<0.01。在各个时间点电针组大鼠血清白蛋白水平与模型组比较,均具有显著差异,P<0.05。
     (7)血清S-100β蛋白浓度:正常对照组、假手术组大鼠在各个时间点血清S-100β蛋白均未被检测到。模型组、电针组大鼠在各个时间点血清中都检测到S-100β蛋白,且与正常对照组、假手术组比较具有非常显著性差异,P<0.01。在我们设定的观察时间窗内(缺血/再灌注24h、48h、72h),模型组、电针组大鼠血清S-100β水平表达规律相似,均从缺血/再灌注24h开始升高,缺血/再灌注48h到达峰值,随后下降,至缺血/再灌注72h仍然维持较高水平,与正常对照组、假手术组大鼠比较,P<0.01。电针组大鼠在各个时间点血清S-100β蛋白水平都较模型组低,P<0.05,表示有显著差异性。
     (8)脑含水量:正常对照组、假手术组实验大鼠脑含水量稳定,并保持在正常水平。模型组、电针组实验大鼠脑含水量在缺血再灌注后均明显上升,在各个时间点与正常对照组、假手术组比较,差异性显著,P<0.05甚至P<0.01。在我们设定的观察时间窗内(缺血/再灌注24h、48h、72h),模型组、电针组实验大鼠脑含水量升高规律相似,均从缺血/再灌注24h开始升高,至缺血/再灌注48h到达峰值,随后下降,缺血/再灌注72h脑含水量仍然维持较高水平,未恢复正常(包括电针组)。电针组大鼠脑含水量在各个时间点都较模型组低,P<0.05,表示有显著差异性。
     结论:
     大鼠脑缺血/再灌注后,早期电针治疗介入能改善神经功能缺失症状、提高脑耐缺氧能力、减少脑梗死体积、促进血管新生、一定程度上“内源性”提高血清白蛋白水平、保护血脑屏障、降低脑水肿严重程度,从而发挥积极有效的治疗作用,对抗脑缺血/再灌注损伤。
Objective:
     Our research was based on mentor preliminary research results. We setted up MCAO of rats by improved suture method. According to principles of treatment which is "Yiqihuoxue and Quyushengxin", we electro-acupuncture (EA) the piont "Baihui""Shuigou","Zusanli". Then we observed the affect of EA to MCAO rats neurobehavioral score and TTC staining, HE staining, and the expression of HIF-1α, MVD (CD34+) in brain tissure and the level of serum albumin, S-100P (blood-brain barrier permeability index).By doing this, we wanted to investigate the mechanism for the regulation of angiogenesis after focal cerebral ischemia and reperfusion. At the same time, we tried to explain the relationship between the role of angiogenesis and blood-brain barrier permeability by EA.
     Methods:
     According to the number table, we divided84SD rats (180g-220g, male)of clean grade into four groups randomly including normal control group, sham operation group, model group and EA group. The normal control group haved12rats, which not be processed, the normal feeding. The sham operation group haved12rats, which haved only separation of the CCA and IPA to the PPA, do not plug wire tied. The model group haved30MCAO rats, which is divided into3subgroups and each subgroup of10according to ischemia/reperfusion24h,48h,72h. EA group also haved30MCAO rats, which is divided into3subgroups and each subgroup of10according to ischemia/reperfusion24h,48h,72h, but coupled with electro-acupuncture treatment based on of the model group. We use the HANS-200A type acupoint nerve stimulation instrument, the use of density wave (frequency2Hz/15Hz), about1mA current intensity, a little quiver in order to stimulate local muscle for the degree, to stimulate "Baihui","Shuigou" and "Zusanli" of the EA group rats, each time to stimulate30mins. The1st electro-acupuncture stimulation happened at2h after ischemia and reperfusion. And then, the rats in EA group accepted an electro-acupuncture stimulation every12h.According to the literature method, we have done the following research. We observed changes in the experimental rat neural behavior Zea-longa score. We observed the changes of the brain in general structural by ordinary optical microscope through HE staining way. We calculated the ratio of cerebral infarct volume by Weidner's methods through TTC staining way. We determined the expression of HIF-1a, MVD (CD34+) in brain tissure by immunohistochemistry SP way. We determined the level of serum albumin by BCG and the level of serum S-100β by EILSA way. We measured the brain water content of wet/dry weight method.
     Result:
     (1) HE staining observed by optical microscope:Normal control group, sham operation group have no abnormal result. The HE staining of model group showed that pathological change to the neuronal damage with the extension of the time points from small to big after ischemia. Loose ischemia necrosis structure of the EA group compared with the sham group, but interstitial edema was not obvious, the number of necrotic cells were reduced compared with the model group, arranged compared with the model group rules.
     (2) Zea-longa score:Normal group and sham-operated rats did not appear the symptoms of neurological deficit. Neurological deficit scores of the model group were most obvious in the I/R24hours, at the peak, and then decreased gradually to I/R72h, but neurological deficit scores were still higher than normal control group and sham-operated group (P<0.01).The neurological deficit scores of the EA group were most obvious in the I/R24h, but it is still difference from model group (P<0.05). The neurological deficit score of EA group and model group compared with I/R24h showed a significant difference (P<0.05); In I/R48h and72h, the neurological deficit score still showed a particularly significant difference (P<0.01) compared with the model group. The neurological deficit scores of EA group did not fully recover to normal levels. Compared with normal control group and sham operation, it haved a special significant difference (P<0.01)
     (3) The expression of HIF-1a:Micro-expression of HIF-1α appeared in the rat brain of normal group and sham-operated group. The expression of HIF-1α in the rat brain of model group increased with I/R time. It arrived at the highest point in I/R72h.It constituted a particularly significant difference with the normal group and sham-operated group (P<0.01). The stronger expression of HIF-1a in the rat brain of EA group increased with I/R time compared with model group (P<0.05).It also arrived at the highest point in I/R72h.
     (4) The ratio of cerebral infarct volume:Normal group and sham-operated rats did not appear to cerebral infarction. In our observation time window, the volume of cerebral infarction in rats brain of model group and EA group presented a basic normal distribution. The two peak appeared at I/R48h both. In the I/R24h time window, the ratio of cerebral infarct volume between the EA group and model group showed significant difference (P<0.05) Special significant difference (P<0.01) between the EA group and model group appeared in the I/R48h,72h time window. The reducing of ratio of cerebral infarct volume in rats of EA group was bigger than that of model group with I/R time increasing. The peak appeared at I/R72h.
     (5) The MVD in ischemia brain regions:The MVD in the rats brain of normal control group and sham group were almost zero. The limited growth of MVD in rats ischemia brain regions of model group constituted a particularly significant difference with the normal control group and sham group (P<0.01). The MVD in rats ischemia brain regions of EA group increased with time especially in the I/R72h time point. Compared with the model group, it constituted a particularly significant difference (P<0.01)
     (6) The level of serum albumin:The level of serum albumin of normal control group keeped stability.Compared with the normal control group, the level of serum albumin of sham group rat was almost unchangde except the slight decrease in I/R24h which was no significant difference(P>0.05). The level of serum albumin of model group and EA group showed a clear downward trend with particularly significant difference (P<0.01), in particular the model group, compared with normal control group and sham group during the entire observation period. The level of serum albumin of EA group rat compared with model group showed significant difference (P<0.05). But the level of serum albumin of of EA group rat compared with normal control group and sham-operation group showed no difference (P>0.05).
     (7) The level of serum S100β:We could not detected any S-100β protein in normal control group and sham-operated rats serum at each time point. The S-100β protein could be detected in the serum of model group and EA group rats at each time piont, which haved a very significant difference from the normal control group and sham-operation group (P<0.01). Both model group and EA group haved the similar expression pattern of the level of serum S100β.The level of serum S100β increased from I/R24h began, reached the peak at I/R48h and then decreased. It still maintained a high level at I/R72h during the observation period we setted. The level of serum S100β of EA group indicaed significant differences from the model group at each time point (P<0.05)
     (8) Brain water content:Thebrain water content in bothnormal control group and sham-operation group rats keeped normal levels.Compared with normal control group and sham-operation group, the brain water content in both model group and EA group rats showed significantly increased after ischemia and reperfusion. The difference was obvious. Both model group and EA group haved the similar expression pattern of the brain water content.The brain water content increased from I/R24h began, reached the peak at I/R48h and then decreased. It still maintained a high level at I/R72h during the observation period we setted. The brain water content of EA group indicated significant difference from the model group at each time point (P<0.05)
     Conclusion:
     Early EA intervention can play as a positive and effective treatment against brain ischemia and reperfusion injury by improving the symptoms of neurological deficit, improving cerebral hypoxia tolerance, reducing the volume of cerebral infarction, promoting angiogenesis, increasing serum albumin levels to a certain extent endogenous, protecting the blood-brain barrier and reducing the severity of cerebral edema.
引文
[1]郭祥筠.电针百会、大椎对全脑缺血——再灌注脑损伤大鼠干预作用机制的研究[D].广州:广州中医药大学,2008.
    [2]Grenn DR, Reed JC. Mitoehondria and apoptosis [J]. Sceience, 1998,281:1309-1312.
    [3]Greenberg DA, Jin K. From angiogencsis to neuropathology[J]. Nature,2005,438:954-959.
    [4]毕方方.NGF对大鼠局灶性脑缺血后血管再生的作用及其机制[D].长沙:中南大学,2007.
    [5]Chan J, Tnang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces agiogenesis in the ischemic boundary zone after stroke in rats [J]. Circ Res,2003,2 (6):692-699.
    [6]陈泽斌,袁芳,梁凤霞,等.针刺预处理脑组织提取液抗大鼠脑缺血再灌注损伤作用探讨[J].中国针灸,2004,24(5):347.
    [7]马璟曦,罗勇.脑缺血与血管新生[J].中国康复理论与实践,2005,11(3):192-195.
    [8]冯学功.论肾虚气弱风痰癖血阻络在缺血性脑卒中恢复期病机中的重要性[J].中医杂志,1998,39(8):458.
    [9]张德山.自拟偏瘫复止汤治疗急性脑梗塞103例[J].中医研究,1997,10(4):30.
    [10]屈风林.自拟活血通脉散治疗缺血性脑卒中168例临床观察[J].中医杂志,1999,40(11):667.
    [11]刘华.益气活血法治疗缺血性中风临床和药理研究10年回顾与展望[J].现代中西医结合杂志,2000,9(13):1217-1219.
    [12]温景荣,赵晓峰,王舒,等.脑缺血及再灌研究中电针应用状况的文献分析和初步研究[J].天津中医药,2006,23(2):128-129.
    [1]严虹,王斌,肖继皋.缺氧诱导因子1调控转录及相关转录抑制剂的研究进展[J].国外医学·药学分册,2004,31(4):193-197.
    [2]陈红辉.血管内皮生长因子对缺血性脑损伤保护作用的实验研究[D].武汉:华中科技大学同济医学院,2001.
    [3]Harik SI, Hritz MA, LaMarma JC.Hypoxia-induced brain angiogenesis in the adult rat [J]. J Physiol,1995,485(Pt2):525-530.
    [4]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989,20:84-91.
    [5]李忠仁.实验针灸学[M].北京:中国中医药出版社,2003:327-329.
    [6]司艺玲.Leptin在脑缺血性损伤中的神经保护作用和机制探讨[D].北 京:军医进修学院,2009.
    [7]苏勋庄,侯建,高楠,等.早期电针治疗对急性缺血性中风患者的预后影响及其作用机制探讨[J].中西医结合实用临床急救,2004,10(4):26-28.
    [8]鲁亦斌.电针对脑缺血再灌注大鼠脑内PDGF-B及TGF-β 1影响的研究[D].武汉:湖北中医学院,2009.
    [9]Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcription activation[J]. Mol Cell Biol,1992,12(12):5447-5454.
    [10]Linden T, Katschinski DM, Eckhardt K, et al.The antimycotic ciclopirox olamine induces HIF-1 alpha stability, VEGF expression, and angiogenesis[J].FASEB J,2003,17(6):761-763.
    [11]Semenza GL. HIF-1 and tuIllor progression:pathophysiology and therapeutics [J]. Trends Mol Med,2002,8(4 suppl):s62-67.
    [12]Semenza, GL.HIF-1:mediator of physiological and pathophysiological responses to hypoxia [J].J Appl Physiol,2000, 88(4):1474-1480.
    [13]Semenza, GL. SurviVing ischemia:adaptive responses mediated by hypoxia-inducible factor 1 [J]. J Clin Invest,2000,106 (7):809-812.
    [14]Jean Marx. How cells endure low oxygen [J].Science,2004, 303(5663):1454-1456.
    [15]Semenza, GL, Wang GL. A nuclear factor induced by hypoxia via denovo protein synthesis binds to the human erytllropoietin gene enhancer at a site required for transcription activation [J]. Mol Ceu Biol,1992,12(12):5447-5454.
    [16]Jiang BH, Rue E, Wang GL, et al.Dimerization, DNA binding, and transactivation propenies of hypoxia-inducible factor 1[J].J Biol Chem,1996,271(30):17771-17778.
    [17]D'Anqio CT, Finkelstein JN. Oxygen regulation of gene expression:A study in opposites[J]. Molecular Genetics and Metabolism,2000,71(12):371-380.
    [18]Sowter HM, Ratcliffe PJ, Watson Peter, et al.HIF-1 dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in induced by hypoxia [J]. Proc Nat Acad Sci USA,2001,61(18): 6669-6673.
    [19]邵琴.HIF与EPCs成内皮细胞关系的实验研究[D].上海:上海第二医科大学,2004.
    [20]Halterman MW, Federoff HI.HIF-1 a and P53 promote hypoxia induced delayed neuronal death in models of CNS ischemia[J].Exp Neuro,1999,159(1):65-72.
    [21]Pugh CW, Ratclife PJ. Regulation of angiogenesis by hypoxia: role of the HIF system[J]. Nat Med,2003,9:677-684.
    [22]宋文丽.不同刺激强度电针对大鼠脑缺血神经元损伤的影响及应激调理机制研究[D].青岛:山东中医药大学,2006.
    [23]Wegener S, Weber R, Ramos-Cabrer P, et al.Subcortical lesions after transient thread occlusion in the rat:T2-weighted magnetic resonance imaging findings without corresponding sensorimotor deficits [J]. J Magn Reson Imaging,2005,21:340-346.
    [24]Wegener S, Weber R, Ramos-Cabrer P, et al. Temporal profile of t2-weighted mridistinguishes between pannecrosis and selective neuronal death after transient focal cerebral ischemia in the rat [J]. J Cereb Blood Flow Metab,2005,26:38-47.
    [25]Sabol KE, Neill DB, Wages SA, et al.Dopamine depletion in a striatal subregion disrupts performance of a skilled motor task in the rat [J]. Brain Res,1985,335:33-43.
    [1]Pugh CW, Ratclife PJ.Regulation of angiogenesis by hypoxia: role of the HIF system[J]. Nat Med,2003,9(6):677-684.
    [2]刘福虹,郭凤婵,李胜水,等.HIF1α、VEGF、p53在宫颈癌组织中的表达及其与微血管密度的关系[J].中国老年学杂志,2007,27(7):1284-1286.
    [3]周次利,陈邦国,毛庆菊,等.电针对脑缺血再灌注大鼠脑内血管内皮生长因子及内皮抑素的影响[J].湖北中医杂志,2007,29(5):8-10.
    [4]Zhang YG, Liu TP, Qian ZY, et al. Influence of total saponins of panax ginseng on infarct size and polyamine contents in rat brain after middle cerebral artery occlusion[J]. Chinese Journal Pharmacology and Toxicology,1994,8(4):250-255.
    [5]徐叔云,卞如濂,陈修.药理实验方法学(第三版)[M].北京:人民卫生出版社,2002:1066-1067.
    [6]Weidner N. Intmtumor micmvessel density as a prognostic factor in cancer [J]. Am J Pathol,1995,147(1):9-19.
    [7]朱惠斌,陈懿,谭琥,等.脑泰方提取物对局灶性脑缺血大鼠cD34表达的影响[J].中药新药与临床药理,2011,22(2):141-144.
    [8]蒋靓君,重组人血管生成素-1治疗大鼠急性脑缺血的初步实验研究[D].北京:中国协和医科大学,2007.
    [9]Swanson RA, Morton MT, Tsao WG, et al. A semiautomated method for measuring brain infarot volume [J].J Cereb Blood Flow Metab,1990, 10:290-293.
    [10]司全明,吴根诚,曹小定.电针对脑缺血大鼠体感诱发电位及脑梗塞体积的影响[J].针刺研究,1998,23(1):36-40.
    [11]孙世晓,刘泓雨,夏雪丽,等.不同时间窗电针对局灶性脑缺血大鼠神经功能缺损及脑梗死体积的影响[J].中医药学报,2010,38(5):47-48.
    [12]田牛.微血管生成和血管退化[J].微循环学杂志,2000,9(10):1-5.
    [13]Carmeliet R.Mechanisms of angiogenesis and arteriogenesis[J]. Nature Medicine,2000,6(3):389-395.
    [14]Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization[J]. J Clin Invest,1999,103(9):1231-1236.
    [15]宋治.脑缺血MMP3、tPA、uPA表达与血管/神经再生标志物的关系及丁酸钠干预的研究[D].长沙:中南大学,2004.
    [16]Malonek D, Dirnagl U, Lindauer U, et al. Vascular imprints of neuronal activity:relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following ensory stimulation[J].Proc Natl Acad Sci USA,1997,94:14826-14831.
    [17]Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoictin enhanccs neurogenesis and angiogenesis and improves neurological function in rats [J].Stroke,2004,35(7):1732-1737.
    [18]周次利.电针对脑缺血再灌注大鼠脑内血管内皮生长因子及内皮抑素的影响[D].武汉:湖北中医学院,2007.
    [19]Zhang ZG, Zhang L, Jiang Q, et al.VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain[J].Clin Invest,2000,106:829-838.
    [20]Hayashi T, Deguchi K, Nagotani S, et al. Cerebral ischemia and angiogenesis[J]. Curt Neurovasc Res,2006,3(2):119-129.
    [21]Slevin M, Krupinski J, Slowik A, et al.Serial measurement of vascular endothdial growth factor and transforming growth factor-betall serunl of patients with acute ischernic stroke[J]. Stroke,2000,31:1863-1870.
    [22]陈红辉.血管内皮生长因子对缺血性脑损伤保护作用的实验研究[D].武汉:华中科技大学同济医学院,2001.
    [23]Isner J, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization[J]. J Clin Invest,1999,103:1231-1236.
    [24]毛庆菊.电针对脑缺血大鼠脑皮层血管内皮生长因子介导血管新生的机制研究[D].武汉:湖北中医学院,2007.
    [25]Galasso G, Schiekofer S, Sato K, et al. Impaired angiogenesis in gintathione peroxidase-1-deficient mice is associated with endothelial progenitor cell dysfunction [J]. Cite Res,2006,98(2): 254-261.
    [26]Milkiewicz M, lspanovic E, Doyle JL et al. Regulators of angiogenesis and strategies for their therapeutic manipulation[J]. Int J Biochem Cell Biol,2006,38(3):333-357.
    [27]Wood HB, May G Healy L, et al.CD34 expression patterns during early mouse development are related to modes of blood vessel formation and reveal additional sites of hematopoiesis [J]. Blood, 1997,90:2300-2311.
    [28]I to A, Nomura S, Hirota S, et al. Enhanced expression of CD34 messenger RNA by developing endothelial cells ofmice[J].Lab Invest,1995,72:532-538.
    [29]Acarregui MJ, England KM, Richman JT, et al. Characterization of CD34+cells isolated from human fetal lung[J]. Am J Physiol Lung Cell Mol Physiol,2003,284:395-340.
    [30]Brunet De La Grange P, Barthe C, Lippert E, at al.Oxygen concentration influences mRNA processing and expression ofthe CD34 gene[J].J Cell Biochem,2006,97(1):135-144.
    [1]刘鸣,谢鹏.神经内科学(全国高等学校医学研究生规划教材)[M].北京:人民卫生出版社,2008,51-83.
    [2]孙世晓,刘泓雨,夏雪丽,等.不同时间窗电针对局灶性脑缺血大鼠神经功能缺损及脑梗死体积的影响[J].中医药学报,2010,38(5):47-48.
    [3]冯虹.白蛋白治疗对脑缺血海马和皮层VEGF、flt-1的影响[D].天津:天津医科大学,2009.
    [4]郑晓梅,霍平,亢艳.两种方法测定血清中白蛋白含量的相关性[J].职业与健康,2009,25(14):1485-1486.
    [5]Finestone M, Green-Finestone S. Prolonged length of stay and reduced functional improvement rate in malnourished stroke rehabilitation patients[J]. Arch Phys Med Rehabil,1996, 77(6):340-343.
    [6]宋社更.急性脑梗死虚实证侯与其血清白蛋白、球蛋白关系研究[D].福州:福建中医药大学,2010.
    [7]Finestone M, Green-Finestone S.Prolonged length of stay and reduced functional improvement rate in malnourished stroke rehabilitation patients[J]. Arch Phys Med Rehabil,1996, 77 (6):340-343.
    [8]杨朝晖,李洁明,段代邺.血清白蛋白水平对急性期脑血管意外患者运动功能恢复的影响[J].中国康复医学杂志,1998,13(3):116-119.
    [9]Vincent JL, Dubois MJ, NaVickis RJ, et al. Hypoalbu-minemia in acute illness:is there a rationale for intervention a metaanalysis of cohort studies and Controlled trials [J]. Ann Surg,2003, 237(3):319.
    [10]Schalk BW, Visser M, Bremmer MA, et al. Change of serum albumin and risk of cardiovascular disease and all-causemortality: Longitudinal Aging Study Amsterdam[J]. Am J Epidemionl,2006, 164(10):969-977.
    [11]邓次妮,沈潞华.急性心肌梗死患者白蛋白水平的变化及其意义的临床研究[J].北京医学,2006,28(6):331-333.
    [12]姚英,刘惠兰.血液透析患者血清白蛋白水平与系统炎症反应的相互关系[J].中国血液净化,2004,3(1):18.
    [13]陈浩,田恒力,胡锦,等.脑外伤急性期血清前白蛋白与视黄醇结合蛋白的测定及临床意义[J].上海医学,2008,31(7):481-482.
    [14]刘慧华,王军.脑梗塞患者颈动脉粥样硬化与尿微量白蛋白关系的研究[J].中国现代药物应用,2009,3(18):19-21.
    [15]Belayev L, Busto R, Zhao W, et al.Effect of delayed albumin hemodilutiononinfarcti on volume and brain edema after transient middle cerebral artery occlusion in rats[J].J Neurosurg,1997, 87:595-601.
    [16]李扬.大剂量白蛋白对脑损伤治疗保护作用的实验研究进展[J].国外医学·神经病学神经外科学分册,2000,27(6):334-336.
    [17]苗维.白蛋白治疗对大鼠脑缺血再灌注后表达和脑水肿的影响[D].天津:天津医科大学,2009.
    [18]吴爱明.脑出血的治疗[J].现代医药卫生,2006,22(1):30231.
    [19]Gum ET, Swanson RA, Alano C, et al. Human serum albumin and its N-terminal tetrapeptide (DAHK) block oxidant-induced neuronal death[J]. Stroke,2004,35 (2):590-595.
    [20]陆正齐.白蛋白治疗大脑中动脉闭塞实验研究[J].中国误诊学杂志,2006,6(2): 289-291.
    [21]Tabernero A, Medina A, Sanchez-Abarca LI, et al.The effect of albumin on astrocyte energy metabolism is not brought about through the control of cytosolic Ca2+ concentrations but by free-fatty acid sequestration[J].Glia,1999,25:1-9.
    [22]Zoellner H, Hofler M, Beckmann R, et al.Serum albumin is a specific inhibitor of apoptosis in human endothelial cells [J].J Cell Sci,1996,109 (Pt 10):2571-2580.
    [23]李永东,赵俊功,李明华,等.大剂量人体白蛋白和硫酸镁对溶栓后脑组织的保护与促进修复作用[J].介入放射学杂志,2008,17(8):579-584.
    [24]Lang JD, Figueroa M, Chumley P, et al. Albumin and hydroxyethyl starch modulate oxidative inflammatory injury to vascular endothelium[J]. Anesthesiology,2004,100:51-58.
    [25]李明华.人体白蛋白和硫酸镁延长急性脑缺血溶栓时间窗的可行性研究[J].介入放射学杂志,2004,12(Suppl):197.
    [26]潘洪飞,瞿锋.血清白蛋白水平对脑出血患者预后的影响[J].临床荟萃,2010,25(23):2061-2062.
    [27]刘斌,江基尧,蔡如珏.大剂量白蛋白对大鼠液压脑损伤性水肿的影响[J].中华神经外科疾病研究杂志,2003,2(4):355-356.
    [28]Quinlan GJ, Martin GS, Evans TW. Albumin:biochemical properties and therapeutic potential[J]. Hepatology,2005,41(6):1211-1219.
    [29]曹伟新.白蛋白与营养支持的关系[J].外科理论与实践,2008,13(5):399-401.
    [30]刘芳,翟所迪,田荣萍.临床应用人血白蛋白的循证医学评价[J].中国药学杂志,2007,42(6):478-480.
    [31]梁腾霄,刘清泉,江其敏.血清白蛋白水平与危重病患者预后及中医虚实证候相关性的研究[J].中国中医急症,2006,15(7):747-748.
    [32]何家卫,何家红.白蛋白、球蛋白比例倒置的中医辨证治疗[J].中国乡村医药杂志,2002,9(3):11.
    [33]禹爱梅.白蛋白治疗急性脑出血的疗效分析[J].河北北方学院学报(医学版),2006,23(5):262-271.
    [1]Juri Katchanov, Christoph Harms, Kardf1 Gertz, et al.Mild cerebral ischemia indues loss of cyclin-dependent Kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death[J].J Neurosci,2001,21(14):5045-5053.
    [2]马璟曦,罗勇.脑缺血与血管新生[J].中国康复理论与实践,2005,11(3):192-195.
    [3]Deepu R Pillai, Michael S Dittmar, Dobri Baldaranov, et al. Cerebral ischemia-reperfusion injury in rats study on biphasic blood-brain barrier opening and the dynamics of edema formation[J].Cereb Blood Flow Metab,2009,29 (11):1846-1855.
    [4]狄楠,张祥建,等.脑缺血再灌注大鼠脑组织水孔蛋白4的动态表达及其与脑水肿的关系[J].中国卒中杂志,2008,3(5):315-320.
    [5]EK Sin, SC Lo, MC Leung. Electroacupuncture reduces the extent of liquid peroxidation by increasing superoxide dismutase and glutathione peroxidase activities in ischemic-reperfused rat brains [J].Neurosci Lett,2004,354:158-162.
    [6]胡明.PDGF-BB在实验性大鼠脑局灶性缺血/再灌注模型中表达的实验研究[D].石家庄:河北医科大学,2007.
    [7]秦鑫,张英起,颜真.跨越血脑屏障[J].生命化学,2003,23(3):222-224.
    [8]Chang Y, Hsieh CY, Peng ZA, et al. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats[J].J Biomed Sci,2009,19(16):9-12.
    [9]Baune BT, Ponath Q, Rothermundt M, et al.Association between cytokines and cerebral MRI changes in the aging brain[J]. J Geriatr Psychiatry Neurol,2009,22(1):23-34.
    [10]Zhang J, Tan, Tran ND, et al. Chemical hypoxia-ischemia induces apoptosis in cerebral microvascular endothelial cells [J].Brain Research,2000,877 (2):134-140.
    [11]Marti HJ, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes vascularization after cerebral ischemia [J]. Pathophysiology,2000,156(1):965-976.
    [12]Zhang ZG, Zhang L, Jiang Q, et al. Bone marrow-derived endothel ial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse [J].Circ Res,2002, 90:284-288.
    [13]任丽,孙善全.尼莫地平同对大鼠脑缺血再灌注后血脑屏障通透性和脑梗死体积的影响[J].临床神经病学杂志,2004,17(3):187-190.
    [14]王兴盛,苗莉,姚小梅,等.大鼠脑缺血再灌注后血脑屏障超微结构的改变[J].天津医药,2006,34(3):188-189.
    [15]Mark KS, Davis TP. Cerebral microvascular changes in permeability andtight junctions induced by hypoxia-reoxygenation [J]. Am J Physiol Heart Circ Physiol,2002, 282(4):H1485-1494.
    [16]Wachtel M, Frei K, Ehler E, et al. Extracellular signal-regulated protein kinase activation during reoxygenation is required to restore ischaemia-induced endothelial barrier failure[J]. Biochem J,2002,367:873-879.
    [17]张超.脑缺血再灌注损伤后HIF-1α对脉络丛细胞的修复作用[D].石家庄:河北医科大学,2011.
    [18]Milkiewicz M, Hudlicka 0, Brown MD, et al. Nitric oxide, VEGF, and VEGFR-2:interactions in activity-induced angiogenesis in rat skeletal muscle [J].Am J Physiol Heart Circ Physiol,2005,289(1): 336-343.
    [19]Belayev L, Busto R, Zhao W, et al. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats[J]. Brain Res,1996,739:88-96.
    [20]GA Rosenberg, EY Estrada, JE Dencoff. Matrix metalloproteinase and TIMPs are associated with blond-brain barrier opening after reperfusing in rat brain [J].Stroke,1998,29:2189-2195.
    [21]Preston E, Sutherland G, Finsten A, et al. Three openings of the blood-brain barrier produced by forebrain ischemia in the rat[J].Neurosci Lett,1993,149:75-78.
    [22]Rustandi RR, Baldisseri DM, Weber DJ. Structure of the negative regulatory domain of p53 bound to S-100β(beta) [J]. Nat Struct Biol, 2000,7(7):570-574.
    [23]Kapural M, Krizanac-Bengez L, Barnett G, et al. Serum S100β as a possible marker of blood-brain barrier disruption[J].Brain Res, 2002,940:102-104.
    [24]Hardemark HG, Fricsson N, Kotwica Z, et al. S-100 protein and neuron-specific enolase in CSF after experimental traumation of focal ischemic brain damage [J]. Neurosurg,1989,71 (5Pt1):727-731.
    [25]Postler E, Lehr A, Schluesener H, et al.Expression of the S-100 proteins MRP-8 and MRP-14 in ischemic brain lesions [J].Glia,1997, 19(1):27-34.
    [26]Schmidt-Kastner R, Szymas J, Hossmann KA. Immunohistochemical study of glial reaction and serum-protein extravasation in relation to neuronal damage in rat hippocampus after ischemia[J]. Neuroscience,1990,38 (3):527-540.
    [27]Hardemark HG, Fricsson N, Kotwica Z, et al. S-100 protein and neuron-specific enolase in CSF after experimental traumation of focal ischemic brain damage[J].Neurosurg,1989,71 (5Pt1):727-731.
    [28]王兴河,秦梅.新生鼠缺氧缺血性脑损伤S-100NSE mRNA和蛋白水平变化[J].中国当代儿科杂志,2000,2(6):381-385.
    [29]Korth U, Krieter H, Denz C, et al. Intestinal ischaemia during cardiac arrest and resuscitation:comparative analysis of extracellular metabolites by microdialysis[J]. Resuscitation, 2003,58:209-217.
    [30]Klatzo I.Pathophysiological aspects of brain edema[J]. Acta Neuropathol(Berl),1987,72:236-239.
    [31]Andrew S, Eric M, Lloud H. Cerebral edema after temporary and permanent middle cerebral artery occlusion in the rat[J]. Stroke, 1995,26:1061-1066.
    [32]吴珊,董佑忠,董为伟.脑缺血再灌注后脑水肿的变化[J].贵州医药,1999,23(2):97-81.
    [33]王景周,严家川,许红利,等.局灶性脑缺血鼠大脑半球含水量及病理变化的实验研究[J].中国急救医学,2001,21(7):380-381.
    [34]Qureshi AI, Suarez JI.Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension[J]. Crit Care Med,2000,28:3301-3313.
    [35]程文泉,陈耘,程清洲,等.大鼠脑缺血损伤后脑水肿的实验研究[J].武汉工业学院学报,2005,24(2):107-108.
    [36]王琳,戴居云.激光透穴离子导入法对局灶性脑缺血再灌注大鼠脑组织N0和NOS的影响[J].上海中医药大学学报,2006,20(2):52-54.
    [37]Bhardwa JA, Ulatowski JA. Hypertonic saline solutions in acute brain injury [J]. Curr Opin Crit Care,2004,10:126-131.
    [38]Harukuni I, Kirsch JR, Bhardwa JA. Osmotherapy in acute brain resuscitation[J]. J Anesth,2002,16:229-237.
    [1]邢玉瑞.中医基础理论[M].西安:陕西科学技术出版社,2005:126-128.
    [2]常青.实用中风防治手册[M].北京:中国中医药出版社,1993:1.
    [3]袁园,过伟峰.浅谈中医论治中风病的源流[J].辽宁中医药大学学报,2009,11(8):15-16.
    [4]侯雪民.电针对脑缺血后模型大鼠突触可塑性干预作用的研究[D].广州:广州中医药大学,2008.
    [5]包祖晓,赵国平.试论缺血性中风气虚血瘀病机说[J].中医药研究,2001,17(5):46-48.
    [6]刘华.益气活血治疗缺血性中风临床和药理研究10年回顾与展望[J].现代中西医结合杂志,2002,9:12-17.
    [7]孙捷.脑脉通联合骨髓间充质干细胞移植对脑缺血再灌注大鼠微血管损伤的保护作用[D].郑州:河南中医学院,2007.
    [8]瞿涛.电针对脑缺血再灌注大鼠脑内血管新生影响的研究[D].武汉:湖北中医学院,2009.
    [9]陈松清,王一萍,李怡新.颈部针刺治疗急性缺血性脑卒中95例[J].中国康复理论与实践,1997,3(4):161.
    [10]宋炳玉.电针对脑缺血大鼠神经元损伤的影响及刺激强度——效应关系研究[D].青岛:山东中医药大学,2006.
    [11]罗勇,董为伟.电针对脑缺血大鼠的脑保护作用[J].上海针灸杂志,2001,20(6):38-40.
    [12]Lewen A, Mqtz P, Davalos A. Free radical way in CNS injury [J]. J neurotranma,2000,17(10):871-890.
    [13]刘薇,狄楠,胡明.高血糖与脑卒中[J].河北医科大学学报,2006,27(5):516-518.
    [14]何平.电针加灸对脑缺血再灌注损伤大鼠血脑屏障的保护作用和机制研究[D].武汉:湖北中医学院,2008.
    [15]张晓文,宋清,徐志伟.内源性保护对中医药研究的启发和意义[J].上海中医药杂志,2006,40(1):14-16.
    [16]尹天雷.超微补阳还五汤对局灶性脑缺血模型大鼠神经元保护效应及机制研究[D].长沙:湖南中医药大学,2007.
    [17]庞勇,李保良.不同穴位治疗缺血性中风的临床研究[J].中国针灸,2000,20(2):69-72.
    [18]徐以增,毕臻.古代中风病针灸文献探讨[J].上海针灸杂志,1998,17(3):42-43.
    [19]赵吉平,王燕平.针灸特定穴位的理论与临床[M].北京:科学技术文献出版社,1998:428-433.
    [20]金九峰.电针对脑缺血大鼠细胞间粘附分子-1介导脑血管内皮细胞凋亡的机制研究[D].武汉:湖北中医学院,2006.
    [21]胡国强.醒脑开窍针法对脑缺血及再灌注家兔脑自由基病理学超微结构的影响[J].中国危重病急救医学,1996,8(1):5-7.
    [22]马惠芳,孙华,任秀君,等.电针“水沟” “井穴”对全脑缺血大鼠脑组织钙调素活性影响的对比研究[J].针刺研究,2002,27(2):102-104.
    [23]王世军,史仁华,姬广臣,等.针刺对MCAO大鼠软脑膜微血管管径及血流速度的影响[J].潍坊医学院学报,1998,2 0(1):32-35.
    [24]王军,雷新强,范军铭,等.针刺不同侧肢体穴位对急性局灶性脑缺血模型大鼠的影响[J].中国针灸,1999,19(12):751-754.
    [25]李开屏,焦健,王耀斌.针灸足三里对大鼠血中SOD、LPO的影响[J].安徽中医学院学报,1999,18(1):50-52.
    [26]陈文,谭敏,梁立安,等.艾灸足三里、悬钟对缺血性中风脑血管功能的影响及其临床意义[J].中国针灸,2006,26(3):161-165.
    [27]刘波,唐强,李静.针刺治疗缺血性脑损伤的实验研究[J].中国康复理论与实践,2005,11(7):514-515.
    [28]Lin Cheng, Mingiun Luo, Bangguo Chen. The effects of electroacupuncture on serum IL-1β and TNF-α contents in cerebral ischemia-reperfusion Rats [J]. World Journal of Acupuncture-moxibustion,2003,13(4):23-28.
    [29]毛庆菊,陈邦国,黎逢光,等.电针对全脑缺血再灌注大鼠的保护作用[J].湖北中医学院学报,2004,6(2):21-22.
    [30]毛庆菊,王汉兵,陈邦国,等.电针对局灶性脑缺血再灌注大鼠外周血中可溶性细胞间黏附分子-1和内皮素-1的影响[J].针刺研究,2006,31(5):272-275.
    [31]孙世晓,刘泓雨,夏学丽,等.不同时间窗电针对局灶性脑缺血大鼠神经功能缺损及脑梗死体积的影响[J].中医药学报,2010,38(5):47-48.
    [32]林顺发.急性脑梗塞早期cT、MRI诊断研究进展[J].脑与神经疾病杂志,2000,8(6):379-380.
    [33]余玲玲.电针对局灶性脑缺血再灌注损伤大鼠海马区VEGF、HIF-1 α表达的影响[D].武汉:湖北中医学院,2009.
    [34]齐宇,何春慧,周丹,等.针灸治疗超早期缺血性中风例近期疗效观 察[J].中国冶金工业医学杂志,2004,21(3):191-192.
    [35]金明月,李政,刘松雨,等.早期针刺康复治疗中风病例疗效观察[J].针灸临床杂志,2003,19(11):10-11.
    [36]赵万标.针刺改善局灶性脑缺血脑微血管内皮细胞功能的动态观察[D].北京:北京中医药大学,2004.
    [37]孙世晓,刘泓雨,夏雪丽,等.不同时间窗电针对局灶性脑缺血大鼠神经功能缺损及脑梗死体积的影响[J].中医药学报,2010,38(5):47-48.
    [38]卢岩.电针对局灶性脑缺血大鼠海马微血管内皮细胞转运功能的影响[D].青岛:山东中医药大学,2009.
    [39]金智秀.针刺治疗局灶性脑缺血优选方案的实验研究及机制探讨[D].北京:北京中医药大学,2004.
    [1]Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcription activation[J]. Mol Cell Biol,1992,12(12):5447-5454.
    [2]Linden T, Katschinski DM, Eckhardt K, et al.The antimycotic ciclopirox olamine induces HIF-1 alpha stability, VEGF expression, and angiogenesis[J].FASEB J,2003,17(6):761-763.
    [3]Semenza GL. HIF-1 and tuIllor progression:pathophysiology and therapeutics [J]. Trends Mol Med,2002,8(4 suppl):s62-67.
    [4]Semenza, GL. HIF-1:mediator of physiological and pathophysiological responses to hypoxia[J]. J Appl Physiol,2000, 88(4):1474-1480.
    [5]Semenza, GL. Surviving ischemia:adaptive responses mediated by hypoxia-inducible factor 1 [J]. J Clin Invest,2000,106 (7):809-812.
    [6]Jean Marx. How cells endure low oxygen [J]. Science,2004, 303(5663):1454-1456.
    [7]Semenza, GL, Wang GL. A nuclear factor induced by hypoxia via denovo protein synthesis binds to the human erytllropoietin gene enhancer at a site required for transcription activation [J]. Mol Ceu Biol,1992,12(12):5447-5454.
    [8]Jiang BH, Rue E, Wang GL, et al. Dimerization, DNA binding, and transactivation propenies of hypoxia-inducible factor 1 [J].J Biol Chem,1996,271(30):17771-17778.
    [9]D'Anqio CT, Finkelstein JN. Oxygen regulation of gene expression: A study in opposites[J]. Molecular Genetics and Metabolism,2000, 71(12):371-380.
    [10]Sowter HM, Ratcliffe PJ, Watson Peter, et al. HIF-1 dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in induced by hypoxia [J]. Proc Nat Acad Sci USA,2001,61(18): 6669-6673.
    [11]邵琴.HIF与EPCs成内皮细胞关系的实验研究[D].上海:上海第二医科 大学,2004.
    [12]Halterman MW, Federoff HI.HIF-1α and P53 promote hypoxia induced delayed neuronal death in models of CNS ischemia[J]. Exp Neuro,1999,159(1):65-72.
    [13]Pugh CW, Ratclife PJ. Regulation of angiogenesis by hypoxia: role of the HIF system[J].Nat Med,2003,9:677-684.
    [14]李建勇,王彬尧.缺氧诱导因子1与心血管疾病的关系[J].国外医学心·血管疾病分册,2001,28(4):195-197.
    [1]Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier [J].Prog Drug Res,2003, (61):39-78.
    [2]秦鑫,张英起,颜真.跨越血脑屏障[J].生命化学,2003,23(3):222-224.
    [3]Chang Y, Hsieh CY, Peng ZA, et al. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats[J].J Biomed Sci,2009,19 (16):9-12.
    [4]Baune BT, Ponath Q, Rothermundt M, et al.Association between cytokines and cerebral MRI changes in the aging brain[J].J Geriatr Psychiatry Neurol,2009,22(1):23-34.
    [5]Zhang J, Tan, Tran ND, et al. Chemical hypoxia-ischemia induces apoptosis in cerebral microvascular endothelial cells[J]. Brain Research,2000,877 (2):134-140.
    [6]Marti HJ, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes vascularization after cerebral ischemia[J]. Pathophysiology,2000,156 (1):965-976.
    [7]Zhang ZG, Zhang L, Jiang Q, et al. Bone marrow-derived endothel ial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse[J]. Circ Res,2002, 90:284-288.
    [8]任丽,孙善全.尼莫地平同对大鼠脑缺血再灌注后血脑屏障通透性和脑梗死体积的影响[J].临床神经病学杂志,2004,17(3):187-190.
    [9]王兴盛,苗莉,姚小梅,等.大鼠脑缺血再灌注后血脑屏障超微结构的改变[J].天津医药,2006,34(3):188-189.
    [10]Mark KS, Davis TP. Cerebral microvascular changes in permeability andtight junctions induced by hypoxia-reoxygenation[J]. Am J Physiol Heart Circ Physiol,2002, 282 (4):H1485-1494.
    [11]Wachtel M, Frei K, Ehler E, et al. Extracellular signal-regulated protein kinase activation during reoxygenation is required to restore ischaemia-induced endothelial barrier failure[J]. Biochem J,2002,367:873-879.
    [12]张超.脑缺血再灌注损伤后HIF-1α对脉络丛细胞的修复作用[D].石家庄:河北医科大学,2011.
    [13]Milkiewicz M, Hudlicka 0, Brown MD, et al. Nitric oxide, VEGF, and VEGFR-2:interactions in activity-induced angiogenesis in rat skeletal muscle [J]. Am J Physiol Heart Circ Physiol,2005,289(1): 336-343.
    [14]Belayev L, Busto R, Zhao W, et al. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats[J]. Brain Res,1996,739:88-96.
    [15]GA Rosenberg, EY Estrada, JE Dencoff. Matrixmetalloproteinase and TIMPs are associated with blond-brain barrier opening after reperfusing in rat brain [J].Stroke,1998,29:2189-2195.
    [16]Preston E, Sutherland G, Finsten A, et al. Three openings of the blood-brain barrier produced by forebrain ischemia in the rat[J].Neurosci Lett,1993,149:75-78.
    [17]Candelario-Jalil E, Yang Y, Rosenberg GA. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinf lammation and cerebral ischemia [J]. Neuroscience,2009, 158:983-994.
    [18]Rosenberg GA.Matrix metalloproteinases and their multiple roles in neurodegenerative diseases [J].Lancet Neurol,2009, 8:205-216.
    [19]钟高贤.脑缺血半暗带界定及无创脑水肿监护的临床研究[D].武汉:华中科技大学,2006.
    [20]Glantz L, Avramovich A, Trembovler V, et al.Ischemic preconditioning increases antioxidants in the brain and peripheral organs after cerebral ischemia [J]. Exp Neurol,2005,192 (1):117-124.
    [21]薛小平.血——脑屏障研究进展[J].微循环学杂志,2006,16(3):64.
    [22]Ullian EM, Sapperstein SK, Chirstopherson KS, et al. Control of synapse number by glia [J].Science,2001,291:657-661.
    [23]Maniey GT, Fu Jimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water toxication and ischemic stroke [J]. Nat Med,2000,6(2):159-163.
    [24]Rama Rao KV, Chen M, Simard JM, et al.Increased aquaporin 4 expression in ammonia treated cultured astrocytes [J]. Neuroreport, 2003,14:2379-2382.
    [25]Yamamoto N, Yoneda K, Asai K, et al. Alterations in the expression of the AQP family in cultured rat astrocytes during hypoxia and reoxygenation[J]. Brain Res Mol,2001,90(1):26-38.
    [26]Lee SW, Kim WJ, Choi YK, et al.Ssecks regulates angiogenesis and tight junction formation in blood-brain barrier [J]. Nat Med, 2003,9:900-906.
    [27]甘照儒,桑栎楠.脑缺血/再灌注损伤级联反应研究进展[J].医学综述,2009,15(1):43-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700