中枢神经系统氯稳态失衡参与肝性脑病的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝性脑病(hepatic encephalopathy, HE)是由肝功能严重不足引起的神经功能紊乱综合征,是肝病患者最常见的并发症和死亡原因之一。关于其发病机制的学说众多,至今尚未完全阐明,临床上也无特效疗法。
     HE的运动障碍和中枢神经系统(central nervous system, CNS)内的基底神经节的精细调控状态密切相关。在基底神经节复杂的网络中,黑质网状部(substantia nigra pars reticulate, SNr)是运动调控环路上的关键一环,主要由γ-氨基丁酸(Gamma-amino butyric acid, GABA)能投射神经元组成。研究表明,GABA与HE的脑细胞功能紊乱密切相关,但其作用机制尚不明确。
     氯离子(Cl~-)是细胞内最重要的阴离子。特别在神经系统,神经元内外氯离子浓度保持相对平衡状态,即形成氯离子稳态,是维持神经元和局部环路形态和机能稳定的内环境基础。氯离子稳态失衡可引起GABA能传递的改变,氯离子稳态及其调控因子已经成为多种GABA相关神经病理性疾病的潜在治疗靶点。研究显示CNS内不同部位的氯稳态失衡参与多种神经功能紊乱,然而其在HE中的作用尚不清楚。
     Na~+-K~+-2Cl~-共转运体1(Na~+-K~+-Cl~-cotransporter1, NKCC1)和K~+-Cl~-共转运体2(K~+-Cl~-cotransporter2, KCC2)是一组结构相似、功能截然相反的氯离子转运体。NKCC1为氯离子内向转运体,KCC2为氯离子外向转运体,两者共同介导神经元氯离子稳态以实现对GABA效应的调控。研究表明,NKCC1和KCC2在多种GABA相关神经病理性疾病中发生表达或者功能的改变,进而实现对GABA能神经传递的影响作用。然而,这两个转运体在HE发病机制中是否发挥作用尚不明确。
     本研究深入探讨HE状态下SNr内的氯离子稳态失衡情况及可能的分子机制,以期从新的角度阐明HE的中枢发病机制、为寻找有效的HE临床治疗手段提供实验室依据。本研究使用谷氨酸脱羧酶(glutamate decarboxylase,GAD)67-绿色荧光蛋白(green fluorescent protein, GFP)转基因小鼠。在该基因敲入小鼠体内,GFP的表达受GAD67启动子序列的调控,因此所有的GABA能神经元均被GFP绿色荧光蛋白所标记,该特点能够很好的解决传统染色方法无法清晰、准确的标记GABA能神经元这一关键问题。目的:
     1、以GAD67-GFP转基因小鼠为研究对象,探讨SNr内GABA能神经元氯稳态失衡在急性HE运动缺陷中的作用及可能的作用机制。
     2、检测临床上不同类型患者的NKCC1、KCC2的表达水平,同时分析其与患者肝脏功能、神经功能之间的关系。方法:
     1、使用硫代乙酰胺(thioacetamide, TAA)腹腔注射建立HE模型,通过血清转氨酶检测、血氨及大脑氨含量的测定、大脑含水量测定、肝脏组织学染色、神经系统功能评分、旷场实验等来验证实验小鼠出现HE及运动迟缓;利用荧光染料孵育脑薄片结合激光共聚焦显微镜观察,检测HE小鼠SNr内GABA能神经元内的氯离子浓度的变化情况;利用实时定量反转录聚合酶链反应(reverse transcriptase polymerase chain reaction, RT-PCR)和Western blot分别在mRNA和蛋白水平检测NKCC1和KCC2的表达变化情况;进行双重免疫染色法,即使用抗GFP抗体检测SNr内GABA能神经元和使用抗酪氨酸羟化酶(tyrosine hydroxylase, TH)抗体检测黑质致密部(substantia nigra pars compacta, SNc)多巴胺神经元,检测KCC2在神经元中亚细胞分布情况;进行神经元尼氏染色评估TAA处理是否会改变SNr内GABA能神经元的数量;通过立体定位手术黑质内注射NKCC1选择性抑制剂布美他尼或KCC2阻断剂己二酸二异辛酯(di-isooctyladinpate, DIOA),评估其对血清转氨酶水平、血氨水平、大脑氨含量、大脑含水量、肝脏组织学染色、运动能力等的影响。
     2、利用实时定量RT-PCR检测36名患有Ⅲ-Ⅳ期HE的肝硬化患者、20名未患HE的肝硬化患者及15名健康对照组的NKCC1和KCC2的mRNA水平,使用2CT方法计算表达情况。同时分析KCC2的水平与Child-Pugh评分、MELD评分、Glasgow昏迷评分及血氨水平的相关性。结果:
     1、TAA处理导致HE和运动迟缓。氯离子成像结果显示HE小鼠SNr内GABA能神经元内的氯离子浓度升高。HE小鼠KCC2在mRNA及蛋白水平的表达都下降,在神经元细胞膜处的表达下降尤为明显;与此相反,NKCC1的表达没有明显变化。TAA处理并不能改变SNr内GABA能神经元的数目。黑质内注射DIOA使正常小鼠的血清转氨酶水平升高,而黑质内注射布美他尼,虽然能改善HE小鼠的乳酸脱氢酶(lactate dehydrogenase,LDH)水平,但并不能降低天冬氨酸转氨酶(aspartate aminotransferase,AST)、丙氨酸转氨酶(alanine aminotransferase, ALT)水平。黑质内注射DIOA的正常小鼠肝脏组织学染色结果基本正常,黑质内注射布美他尼并不能改善HE小鼠的肝脏坏死和炎性病变。黑质内注射DIOA和布美他尼的HE小鼠在血氨水平、大脑氨含量和大脑含水量等方面,没有明显变化。黑质内注射DIOA可导致运动能力的下降,在HE小鼠可导致运动迟缓进一步加剧;相反,在HE小鼠黑质内注射布美他尼并不能使其运动能力恢复正常。
     2、患有HE的肝硬化患者KCC2mRNA的水平与未患HE的肝硬化患者及健康对照组相比明显下降;然而,NKCC1mRNA水平在各组之间无明显差异性。此外,患有HE的肝硬化患者的KCC2mRNA水平与Child-Pugh评分、MELD评分及血氨的水平呈负相关,与Glasgow昏迷评分呈正相关。结论:
     1、氯稳态失衡可能是HE导致的运动迟缓的病理生理学基础,恢复氯稳态的相关药物可能成为治疗肝功能衰竭的潜在性选择。
     2、KCC2和NKCC1的表达失衡可能成为预测HE的信号。
Hepatic encephalopathy (HE) is defined as a spectrum of neuropsychiatricabnormalities in patients with severe liver dysfunction. It’s one of the mostcommon causes for the complications and deaths of hepatic patients. Thoughthere are many theories explaining its pathogenesis mechanism, it has not yetbeen fully elucidated. There is still no specific therapy.
     The dyskinesia of HE is closely related to the precise regulation of the basalganglia in the central nervous system (CNS) and the substantia nigra parsreticulate (SNr) plays the central role in the motion regulation in thecomplicated basal ganglia network. SNr is mainly composed of Gamma-aminobutyric acid (GABA)-containing projection neurons. Previous studies haveshown that GABA is closely related to the cerebral cell’s dysfunction of HE, butits mechanism is not clear.
     The chloride ion (Cl~-) is one of the most important intracellular anions. Inthe nervous system, the balance of chloride ion concentration between the insideand the outside of the neural cells, which is called the chloride homeostasis, isthe internal environmental basis in maintaining the shape and function of bothneurons and local loops. The imbalance of chloride ion can result in the changeof GABA transmission, so the chloride homeostasis and its regulatory factorshave become the potential therapeutic target of many GABA-related neuropathicdiseases. Studies revealed that the chloride homeostasis imbalance in manyplaces of the CNS could lead to different kinds of neurological disorders, but itsfunction in HE is still unknown.
     Na~+-K~+-Cl~-cotransporter1(NKCC1) and K~+-Cl~-cotransporter2(KCC2)are two chloride ion transporters which are similar in structures but totallyopposite in functions. NKCC1imports Cl into the neurons, while KCC2exports Cl out of neurons. They both play roles in inducing the neuron chloridehomeostasis so that they can work in GABA regulation. Studies showed that theexpressions or the functions of NKCC1and KCC2would change in manyneuropathic diseases and will further affect the neurotransmission of GABA.But whether the two transporters will play roles in the pathogenesis of HE is notyet fully investigated.
     This study will explore the roles of chloride homeostasis imbalance in SNrduring HE and its potential molecular mechanism, which may provideexperimental evidence for clarifying the pathogenesis of HE from a new viewand searching effective clinical treatment for HE. In the present study, glutamatedecarboxylase67(GAD67)-green fluorescent protein (GFP) knock-in transgenicmice were used to easily detect GABAergic neurons with GFP fluorescencewithin the SNr, because GFP expression was controlled by the promoter of the major GABA synthesizing enzyme, GAD67.
     Aim:
     1. We aimed to analyze the involvement and possible mechanisms ofaltered chloride homeostasis of GABAergic neurons within the SNr in the motordeficit in a model of the acute form of HE in acute liver failure usingGAD67-GFP transgenic mice.
     2. We aimed to detect the expression of NKCC1and KCC2in differentpathological type patients and analyse the relationship between the levels ofthem and liver or nerve function.
     Methods:
     1. We set up the HE model by intraperitoneal injection of thioacetamide(TAA). The HE and hypolocomotion of mice were confirmed by serumdetection of hepatic enzymes, blood and brain ammonia estimation, brain watermeasurement, histological staining of liver and neurological evaluations, as wellas open field test. We then incubated the brain slices with the fluorescent dyes incombination with laser confocal microscopy to observe the changes of chlorideion concentration of GABA neurons in the SNr of HE mice. Reversetranscriptase polymerase chain reaction (RT-PCR) and western blot were usedto test the mRNA and protein expressions of NKCC1and KCC2. Doubleimmunofluorescence staining, including detection of the GABA neurons in theSNr by anti-GFP antibody and the dopaminergic neurons in the substantia nigrapars compacta (SNc) by the anti-tyrosine hydroxylase (TH) antibody, was usedto detect the subcellular distribution of KCC2in the neurons. Nissl stain wasdone to evaluate whether the number of GABA neurons in the SNr wouldchange after TAA treatment. We also injected the NKCC1specific inhibitor Bumetanide or KCC2inhibitor di-isooctyladinpate (DIOA) stereotactically tothe substantia nigra to evaluate their effect on serum transaminase, blood andbrain ammonia, brain water content, histological staining of liver and motioncapacity.
     2. KCC2and NKCC1mRNA levels were detected by real time reversetranscriptase polymerase chain reaction (RT-PCR) in the plasma of36cirrhosispatients with HE of grade III-IV,20cirrhosis patients without HE and15healthy controls. Calculations of expression were made with the2CTmethod.The relations between the expression of KCC2and Child-Pugh scores, MELDscales, Glasgow coma scores and blood ammonia were also analyzed.
     Results:
     1. TAA treatment would lead to HE and hypolocomotion. Chlorideimaging indicated an enhanced local intracellular chloride concentration in theGABAergic neurons within the SNr of transgenic mice with HE. In addition, themRNA and protein levels of KCC2were reduced, particularly on neuronal cellmembranes; in contrast, NKCC1did not change significantly. TAA treatmentcould not change the number of GABAergic neurons in the SNr. Injection ofDIOA to the substantia nigra could increase the serum transaminase in thenormal mice. Injection of bumetanide to the substantia nigra could not decreasethe aspartate aminotransferase (AST) and alanine aminotransferase(ALT) in HEmice, though the lactate dehydrogenase (LDH) could be a little better. Livers ofnormal mice received injection of DIOA were histological normal and injectionof bumetanide could not improve the liver necrosis and inflammation of the HEmice. There was no significant difference in the blood and brain ammonia andbrain water content in the HE mice received DIOA or bumetanide injection tothe substantia nigra. The injection of DIOA to the substantia nigra would reduced motor activity in the normal mice and led to deterioratedhypolocomotion in the HE mice. In contrast, the injection of bumetanide to thesubstantia nigra did not normalize motor activity in HE mice.
     2. KCC2mRNAs in cirrhosis patients with HE showed significantdecreases when compared with those in cirrhosis patients without HE or healthycontrols. However, NKCC1mRNAs in different groups did not change. Inaddition, for cirrhosis patients with HE, there were significant negativecorrelations between KCC2levels with Child-Pugh scores, MELD scales andthe levels of blood ammonia; there was a significant positive correlationbetween KCC2levels with Glasgow coma scores.
     Conclusion:
     1. Our data suggest that altered chloride homeostasis might be responsiblefor the pathophysiology of hypolocomotion following HE. Drugs aimed atrestoring normal chloride homeostasis would be a potential treatment for hepaticfailure.
     2. Our study suggests that imbalance of KCC2and NKCC1may be a signalto predict HE.
引文
1. Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT.Hepatic encephalopathy-definition, nomenclature, diagnosis, andquantification: final report of the working party at the11th WorldCongresses of Gastroenterology, vienna,1998. Hepatology.2002Mar;35(3):716-721.
    2. Shawcross DL, Wright G, Olde Damink SW, Jalan R. Role of ammonia andinflammation in minimal hepatic encephalopathy. Metab. Brain Dis.2007Mar;22(1):125-138.
    3. Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatoryresponse exacerbates the neuropsychological effects of inducedhyperammonemia in cirrhosis. J Hepatol.2004Feb;40(2):247-254.
    4. Norenberg MD, Jayakumar AR, Rama Rao KV, Panickar KS. Newconcepts in the mechanism of ammonia-induced astrocyte swelling. MetabBrain Dis.2007Dec;22(3-4):219-234.
    5. Schliess F, G rg B, H ussinger D. Pathogenetic interplay between osmoticand oxidative stress: the hepatic encephalopathy paradigm. Biol Chem.2006Oct-Nov;387(10-11):1363-1370.
    6. Ahboucha S, Butterworth RF. The neurosteroid system: an emergingtherapeutic target for hepatic encephalopathy. Metab Brain Dis.2007Dec;22(3-4):291-308.
    7. Qadri AM, Ogunwale BO, Mullen KD. Can we ignore minimal hepaticencephalopathy any longer? Hepatology.2007Mar;45(3):547-548.
    8. Talwalkar JA, Kamath PS. Influence of recent advances in medicalmanagement on clinical outcomes of cirrhosis. Mayo Clin Proc.2005Nov;80(11):1501-1508.
    9. Poordad FF. Review article: the burden of hepatic encephalopathy. AlimentPharmacol Ther.2007Feb;25(Suppl1):3-9.
    10. Groeneweg M, Quero JC, De Bruijn I, Hartmann IJ, Essink-bot ML, HopWC, Schalm SW. Subclinical hepatic encephalopathy impairs dailyfunctioning. Hepatology.1998Jul;28(1):45-49.
    11. Prasad S, Dhiman RK, Duseja A, Chawla YK, Sharma A, Aqarwal R.Lactulose improves cognitive functions and health-related quality of life inpatients with cirrhosis who have minimal hepatic encephalopathy.Hepatology.2007Mar;45(3):549-559.
    12. Bajaj JS, Hafeezullah M, Hoffmann RG, Varma RR, Franco J, Binion DG,Hammeke TA, Saeian K. Navigation skill impairment: Another dimensionof the driving difficulties in minimal hepatic encephalopathy. Hepatology.2008Feb;47(2):596-604.
    13. Bajaj JS, Saeian K, Hafeezullah M, Hoffmann RG, Hammeke TA. Patientswith minimal hepatic encephalopathy have poor insight into their drivingskills. Clin Gastroenterol Hepatol.2008Oct;6(10):1135-1139.
    14. Bajaj JS, Hafeezullah M, Zadvornova Y, Martin E, Schubert CM, GibsonDP, Hoffmann RG, Sanyal AJ, Heuman DM, Hammeke TA, Saeian K. Theeffect of fatigue on driving skills in patients with hepatic encephalopathy.Am J Gastroenterol.2009Apr;104(4):898-905.
    15. Kircheis G, Knoche A, Hilger N, Manhart F, Schnitzler A, Schulze H,H ussinger D. Hepatic encephalopathy and fitness to drive.Gastroenterology.2009Nov;137(5):1706-1715.
    16. Bajaj JS, Saeian K, Schubert CM, Hafeezullah M, Franco J, Varma RR,Gibson DP, Stravitz RT, Heuman DM, Sterling RK, Shiffman M, Topaz A,Boyett S, Bell D, Sanyal AJ. Minimal hepatic encephalopathy is associatedwith motor vehicle crashes: the reality beyond the driving test. Hepatology.2009Oct;50(4):1175-1183.
    17. Bustamante J, Rimola A, Ventura PJ, Navasa M, Cirera I, Reggiardo V,Rodés J. Prognostic significance of hepatic encephalopathy in patients withcirrhosis. J Hepatol.1999May;30(5):890-895.
    18. Zieve L. Pathogenesis of hepatic encephalopathy. Metab Brain Dis.1987Sep;2(3):147-165.
    19. Cooper AJ, Plum F. Biochemistry and physiology of brain ammonia.Physiol Rev.1987Apr;67(2):440-519.
    20. Ytreb LM, Sen S, Rose C, Ten Have GA, Davies NA, Hodges S,Nedredal GI, Romero-Gomez M, Williams R, Revhaug A, Jalan R, DeutzNE. Interorgan ammonia, glutamate, and glutamine trafficking in pigs withacute liver failure. Am J Physiol Gastrointest Liver Physiol.2006Sep;291(3): G373-G381.
    21. Olde Damink SW, Jalan R, Dejong CH. Interorgan ammonia trafficking inliver disease. Metab Brain Dis.2009Mar;24(1):169-181.
    22. Shawcross DL, Olde Damink SW, Butterworth RF, Jalan R. Ammoniaand hepatic encephalopathy: the more things change, the more they remainthe same. Metab Brain Dis.2005Sep;20(3):169-179.
    23. Phillips GB, Schwartz R, Gabuzda GJ Jr, Davidson CS. The syndrome ofimpending hepatic coma in patients with cirrhosis of the liver given certainnitrogenous substances. N Engl J Med.1952Aug;247(7):239-246.
    24. Lockwood AH, Yap EW, Wong WH. Cerebral ammonia metabolism inpatients with severe liver disease and minimal hepatic encephalopathy. JCereb Blood Flow Metab.1991Mar;11(2):337-341.
    25. Thomas JW, Banner C, Whitman J, Mullen KD, Freese E. Changes inglutamate-cycle enzyme mRNA levels in a rat model of hepaticencephalopathy. Metab Brain Dis.1988Jun;3(2):81-90.
    26. H ussinger D, Kircheis G, Fischer R, Schiliess F, vom Dahl S. Hepaticencephalopathy in chronic liver disease: a clinical manifestation ofastrocyte swelling and low-grade cerebral edema? J Hepatol.2000Jun;32(6):1035-1038.
    27. Cooper AJ, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE. Themetabolic fate of13N-labeled ammonia in rat brain. J Biol Chem.1979Jun;254(12):4982-4992.
    28. H ussinger D, Schliess F. Pathogenetic mechanisms of hepaticencephalopathy. Gut.2008Aug;57(8):1156-1165.
    29. Tanigami H, Rebel A, Martin LJ, Chen TY, Brusilow SW, Traystman RJ,Koehler RC. Effect of glutamine synthetase inhibition on astrocyteswelling and altered astroglial protein expression duringhyperammonemiain rats. Neuroscience.2005;131(2):437-449.
    30. Rose C, Kresse W, Kettenmann H. Acute insult of ammonia leads tocalcium-dependent glutamate release from cultured astrocytes, an effect ofpH. J Biol Chem.2005Jun;280(22):20937-20944.
    31. Rose C. Effect of ammonia on astrocytic glutamate uptake/releasemechanisms. J Neurochem.2006Apr;97(Suppl1):11-15.
    32. Hertz L, Murthy CR, Lai JC, Fitzpatrick SM, Cooper AJ. Some metaboliceffects of ammonia on astrocytes and neurons in primary cultures.Neurochem Pathol.1987Feb-Apr;6(1-2):97-129.
    33. Córdoba J, Sanpedro F, Alonso J, Rovira A.1H magnetic resonance in thestudy of hepatic encephalopathy in humans. Metab Brain Dis.2002Dec;17(4):415-429.
    34. H ussinger D. Low grade cerebral edema and the pathogenesis of hepaticencephalopathy in cirrhosis. Hepatology.2006Jun;43(6):1187-1190.
    35. Rovira A, Alonso J, Córdoba J. MR imaging findings in hepaticencephalopathy. AJNR Am J Neuroradiol.2008Oct;29(9):1612-1621.
    36. Shawcross DL, Balata S, Olde Damink SW, Hayes PC, Wardlaw J,Marshall I, Deutz NE, Williams R, Jalan R. Low myo-inositol and highglutamine levels in brain are associated with neuropsychologicaldeterioration after induced hyperammonemia. Am J Physiol GastrointestLiver Physiol.2004Sep;287(3): G503-G509.
    37. Butterworth RF. Pathophysiology of hepatic encephalopathy: The conceptof synergism. Hepatol Res.2008Nov;38(s1): S116-S121.
    38. Gregorios JB, Mozes LW, Norenberg MD. Morphologic effects ofammonia on primary astrocyte cultures. ii. Electron microscopic studies. JNeuropathol Exp Neurol.1985Jul;44(4):404-414.
    39. Norenberg MD. The role of astrocytes in hepatic encephalopathy.Neurochem Pathol.1987Feb-Apr;6(1-2):13-33.
    40. Shawcross D, Jalan R. The pathophysiologic basis of hepaticencephalopathy: central role for ammonia and inflammation. Cell Mol LifeSci.2005Oct;62(19-20):2295-2304.
    41. H ussinger D, Schliess F. Astrocyte swelling and protein tyrosine nitrationin hepatic encephalopathy. Neurochem Int.2005Jul;47(1-2):64-70.
    42. Moldawer LL, Marano MA, Wei H, Fong Y, Silen ML, Kuo G, ManogueKR, Vlassara H, Cohen H, Cerami A. Cachectin/tumor necrosis factor-αalters red blood cell kinetics and induces anemia in vivo. FASEB J.1989Mar;3(5):1637-1643.
    43. de vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, vanBerkel TJ, Breimer DD, Kuiper J. The influence of cytokines on theintegrity of the blood-brain barrier in vitro. J Neuroimmunol.1996Jan;64(1):37-43.
    44. Didier N, Romero IA, Créminon C, Wijkhuisen A, Grassi J, Mabondzo A.Secretion of interleukin-1β by astrocytes mediates endothelin-1and tumournecrosis factor-α effects on human brain microvascular endothelial cellpermeability. J Neurochem.2003Jul;86(1):246-254.
    45. Duchini A, Govindarajan S, Santucci M, Zampi G, Hofman FM. Effects oftumor necrosis factor-α and interleukin-6on fluid-phase permeability andammonia diffusion in CNS-derived endothelial cells. J Investig Med.1996Oct;44(8):474-482.
    46. Cagnin A, Taylor-Robinson SD, Forton DM, Banati RB. In vivo imagingof cerebral “peripheral benzodiazepine binding sites” in patients withhepatic encephalopathy. Gut.2006Apr;55(4):547-553.
    47. Ahboucha S, Butterworth RF. The neurosteroid system: implication in thepathophysiology of hepatic encephalopathy. Neurochem Int.2008Mar-Apr;52(4-5):575-587.
    48. Baulieu EE. Neurosteroids: a novel function of the brain.Psychoneuroendocrinology.1998Nov;23(8):963-987.
    49. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ,Lindemann P, Norenberg MD, Nutt D, Weizman A, Zhang MR, Gavish M.Translocator protein (18kDa): new nomenclature for the peripheral-typebenzodiazepine receptor based on its structure and molecular function.Trends Pharmacol Sci.2006Aug;27(8):402-409.
    50. Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX. Peripheral-typebenzodiazepine receptor in neurosteroid biosynthesis, neuropathology andneurological disorders. Neuroscience.2006;138(3):749-756.
    51. Desjardins P, Butterworth RF. The “peripheral-type” benzodiazepine(omega3) receptor in hyperammonemic disorders. Neurochem Int.2002Aug-Sep;41(2-3):109-114.
    52. Bélanger M, Desjardins P, Chatauret N, Rose C, Butterworth RF. Mildhypothermia prevents brain edema and attenuates up-regulation of theastrocytic benzodiazepine receptor in experimental acute liver failure. JHepatol.2005May;42(5):694-699.
    53. Ahboucha S, Coyne L, Hirakawa R, Butterworth RF, Halliwell RF. Aninteraction between benzodiazepines and neuroactive steroids at GABAAreceptors in cultured hippocampal neurons. Neurochem Int.2006Jun;48(8):703-707.
    54. Murthy CR, Rama Rao KV, Bai G, Norenberg MD. Ammonia-inducedproduction of free radicals in primary cultures of rat astrocytes. J NeurosciRes.2001Oct;66(2):282-288.
    55. Hermenegildo C, Monfort P, Felipo V. Activation of N-methyl-D-aspartatereceptors in rat brain in vivo following acute ammonia intoxication:characterization by in vivo brain microdialysis. Hepatology.2000Mar;31(3):709-715.
    56. Hilgier W, Anderzhanova E, Oja SS, Saransaari P, Albrecht J. Taurinereduces ammonia-and N-methyl-D-aspartate-induced accumulation ofcyclic GMP and hydroxyl radicals in microdialysates of the rat striatum.Eur J Pharmacol.2003May;468(1):21-25.
    57. Reinehr R, G rg B, Becker S, Qvartskhava N, Bidmon HJ, Selbach O,Haas HL, Schliess F, H ussinger D. Hypoosmotic swelling and ammoniaincrease oxidative stress by NADPH oxidase in cultured astrocytes andvital brain slices. Glia.2007May;55(7):758-771.
    58. Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonianeurotoxicity. Hepatology.2006Oct;44(4):788-794.
    59. Schliess F, G rg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A,Butterworth RF, Zilles K, H ussinger D. Ammonia inducesMK-801-sensitive nitration and phosphorylation of protein tyrosineresidues in rat astrocytes. FASEB J.2002May;16(7):739-741.
    60. Mullen KD, Jones EA. Natural benzodiazepines and hepaticencephalopathy. Semin Liver Dis.1996Aug;16(3):255-264.
    61. Mullen KD, Cole M, Foley JM. Neurological deficits in “awake” cirrhoticpatients on hepatic encephalopathy treatment: missed metabolic or metaldisorder? Gastroenterology.1996Jul;111(1):256-257.
    62. Rose C, Butterworth RF, Zayed J, Normandin L, Todd K, Michalak A,Spahr L, Huet PM, Pomier-Layrargues G. Manganese deposition in basalganglia structures results from both portal-systemic shunting and liverdysfunction. Gastroenterology.1999Sep;117(3):640-644.
    63. Naegele T, Grodd W, Viebahn R, Seeger U, Klose U, Seitz D, Kaiser S,Mader I, Mayer J, Lauchart W, Gregor M, Voigt K. MR imaging and1Hspectroscopy of brain metabolites in hepatic encephalopathy: time-courseof renormalization after liver transplantation. Radiology.2000Sep;216(3):683-691.
    64. Aggarwal A, Vaidya S, Shah S, Singh J, Desai S, Bhatt M. ReversibleParkinsonism and T1W pallidal hyperintensities in acute liver failure. MovDisord.2006Nov;21(11):1986-1990.
    65. Krieger D, Krieger S, Jansen O, Gass P, Theilmann L, Lichtnecker H.Manganese and chronic hepatic encephalopathy. Lancet.1995Jul;346(8970):270-274.
    66. Tsuji H, Kashiwagi M, Ikeda K, Kawatoko T, Nomiyama K, Hasuo H,Murai K, Fujishima M, Hasuo K, Mitani M. A case of liver cirrhosisassociated with chronic subdural hematoma and hepatic encephalopathy[Japanese]. Fukuoka Igaku Zasshi.1991Oct;82(10):528-532.
    67. Foreman MG, Mannino DM, Moss M. Cirrhosis as a risk factor for sepsisand death: analysis of the National Hospital Discharge Survey. Chest.2003Sep;124(3):1016-1020.
    68. Conn HO, Leevy CM, Vlahcevic ZR, Rodgers JB, Maddrey WC, Seeff L,Levy LL. Comparison of lactulose and neomycin in the treatment ofchronic portal-systemic encephalopathy. A double blind controlled trial.Gastroenterology.1977Apr;72(4Pt1):573-583.
    69. Bajaj JS, Wade JB, Sanyal AJ. Spectrum of neurocognitive impairment incirrhosis: implications for the assessment of hepatic encephalopathy.Hepatology.2009Dec;50(6):2014-2021.
    70. Parsons-Smith BG, Summerskill WH, Dawson AM, Sherlock S. Theelectroencephalograph in liver disease. Lancet.1957Nov;273(7001):867-871.
    71. Jennett B, Teasdale G, Braakman R, Minderhoud J, Knill-Jones R.Predicting outcome in individual patients after severe head injury. Lancet.1976May;307(7968):1031-1034.
    72. Montagnese S, Amodio P, Morgan MY. Methods for diagnosing hepaticencephalopathy in patients with cirrhosis: a multidimensional approach.Metab Brain Dis.2004Dec;19(3-4):281-312.
    73. Amodio P, Montagnese S, Gatta A, Morgan MY. Characteristics of minimalhepatic encephalopathy. Metab Brain Dis.2004Dec;19(3-4):253-267.
    74. Hassanein TI, Hilsabeck RC, Perry W. Introduction to the HepaticEncephalopathy Scoring Algorithm (HESA). Dig Dis Sci.2008Feb;53(2):529-538.
    75. Weissenborn K, Ennen JC, Schomerus H, R ü ckert N, Hecker H.Neuropsychological characterization of hepatic encephalopathy. J Hepatol.2001May;34(5):768-773.
    76. Randolph C, Hilsabeck R, Kato A, Kharbanda P, Li YY, Mapelli D, RavdinLD, Romero-Gomez M, Stracciari A, Weissenborn K, International Societyfor Hepatic Encephalopathy and Nitrogen Metabolism(ISHEN).Neuropsychological assessment of hepatic encephalopathy: ISHENpractice guidelines. Liver Int.2009May;29(5):629-635.
    77. Meyer T, Eshelman A, Abouljoud M. Neuropsychological changes in alarge sample of liver transplant candidates. Transplant Proc.2006Dec;38(10):3559-3560.
    78. Sorrell JH, Zolnikov BJ, Sharma A, Jinnai I. Cognitive impairment inpeople diagnosed with end-stage liver disease evaluated for livertransplantation. Psychiatry Clin Neurosci.2006Apr;60(2):174-181.
    79. Bajaj JS, Saeian K, Verber MD, Hischke D, Hoffmann RG, Franco J,Varma RR, Rao SM. Inhibitory control test is a simple method to diagnoseminimal hepatic encephalopathy and predict development of overt hepaticencephalopathy. Am J Gastroenterol.2007Apr;102(4):754-760.
    80. Bajaj JS, Hafeezullah M, Franco J, Varma RR, Hoffmann RG, Knox JF,Hischke D, Hammeke TA, Pinkerton SD, Saeian K. Inhibitory control testfor the diagnosis of minimal hepatic encephalopathy. Gastroenterology.2008Nov;135(5):1591-1600.
    81. Mardini H, Saxby BK, Record CO. Computerized psychometric testing inminimal encephalopathy and modulation by nitrogen challenge and livertransplant. Gastroenterology.2008Nov;135(5):1582-1590.
    82. Kircheis G, Wettstein M, Timmermann L, Schnitzler A, H ussinger D.Critical flicker frequency for quantification of low-grade hepaticencephalopathy. Hepatology.2002Feb;35(2):357-366.
    83. Kircheis G, Bode JG, Hilger N, Kramer T, Schnitzler A, H ussinger D.Diagnostic and prognostic values of critical flicker frequencydetermination as new diagnostic tool for objective HE evaluation inpatients undergoing TIPS implantation. Eur J Gastroenterol Hepatol.2009Dec;21(12):1383-1394.
    84. Amodio P, Orsato R, Marchetti P, Schiff S, Poci C, Angeli P, Gatta A,Sparacino G, Toffolo GM. Electroencephalographic analysis for theassessment of hepatic encephalopathy: comparison of non-parametric andparametric spectral estimation techniques. Neurophysiol Clin.2009Apr;39(2):107-115.
    85. Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, Van Lente F,Arroliga AC, Mullen KD. Correlation between ammonia levels and theseverity of hepatic encephalopathy. Am J Med.2003Feb;114(3):188-193.
    86. Morgan MY, Alonso M, Stanger LC. Lactitol and lactulose for thetreatment of subclinical hepatic encephalopathy in cirrhotic patients. Arandomised, cross-over study. J Hepatol.1989Mar;8(2):208-217.
    87. Morgan MY, Hawley KE. Lactitol vs. lactulose in the treatment of acutehepatic encephalopathy in cirrhotic patients: a double-blind, randomizedtrial. Hepatology.1987Nov-Dec;7(6):1278-1284.
    88. Morgan MY, Hawley KE, Stambuk D. Lactitol versus lactulose in thetreatment of chronic hepatic encephalopathy. A double-blind, randomised,cross-over study. J Hepatol.1987Apr;4(2):236-244.
    89. van Leeuwen PA, van Berlo CL, Soeters PB. New mode of action forlactulose. Lancet.1988Jan;1(8575-6):55-56.
    90. Bajaj JS. Management options for minimal hepatic encephalopathy. ExpertRev Gastroenterol Hepatol.2008Dec;2(6):785-790.
    91. Mullen KD, Amodio P, Morgan MY. Therapeutic studies in hepaticencephalopathy. Metab Brain Dis.2007Dec;22(3-4):407-423.
    92. Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, Leevy CB, Sigal S,Sheikh MY, Beavers K, Frederick T, Teperman L, Hillebrang D, Huang S,Merchant K, Shaw A, Bortey E, Forbes WP. Rifaximin treatment in hepaticencephalopathy. N Engl J Med.2010Mar;362(12):1071-1081.
    93. Plauth M, Cabré E, Riggio O, Assis-Camilo M, Pirlich M, Kondrup J,DGEM: Ferenci P, Holm E, vom Dahl S, Müller MJ, Nolte W. ESPENGuidelines on Enteral Nutrition: Liver disease. Clin Nutr.2006Apr;25(2):285-294.
    94. Mullen KD, Dasarathy S. Protein restriction in hepatic encephalopathy:necessary evil or illogical dogma? J Hepatol.2004Aug;41(1):147-148.
    95. Muto Y, Sato S, Watanabe A, Moriwaki H, Suzuki K, Kato M, Nakamura T,Higuchi K, Nishiguchi S, Kumada H, Long-Term Survival Study Group.Effects of oral branched-chain amino acid granules on event-free survivalin patients with liver cirrhosis. Clin Gastroenterol Hepatol.2005Jul;3(7):705-713.
    96. Amodio P, Caregaro L, Pattenò E, Marcon M, Del Piccolo F, Gatta A.Vegetarian diets in hepatic encephalopathy: facts or fantasies? Dig LiverDis.2001Aug-Sep;33(6):492-500.
    97. Bajaj JS. Review article: the modern management of hepaticencephalopathy. Aliment Pharmacol Ther.2010Mar;31(5):537-547.
    98. Stewart CA, Malinchoc M, Kim WR, Kamath PS. Hepatic encephalopathyas a predictor of survival in patients with end-stage liver disease. LiverTranspl.2007Oct;13(10):1366-1371.
    99. Fanelli F, Salvatori FM, Rabuffi P, Boatta E, Riggio O, Lucatelli P,Passariello R. Management of refractory hepatic encephalopathy afterinsertion of TiPS: long-term results of shunt reduction withhourglass-shaped balloon-expandable stent-graft. AJR Am J Roentgenol.2009Dec;193(6):1696-1702.
    100. Marchesini G, Fabbri A, Bianchi G, Brizi M, Zoli, M. Zinc supplementationand amino acid-nitrogen metabolism in patients with advanced cirrhosis.Hepatology.1996May;23(5):1084-1092.
    101. Bresci G, Parisi G, Banti S. Management of hepatic encephalopathy withoral zinc supplementation: a long-term treatment. Eur J Med.1993Aug-Sep;2(7):414-416.
    102. Morgan MY, Jakobovits AW, James IM, Sherlock S. Successful use ofbromocriptine in the treatment of chronic hepatic encephalopathy.Gastroenterology.1980Apr;78(4):663-670.
    103. Sushma S, Dasarathy S, Tandon RK, Jain S, Gupta S, Bhist MS. Sodiumbenzoate in the treatment of acute hepatic encephalopathy: a double-blindrandomized trial. Hepatology.1992Jul;16(1):138-144.
    104. Kircheis G, Nilius R, Held C, Berndt H, Buchner M, G rtelmeyer R,Hendricks R, Krüger B, Kuklinski B, Meister H, Otto HJ, Rink C, R schW, Stauch S. Therapeutic efficacy of l-ornithine-l-aspartate infusions inpatients with cirrhosis and hepatic encephalopathy: results of aplacebo-controlled, double-blind study. Hepatology.1997Jun;25(6):1351-1360.
    105. Kircheis G, Wettstein M, Dahl S, H ussinger D. Clinical efficacy ofl-ornithine-l-aspartate in the management of hepatic encephalopathy.Metab Brain Dis.2002Dec;17(4):453-462.
    106. Payne JA, Rivera C, Voipio J, Kaila K. Cation-chloride co-transporters inneuronal communication, development and trauma. Trends Neurosci.2003Apr;26(4):199-206.
    107. Gamba G. Molecular physiology and pathophysiology of electroneutralcation-chloride cotransporters. Physiol Rev.2005Apr;85(2):423-493.
    108. Hebert SC, Mount DB, Gamba G. Molecular physiology of cation-coupledCl-cotransport: the SLC12family. Pflugers Arch.2004Feb;447(5):580-593.
    109. Plotkin MD, Kaplan MR, Peterson LN, Gullans SR, Hebert SC, Delpire E.Expression of the Na-K-2Cl cotransporter BSC2in the nervous system. AmJ Physiol.1997Jan;272(1Pt1): C173-183.
    110. Payne JA, Stevenson TJ, Donaldson LF. Molecular characterization of aputative K-Cl cotransporter in rat brain: a neuronal-specific isoform. J BiolChem.1996Jul;271(27):16245-16252.
    111. Pearson MM, Lu J, Mount DB, Delpire E. Localization of the K-Clcotransporter, KCC3, in the central and peripheral nervous systems:expression in the choroid plexus, large neurons and white matter tracts.Neuroscience.2001;103(2):481-491.
    112. Karadsheh MF, Byun N, Mount DB, Delpire E. Localization of the KCC4potassium-chloride cotransporter in the nervous system. Neuroscience.2004;123(2):381-391.
    113. Adragna NC, Di Fulvio M, Lauf PK. Regulation of K-Cl cotransport: fromfunction to genes. J Membr Biol.2004Oct;201(3):109-137.
    114. Flatman PW. Regulation of Na-K-2Cl cotransport by phosphorylation andprotein-protein interactions. Biochim Biophys Acta.2002Nov;1566(1-2):140-151.
    115. Song L, Mercado A, V zguez N, Xie Q, Desai R, George AL Jr, Gamba G,Mount DB. Molecular, functional, and genomic characterization of humanKCC2, the neuronal K-Cl cotransporter. Brain Res Mol Brain Res.2002Jun;103(1-2):91-105.
    116. Mercado A, Broumand V, Zandi-Nejad K, Enck AH, Mount DB. AC-terminal domain in KCC2confers constitutive K-Cl cotransport. J BiolChem.2006Jan;281(2):1016-1026.
    117. Kahle KT, Ring AM, Lifton RP. Molecular physiology of the WNK kinases.Annu Rev Physiol.2008;70:329-355.
    118. Kahle KT, Rinehart J, Ring A, Gimenez I, Gamba G, Hebert SC, Lifton RP.WNK protein kinases modulate cellular Cl-flux by altering thephosphorylation state of the Na-K-Cl and K-Cl cotransporters. Physiology(Bethesda).2006Oct;21:326-335.
    119. Delpire E, Gagnon KB. SPAK and OSR1: STE20kinases involved in theregulation of ion homoeostasis and volume control in mammalian cells.Biochem J.2008Jan;409(2):321-331.
    120. Ben-Ari Y. Developing networks play a similar melody. Trends Neurosci.2001Jun;24(6):353-360.
    121. Ben-Ari Y. Excitatory actions of GABA during development: the nature ofthe nurture. Nat Rev Neurosci.2002Sep;3(9):728-739.
    122. Dzhala VI, Staley KJ. Excitatory actions of endogenously released GABAcontribute to initiation of ictal epileptiform activity in the developinghippocampus. J Neurosci.2003Mar;23(5):1840-1846.
    123. Wang C, Shimizu-Okabe C, Watanabe K, Okabe A, Matsuzaki H, Ogawa T,Mori N, Fukuda A, Sato K. Developmental changes in KCC1, KCC2, andNKCC1mRNA expressions in the rat brain. Brain Res Dev Brain Res.2002Nov;139(1):59-66.
    124. Plotkin MD, Snyder EY, Hebert SC, Delpire E. Expression of theNa-K-2Cl cotransporter is developmentally regulated in postnatal rat brains:a possible mechanism underlying GABA’s excitatory role in immaturebrain. J Neurobiol.1997Nov;33(6):781-795.
    125. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H. GABAregulates synaptic integration of newly generated neurons in the adult brain.Nature.2006Feb;439(7076):589-593.
    126. Cancedda L, Fiumelli H, Chen K, Poo MM. Excitatory GABA action isessential for morphological maturation of cortical neurons in vivo. JNeurosci.2007May;27(19):5224-5235.
    127. Reynolds A, Brustein E, Liao M, Mercado A, Babilonia E, Mount DB,Drapeau P. Neurogenic role of the depolarizing chloride gradient revealedby global overexpression of KCC2from the onset of development. JNeurosci.2008Feb;28(7):1588-1597.
    128. Stein V, Hermans-Borgmeyer I, Jentsch TJ, Hübner CA. Expression of theKCl cotransporter KCC2parallels neuronal maturation and the emergenceof low intracellular chloride. J Comp Neurol.2004Jan;468(1):57-64.
    129. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, PirvolaU, Saarma M, Kaila K. The K+/Cl-co-transporter KCC2renders GABAhyperpolarizing during neuronal maturation. Nature.1999Jan;397(6716):251-255.
    130. Dzhala VI, Talos DM, Sdrulla DA, Brumback AC, Mathews GC, BenkeTA, Delpire E, Jensen FE, Staley KJ. NKCC1transporter facilitatesseizures in the developing brain. Nat Med.2005Nov;11(11):1205-1213.
    131. Hübner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, JentschTJ. Disruption of KCC2reveals an essential role of K-Cl cotransportalready in early synaptic inhibition. Neuron.2001May;30(2):515-524.
    132. Li H, Khirug S, Cai C, Ludwig A, Blaesse P, Kolikova J, Afzalov R,Coleman SK, Lauri S, Airaksinen MS, Kein nen K, Khiroug L, Saarma M,Kaila K, Rivera C. KCC2interacts with the dendritic cytoskeleton topromote spine development. Neuron.2007Dec;56(6):1019-1033.
    133. Ganguly K, Schinder AF, Wong ST, Poo M. GABA itself promotes thedevelopmental switch of neuronal GABAergic responses from excitation toinhibition. Cell.2011May;105(4):521-532.
    134. Titz S, Hans M, Kelsch W, Lewen A, Swandulla D, Misgeld U.Hyperpolarizing inhibition developswithout trophic support by GABA incultured rat midbrain neurons. J Physiol.2003Aug;550(Pt3):719-730.
    135. Liu Z, Neff RA, Berg DK. Sequential interplay of nicotinic andGABAergic signaling guides neuronal development. Science.2006Dec;314(5805):1610-1613.
    136. Kelsch W, Hormuzdi S, Straube E, Lewen A, Monyer H, Misgeld U.Insulin-like growth factor1and a cytosolic tyrosine kinase activatechloride outward transport during maturation of hippocampal neurons. JNeurosci.2001Nov;21(21):8339-8347.
    137. Aguado F, Carmona MA, Pozas E, Aguiló A, Martínez-Guijarro FJ,Alcantara S, Borrell V, Yuste R, Ibaňez CF, Soriano E. BDNF regulatesspontaneous correlated activity at early developmental stages by increasingsynaptogenesis and expression of the K+/Cl–co-transporter KCC2.Development.2003Apr;130(7):1267-1280.
    138. Lee DS, Wong HA, Knoppert DC. Myoclonus associated with lorazepamtherapy in very-low-birth-weight infants. Biol Neonate.1994;66(6):311-315.
    139. Dzhala VI, Brumback AC, Staley KJ. Bumetanide enhances phenobarbitalefficacy in a neonatal seizure model. Ann Neurol.2008Feb;63(2):222-235.
    140. Scher MS, Alvin J, Gaus L, Minnigh B, Painter MJ. Uncoupling ofEEG-clinical neonatal seizures after antiepileptic drug use. Pediatr Neurol.2003Apr;28(4):277-280.
    141. Painter MJ, Scher MS, Stein AD, Armatti S, Wang Z, Gardiner JC, PanethN, Minnigh B, Alvin J. Phenobarbital compared with phenytoin for thetreatment of neonatal seizures. N Engl J Med.1999Aug;341(7):485-489.
    142. Brumback AC, Staley KJ. Thermodynamic regulation of NKCC1-mediatedCl–cotransport underlies plasticity of GABAA signaling in neonatalneurons. J Neurosci.2008Feb;28(6):1301-1312.
    143. Jean-Xavier C, Mentis GZ, O Donovan MJ, Cattaert D, Vinay L. Dualpersonality of GABA/glycine-mediated depolarizations in immature spinalcord. Proc Natl Acad Sci USA.2007Jul;104(27):11477-11482.
    144. Sullivan JE, Witte MK, Yamashita TS, Myers CM, Blumer JL.Pharmacokinetics of bumetanide in critically ill infants. Clin PharmacolTher.1996Oct;60(4):405-413.
    145. Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R. On the origin ofinterictal activity in human temporal lobe epilepsy in vitro. Science.2002Nov;298(5597):1418-1421.
    146. Hochman DW, Baraban SC, Owens JW, Schwartzkroin PA. Dissociation ofsynchronization and excitability in furosemide blockade of epileptiformactivity. Science.1995Oct;270(5233):99-102.
    147. Hochman DW, Schwartzkroin PA. Chloride-cotransport blockadedesynchronizes neuronal discharge in the “epileptic” hippocampal slice. JNeurophysiol.2000Jan;83(1):406-417.
    148. Haglund MM, Hochman DW. Furosemide and mannitol suppression ofepileptic activity in the human brain. J Neurophysiol.2005Aug;94(2):907-918.
    149. Hesdorffer DC, Stables JP, Hauser WA, Annegers JF, Cascino G. Arecertain diuretics also anticonvulsants? Ann Neurol.2001Oct;50(4):458-462.
    150. Hekmat-Scafe DS, Lundy MY, Ranga R, Tanouye MA. Mutations in theK+/Cl–cotransporter gene kazachoc (kcc) increase seizure susceptibility inDrosophila. J Neurosci.2006Aug;26(35):8943-8954.
    151. Woo NS, Lu J, England R, McClellan R, Dufour S, Mount DB, Deutch AY,Lovinger DM, Delpire E. Hyperexcitability and epilepsy associated withdisruption of the mouse neuronal-specific K-Cl cotransporter gene.Hippocampus.2002;12(2):258-268.
    152. Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R,Rivera C. Perturbed chloride homeostasis and GABAergic signaling inhuman temporal lobe epilepsy. J Neurosci.2007Sep;27(37):9866-9873.
    153. Palma E, Amici M, Sobrero F, Spinelli G, Di Angelantonio S, Ragozzino D,Mascia A, Scoppetta C, Esposito V, Miledi R, Eusebi F. Anomalous levelsof Cl–transporters in the hippocampal subiculum from temporal lobeepilepsy patients make GABA excitatory. Proc Natl Acad Sci USA.2006May;103(22):8465-8468.
    154. Pathak HR, Weissinger F, Terunuma M, Carlson GC, Hsu FC, Moss SJ,Coulter DA. Disrupted dentate granule cell chloride regulation enhancessynaptic excitability during development of temporal lobe epilepsy. JNeurosci.2007Dec;27(51):14012-14022.
    155. Aronica E, Boer K, Redeker S, Spliet WG, van Rijen PC, Troost D, GorterJA. Differential expression patterns of chloride transporters,Na-K-2Cl-cotransporter and K-Cl-cotransporter, in epilepsy-associatedmalformations of cortical development. Neuroscience.2007Mar;145(1):185-196.
    156. Munakata M, Watanabe M, Otsuki T, Nakama H, Arima K, Itoh M,Nabekura J, Iinuma K, Tsuchiya S. Altered distribution of KCC2in corticaldysplasia in patients with intractable epilepsy. Epilepsia.2007Apr;48(4):837-844.
    157. Shimizu-Okabe C, Okabe A, Kilb W, Sato K, Luhmann HJ, Fukuda A.Changes in the expression of cation-Cl-cotransporters, NKCC1andKCC2, during cortical malformation induced by neonatal freeze-lesion.Neurosci Res.2007Nov;59(3):288-295.
    158. Young GB, Gilbert JJ, Zochodne DW. The significance of myoclonic statusepilepticus in postanoxic coma. Neurology.1990Dec;40(12):1843-1848.
    159. Inglefield JR, Schwartz-Bloom RD. Activation of excitatory amino acidreceptors in the rat hippocampal slice increases intracellular Cl-and cellvolume. J Neurochem.1998Oct;71(4):1396-1404.
    160. Galeffi F, Sah R, Pond BB, George A, Schwartz-Bloom RD. Changes inintracellular chloride after oxygen-glucose deprivation of the adulthippocampal slice: effect of diazepam. J Neurosci.2004May;24(18):4478-4488.
    161. Pond BB, Berglund K, Kuner T, Feng G, Augustine GJ, Schwartz-BloomRD. The chloride transporter Na-K-Cl cotransporter isoform-1contributesto intracellular chloride increases after in vitro ischemia. J Neurosci.2006Feb;26(5):1396-1406.
    162. Beck J, Lenart B, Kintner DB, Sun D. Na-K-Cl cotransporter contributes toglutamate-mediated excitotoxicity. J Neurosci.2003Jun;23(12):5061-5068.
    163. Su G, Kintner DB, Flagella M, Shull GE, Sun D. Astrocytes from Na-K-Clcotransporter-null mice exhibit absence of swelling and decrease in EAArelease. Am J Physiol Cell Physiol.2002May;282(5): C1147-C1160.
    164. Su G, Kintner DB, Sun D. Contribution of Na+-K+-Cl-cotransporter tohigh-[K+]o-induced swelling and EAA release in astrocytes. Am J PhysiolCell Physiol.2002May;282(5): C1136-C1146.
    165. Schomberg SL, Su G, Haworth RA, Sun D. Stimulation of Na-K-2Clcotransporter in neurons by activation of non-NMDA ionotropic receptorand group-I mGluRs. J Neurophysiol.2001Jun;85(6):2563-2575.
    166. Yan Y, Dempsey RJ, Flemmer A, Forbush B, Sun D. Inhibition ofNa+-K+-Cl–cotransporter during focal cerebral ischemia decreases edemaand neuronal damage. Brain Res.2003Jan;961(1):22-31.
    167. Pond BB, Galeffi F, Ahrens R, Schwartz-Bloom RD. Chloride transportinhibitors influence recovery from oxygen-glucose deprivation-inducedcellular injury in adult hippocampus. Neuropharmacology.2004Aug;47(2):253-262.
    168. Chen H, Sun D. The role of Na-K-Cl co-transporter in cerebral ischemia.Neurol Res.2005Apr;27(3):280-286.
    169. Nabekura J, Ueno T, Okabe A, Furuta A, Iwaki T, Shimizu-Okabe C,Fukuda A, Akaike N. Reduction of KCC2expression and GABAAreceptor-mediated excitation after in vivo axonal injury. J Neurosci.2002Jun;22(11):4412-4417.
    170. Toyoda H, Ohno K, Yamada J, Ikeda M, Okabe A, Sato K, Hashimoto K,Fukuda A. Induction of NMDA and GABAA receptor-mediated Ca2+oscillations with KCC2mRNA downregulation in injured facialmotoneurons. J Neurophysiol.2003Mar;89(3):1353-1362.
    171. Cohen I, Navarro V, Le Duigou C, Miles R. Mesial temporal lobe epilepsy:a pathological replay of developmental mechanisms? Biol Cell.2003Sep;95(6):329-333.
    172. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signaltransduction. Annu Rev Biochem.2003;72:609-642.
    173. Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, NanobashviliA, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M. BDNF-inducedTrkB activation down-regulates the K+-Cl–cotransporter KCC2andimpairs neuronal Cl–extrusion. J Cell Biol.2002Dec;159(5):747-752.
    174. Wake H, Watanabe M, Moorhouse AJ, Kanematsu T, Horibe S, MatsukawaN, Asai K, Ojika K, Hirata M, Nabekura J. Early changes in KCC2phosphorylation in response to neuronal stress result in functionaldownregulation. J Neurosci.2007Feb;27(7):1642-1650.
    175. Price TJ, Cervero F, de Koninck Y. Role of cation-chloride-cotransporters(CCC) in pain and hyperalgesia. Curr Top Med Chem.2005;5(6):547-555.
    176. Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sík A, DeKoninck P, De Koninck Y. Trans-synaptic shift in anion gradient in spinallamina I neurons as a mechanism of neuropathic pain. Nature.2003Aug;424(6951):938-942.
    177. Tornberg J, Voikar V, Savilahti H, Rauvala H, Airaksinen MS. Behaviouralphenotypes of hypomorphic KCC2-deficient mice. Eur J Neurosci.2005Mar;21(5):1327-1337.
    178. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C,Salter MW, De Koninck Y. BDNF from microglia causes the shift inneuronal anion gradient underlying neuropathic pain. Nature.2005Dec;438(7070):1017-1021.
    179. Nomura H, Sakai A, Nagano M, Umino M, Suzuki H. Expression changesof cation chloride cotransporters in the rat spinal cord followingintraplantar formalin. Neurosci Res.2006Dec;56(4):435-440.
    180. Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E. AbnormalGABAA receptor-mediated currents in dorsal root ganglion neuronsisolated from Na-K-2Cl cotransporter null mice. J Neurosci.2000Oct;20(20):7531-7538.
    181. Valeyev AY, Hackman JC, Holohean AM, Wood PM, Katz JL, DavidoffRA. GABA-induced Cl-current in cultured embryonic human dorsal rootganglion neurons. J Neurophysiol.1999Jul;82(1):1-9.
    182. Laird JM, García-Nicas E, Delpire EJ, Cervero F. Presynaptic inhibitionand spinal pain processing in mice: a possible role of the NKCC1cation–chloride co-transporter in hyperalgesia. Neurosci Lett.2004May;361(1-3):200-203.
    183. Morales-Aza BM, Chillingworth NL, Payne JA, Donaldson LF.Inflammation alters cation chloride cotransporter expression in sensoryneurons. Neurobiol Dis.2004Oct;17(1):62-69.
    184. Galan A, Cervero F. Painful stimuli induce in vivo phosphorylation andmembrane mobilization of mouse spinal cord NKCC1co-transporter.Neuroscience.2005;133(1):245-252.
    185. Lang F, Busch GL, Ritter M, V lkl H, Waldegger S, Gulbins E, H ussingerD. Functional significance of cell volume regulatory mechanisms. PhysiolRev.1998Jan;78(1):247-306.
    186. Strange K. Cellular volume homeostasis. Adv Physiol Educ.2004Dec;28(1-4):155-159.
    187. McManus ML, Churchwell KB, Strange K. Regulation of cell volume inhealth and disease. N Engl J Med.1995Nov;333(19):1260-1266.
    188. Mercado A, Mount DB, Gamba G. Electroneutral cation-chloridecotransporters in the central nervous system. Neurochem Res.2004Jan;29(1):17-25.
    189. Staley KJ, Proctor WR. Modulation of mammalian dendritic GABAAreceptor function by the kinetics of Cl–and HCO3–transport. J Physiol.1999Sep;519Pt3:693-712.
    190. Pedersen SF, O’Donnell ME, Anderson SE, Cala PM. Physiology andpathophysiology of Na+/H+exchange and Na+-K+-2Cl–cotransport in theheart, brain, and blood. Am J Physiol Regul Integr Comp Physiol.2006Jul;291(1): R1-25.
    191. Foroutan S, Brillault J, Forbush B, O’Donnell ME. Moderate-to-severeischemic conditions increase activity and phosphorylation of the cerebralmicrovascular endothelial cell Na+-K+-Cl-cotransporter. Am J PhysiolCell Physiol.2005Dec;289(6): C1492-1501.
    192. Sun D, Lytle C, O’Donnell ME. IL-6secreted by astroglial cells regulatesNa-K-Cl cotransport in brain microvessel endothelial cells. Am J Physiol.1997Jun;272(6Pt1): C1829-1835.
    193. Zawadzka M, Kaminska B. A novel mechanism of FK506-mediatedneuroprotection: downregulation of cytokine expression in glial cells. Glia.2005Jan;49(1):36-51.
    194. O’Donnell ME, Tran L, Lam TI, Liu XB, Anderson SE. Bumetanideinhibition of the blood-brain barrier Na-K-Cl cotransporter reduces edemaformation in the rat middle cerebral artery occlusion model of stroke. JCereb Blood Flow Metab.2004Sep;24(9):1046-1056.
    195. Thomas R, Salter MG, Wilke S, Husen A, Allcock N, Nivison M, Nnoli AN,Fern R. Acute ischemic injury of astrocytes is mediated by Na-K-Clcotransport and not Ca2+influx at a key point in white matter development.J Neuropathol Exp Neurol.2004Aug;63(8):856-871.
    196. O’Neill WC. Physiological significance of volume-regulatory transporters.Am J Physiol.1999May;276(5Pt1): C995-1011.
    197. Race JE, Makhlouf FN, Logue PJ, Wilson FH, Dunham PB, Holtzman EJ.Molecular cloning and functional characterization of KCC3, a new K-Clcotransporter. Am J Physiol.1999Dec;277(6Pt1): C1210-1219.
    198. Boettger T, Rust MB, Maier H, Seidenbecher T, Schweizer M, Keating DJ,Faulhaber J, Ehmke H, Pfeffer C, Scheel O, Lemcke B, Horst J, Leuwer R,Pape HC, V lkl H, Hübner CA, Jentsch TJ. Loss of K-Cl co-transporterKCC3causes deafness, neurodegeneration and reduced seizure threshold.EMBO J.2003Oct;22(20):5422-5434.
    199. Byun N, Delpire E. Axonal and periaxonal swelling precede peripheralneurodegeneration in KCC3knockout mice. Neurobiol Dis.2007Oct;28(1):39-51.
    200. Howard HC, Mount DB, Rochefort D, Byun N, Dupré N, Lu J, Fan X,Song L, Rivière JB, Prévost C, Horst J, Simonati A, Lemcke B, Welch R,England R, Zhan FQ, Mercado A, Siesser WB, George AL Jr, McDonaldMP, Bouchard JP, Mathieu J, Delpire E, Rouleau GA. The K-Clcotransporter KCC3is mutant in a severe peripheral neuropathy associatedwith agenesis of the corpus callosum. Nat Genet.2002Nov;32(3):384-392.
    201. van der Vorst MM, Kist JE, van der Heijden AJ, Burggraaf J. Diuretics inpediatrics: current knowledge and future prospects. Paediatr Drugs.2006;8(4):245-264.
    202. Lopez-Samblas AM, Adams JA, Goldberg RN, Modi MW. Thepharmacokinetics of bumetanide in the newborn infant. Biol Neonate.1997;72(5):265-272.
    203. Bittigau P, Sifringer M, Ikonomidou C. Antiepileptic drugs and apoptosisin the developing brain. Ann N Y Acad Sci.2003May;993:103-114.
    204. Rivera C, Voipio J, Kaila K. Two developmental switches in GABAergicsignalling: the K+-Cl–cotransporter KCC2and carbonic anhydrase CAVII.J Physiol.2005Jan;562(Pt1):27-36.
    205. Cordero-Erausquin M, Coull JA, Boudreau D, Rolland M, De Koninck Y.Differential maturation of GABA action and anion reversal potential inspinal lamina I neurons: impact of chloride extrusion capacity. J Neurosci.2005Oct;25(42):9613-9623.
    206. De Koninck Y. Altered chloride homeostasis in neurological disorders: anew target. Curr Opin Pharmacol.2007Feb;7(1):93-99.
    207. Ming Z, Fan YJ, Yang X, Lautt WW. Blockade of intrahepatic adenosinereceptors improves urine excretion in cirrhotic rats induced bythioacetamide. J Hepatol.2005May;42(5):680-686.
    208. Miranda AS, Rodrigues DH, Vieira LB, Lima CX, Rachid MA, Vidigal PV,Gomez MV, Reis HJ, Guatimosim C, Teixeira AL. A thioacetamide-induced hepatic encephalopathy model in C57BL/6mice: a behavioral andneurochemical study. Arq Neuropsiquiatr.2010Aug;68(4):597-602.
    209. Weissenborn K, Kolbe H. The basal ganglia and portal-systemicencephalopathy. Metab Brain Dis.1998Dec;13(4):261-272.
    210. Timmermann L, Gross J, Kircheis G, H ussinger D, Schnitzler A. Corticalorigin of mini-asterixis in hepatic encephalopathy. Neurology.2002Jan;58(2):295-298.
    211. Timmermann L, Gross J, Butz M, Kircheis G, H ussinger D, Schnitzler A.Mini-asterixis in hepatic encephalopathy induced by pathologicthalamo-motor-cortical coupling. Neurology.2003Sep;61(5):689-692.
    212. Kulisevsky J, Pujol J, Balanzó J, Jungué C, Deus J, Capdevilla A,Villanueva C. Pallidal hyperintensity on magnetic resonance imaging incirrhotic patients: clinical correlations. Hepatology.1992Dec;16(6):1382-1388.
    213. Spahr L, Butterworth RF, Fontaine S, Bui L, Therrien G, Milette PC,Lebrun LH, Zayed J, Leblanc A, Pomier-Layrargues G. Increased bloodmanganese in cirrhotic patients: relationship to pallidal magnetic resonancesignal hyperintensity and neurological symptoms. Hepatology.1996Nov;24(5):1116-1120.
    214. Hasbargen T, Ahmed MM, Miranpuri G, Li L, Kahle KT, Resnick D, Sun D.Role of NKCC1and KCC2in the development of chronic neuropathic painfollowing spinal cord injury. Ann N Y Acad Sci.2010Jun;1198:168-172.
    215. Bonislawski DP, Schwarzbach EP, Cohen AS. Brain injury impairs dentategyrus inhibitory efficacy. Neurobiol Dis.2007Jan;25(1):163-169.
    216. Nabekura J, Ueno T, Okabe A, Furuta A, Iwaki T, Shimizu-Okabe C,Fukuda A, Akaike N. Reduction of KCC2expression and GABAAreceptor-mediated excitation after in vivo axonal injury. J Neurosci.2002Jun;22(11):4412-4417.
    217. Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, Stil A,Darbon P, Cattaert D, Delpire E, Marsala M, Vinay L. Down-regulation ofthe potassium-chloride cotransporter KCC2contributes to spasticity afterspinal cord injury. Nat Med.2010Mar;16(3):302-307.
    218. Moy LY, Zeevalk GD, Sonsalla PK. Role for dopamine inmalonate-induced damage in vivo in striatum and in vitro in mesencephaliccultures. J Neurochem.2000Apr;74(4):1656-1665.
    219. Jayakumar AR, Valdes V, Norenberg MD. The Na-K-Cl cotransporter inthe brain edema of acute liver failure. J Hepatol.2011Feb;54(2):272-278.
    220. Marmarou A, Poll W, Shulman K, Bhagavan H. A simple gravimetrictechnique for measurement of cerebral edema. J Neurosurg.1978Oct;49(4):530-537.
    221. Jayakumar AR, Bethea JR, Tong XY, Gomez J, Norenberg MD. NF-κB inthe mechanism of brain edema in acute liver failure: studies in transgenicmice. Neurobiol Dis.2011Feb;41(2):498-507.
    222. Phongphanphanee P, Mizuno F, Lee PH, Yanagawa Y, Isa T, Hall WC. Acircuit model for saccadic suppression in the superior colliculus. JNeurosci.2011Feb;31(6):1949-1954.
    223. Jayakumar AR, Liu M, Moriyama M, Ramakrishnan R, Forbush B3rd,Reddy PV, Norenberg MD. Na-K-Cl Cotransporter-1in the mechanism ofammonia-induced astrocyte swelling. J Biol Chem.2008Dec;283(49):33874-33882.
    224. Jayakumar AR, Norenberg MD. The Na-K-Cl Co-transporter in astrocyteswelling. Metab Brain Dis.2010Mar;25(1):31-38.
    225. Adragna NC, Di Fulvio M, Lauf PK. Regulation of K-Cl cotransport: fromfunction to genes. J Membr Biol.2004Oct;201(3):109-137.
    226. Leke R, Bak LK, Iversen P, S rensen M, Keiding S, Vilstrup H, Ott P,Portela LV, Schousboe A, Waagepetersen HS. Synthesis ofneurotransmitter GABA via the neuronal tricarboxylic acid cycle iselevated in rats with liver cirrhosis consistent with a high GABAergic tonein chronic hepatic encephalopathy. J Neurochem.2011Jun;117(5):824-832.
    227. Cauli O, Rodrigo R, Llansola M, Montoliu C, Monfort P, Piedrafita B, EIMlili N, Boix J, Agustí A, Felipo V. Glutamatergic and gabaergicneurotransmission and neuronal circuits in hepatic encephalopathy. MetabBrain Dis.2009Mar;24(1):69-80.
    228. Butterworth RF. Pathogenesis of hepatic encephalopathy: new insightsfrom neuroimaging and molecular studies. J Hepatol.2003Aug;39(2):278-285.
    229. Ahboucha S, Pomier-Layrargues G, Butterworth RF. Increased brainconcentrations of endogenous (non-benzodiazepine) GABAAreceptorligands in human hepatic encephalopathy. Met Brain Dis.2004Dec;19(3-4):241-251.
    230. Schafer DF, Jones EA. Hepatic encephalopathy and the γ-aminobutyric-acid neurotransmitter system. Lancet.1982Jan;1(8262):18-20.
    231. Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, MountDB. Roles of the cation-chloride cotransporters in neurological disease.Nat Clin Pract Neurol.2008Sep;4(9):490-503.
    232. Balerio GN, Rubio MC. Baclofen analgesia: involvement of theGABAergic system. Pharmacol Res.2002Sep;46(3):281-286.
    233. Jones EA, Gammal SH, Martin P. Hepatic encephalopathy: new light on anold problem. Q J Med.1988Nov;69(259):851-867.
    234. Jones EA, Skolnick P, Gammal SH, Basile AS, Mullen KD. Thegamma-aminobutyric acid A (GABAA) receptor complex and hepaticencephalopathy: Some recent advances. Ann Intern Med.1989Apr;110(7):532-546.
    235. Jones DB, Mullen KD, Roessle M, Maynard T, Jones EA. Hepaticencephalopathy: Application of visual evoked responses to test hypothesesof its pathogenesis in rats. J Hepatol.1987Feb;4(1):118-126.
    236. Baraldi M, Zeneroli ML, Ventura E, Penne A, Pinelli G, Ricci P, Santi M.Supersensitivity of benzodiazepine receptors in hepatic encephalopathydue to fulminant hepatic failure in the rat: Reversal by a benzodiazepineantagonist. Clin Sci.1984Aug;67(2):167-175.
    237. Bassett ML, Mullen KD, Skolnick P, Jones EA. Amelioration of hepaticencephalopathy by pharmacologic antagonism of the GABAA-benzodiazepine receptor complex in a rabbit model of fulminant hepaticfailure. Gastroenterology.1987Nov;93(5):1069-1077.
    238. Basile AS, Gammal SH, Mullen KD, Jones EA, Skolnick P. Differentialresponsiveness of cerebellar Purkinje neurons to GABA andbenzodiazepine receptor ligands in an animal model of hepaticencephalopathy. J Neurosci.1988Jul;8(7):2414-2421.
    239. Gammal SH, Basile AS, Geller D, Skolnick P, Jones EA. Reversal of thebehavioral and electrophysiological abnormalities of an animal model ofhepatic encephalopathy by benzodiazepine receptor ligands. Hepatology.1990Mar;11(3):371-378.
    240. Baktir G, Fisch HV, Kariaganis G, Minder C, Bircher J. Mechanism of theexcessive sedative response of cirrhotics to benzodiazepines: Modelexperiments with triazolam. Hepatology.1987Jul-Aug;7(4):629-638.
    241. Lee HH, Deeb TZ, Walker JA, Davies PA, Moss SJ. NMDA receptoractivity downregulates KCC2resulting in depolarizing GABAAreceptor-mediated currents. Nat Neurosci.2011Jun;14(6):736-743.
    242. Jourdain P, Pavillon N, Moratal C, Boss D, Rappaz B, Depeursinge C,Marquet P, Magistretti PJ. Determination of transmembrane water fluxes inneurons elicited by glutamate ionotropic receptors and by thecotransporters KCC2and NKCC1: a digital holographic microscopy study.J Neurosci.2011Aug;31(33):11846-11854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700