清醒大鼠神经递质和脑电联合检测方法在镇静药物机制研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中枢神经系统的兴奋与抑制是一个多层次,多途径,多种物质相互作用的动态变化过程。在正常的条件下,中枢神经系统的兴奋与抑制保持着动态平衡,以维持机体正常的生理功能。如果受到外界过度的刺激,这种动态平衡将被打破,中枢神经系统的兴奋与抑制之间将失去平衡,从而产生分子、细胞、组织、及整体行为等不同层次的异常症状。其深层机制,与脑内神经递质水平失调和神经电生理的变化密切相关。目前研究兴奋—抑制的主要方法有行为学方法,电生理方法和神经生化方法。酸枣仁皂甙A(JujubosideA,JuA)是镇静催眠中药酸枣仁的一种主要的皂甙类成分。行为学实验和海马离体脑片灌流实验证明酸枣仁皂甙A有显著的中枢抑制作用,但是进一步的机制尚待阐述。
     本课题的主要目的就是:综合利用神经生化和神经电生理技术,并建立清醒大鼠神经递质和脑电同时检测的方法,应用于JuA对青霉素诱导的中枢神经系统兴奋抑制作用及机制的研究。
     本文结合高效液相色谱(HPLC)双泵梯度洗脱法、微透析在体取样及侧脑室微量给药技术,建立了清醒大鼠海马脑区谷氨酸在体检测方法;并在此基础上检测了青霉素及JuA作用后中枢海马区域谷氨酸水平的变化。谷氨酸是使神经组织过度兴奋的主要的兴奋性神经递质之一。青霉素直接刺激神经组织可以一定程度地打破神经系统的兴奋与抑制之间的平衡,是兴奋与抑制研究中一种常用的广谱兴奋剂。低剂量青霉素(1000KIU/L)侧脑室给药能够诱导海马谷氨酸水平的提高,青霉素剂量过高时则引发实验动物癫痫样发作症状。0.1g/L JuA与青霉素同时给药能显著抑制1000KIU/L青霉素的作用;安定及苯巴比妥与青霉素同时侧脑室给药也能显著抑制青霉素的作用。说明青霉素主要通过升高神经组织内的谷氨酸水平破坏神经系统的兴奋和抑制的平衡,而JuA则可以逆转青霉素引起的谷氨酸的升高,在递质的水平起到神经抑制和保护作用。
     本文在神经生化与神经电生理技术基础上,建立了麻醉大鼠纹状体神经递质和皮层脑电同时检测的方法,初步研究了大鼠局灶性脑缺血条件下纹状体谷氨酸,单胺类神经递质与皮层脑电的变化情况;为进一步系统研究脑缺血作用的神经生化和神经电生理机制及其相关性打下基础。
    
     进一步建立了清醒大鼠海马谷氨酸与皮层脑电同时检测的新方法,并应用脑
    电功率谱分析技术,研究了皮层脑电信号与海马谷氨酸水平在侧脑室青霉素给药
    后的变化、以及电信号与生化信号之间的相关性。结果显示,给药后大鼠皮层脑
    电重心频率显著升高,62 and 61频谱段功率显著下降,海马谷氨酸升高与脑电
    兴奋性存在一定的相关性。在JuA与青霉素同时给药后,皮层脑电信号重心频率
    显著下降,低频故and剐段功率显著上升,脑电兴奋性得到抑制;而安定虽然
    同样降低重心频率,升高低频62 and 61段功率,却显著地增加了高频瞬成分。
    这一结果表明,安定和JuA有不同的脑电抑制机制,安定的p增强作用可能与其
    副作用有关。说明J叭对青霉素诱导的中枢兴奋性神经递质和皮层脑电兴奋均具
    有显著的抑制作用,且无西药安定所引起的p增强副作用。
     本研究对中枢神经兴奋与抑制平衡在神经递质和脑电生理水平上进行了研
    究,并在此基础上研究了J叭对中枢神经系统的抑制作用。结果发现J叭能够
    在递质与脑电的水平上参与了中枢神经系统兴奋与抑制平衡这一过程,两者之间
    存在一定的联系。建立的神经递质与脑电联合检测实验方法及脑电功率谱分析应
    用方法,对其他中西药的药理和作用机制研究比较具有一定的指导意义。
Neuroelectrophysiological and neurochemical signals are of great significance to various physiological and pathological phenomena. Researchers had studied these two different systems separately for many years. The development of microdialysis technique paved the way for freely continuous neurochemical sampling from the brains of waking animals. Acquisition of cortical EEG and deep-seated EEG signals by electrodes implantation offered the means of extracting spontaneous EEG and evoked potential from waking animals. Automatic analysis(including time-domain analysis and frequency-domain analysis) of mass data by computer technique greatly relieved us from the burdensome task of manual analysis.
    The balance of excitatory and inhibitory signal pathways in CNS (central nervous system) is a dynamic interacting procedure of different substances, cells, structures etc. In normal status, this procedure keeps running smoothly to maintain many functions of CNS. However, when a body is over stimulated, this balance will corrupt, which will bring abnormal changes in the body including molecules, cells, structures and even behavior. As a result, the system might lose its balance, and the body is very likely to be affected by all kinds of diseases. The mechanisms of excitation and inhibition in CNS closely correlated with the changes of neuroelectrophysiological and neurochemical signals.
    Most of the pharmacological methods that have been used to study excitation and inhibition phenomena mainly fall into three categories: behavior experiment methods, neurophysiological experiment methods and neurochemical experiment methods. Jujuboside A ( JuA) is a main component of Jujubogenin extracted from the seed of Ziziphus (Ziziphus jujuba Mill Var spinosa ( Bunge ) Hu ex H F Chou ) , a popular Chinese herb medicine, which has long been known as a sedative-hypnotic on the CNS. The behavioral experimental studies had revealed that, the extraction of the seed of Ziziphus could inhibit the spontaneous activity and facilitate the hypnotic action of pentobarbital, but the detailed mechanism of its action is still not fully understood.
    
    The main purpose of this paper was to set up new pharmacological study methods by using cross-disciplinary modern detection techniques, and establish a method of simultaneous in vivo cortical EEG and neurotransmitters detection in rats to monitor neuroelectrophysiological and neurochemical signals at the same time. Then with the indexes of behavior change, CNS neuroelectrophysiological and neurochemical change obtained, we can investigate the effects of drugs on CNS synthetically, analyze and reveal the action mechanisms of sedative drug JuA. The correlation between neuroelectrophysiological and neurochemical signals can also be investigated.
    The method of glutamate detection in hippocampal area with the HPLC system and the microdialysis/microinjection technique was set up. It was reported that penicillin could break the balance of excitatory and inhibitory signal pathways in CNS when applied to the neural tissue directly and is always used as an agitator of CNS. The change of the glutamate level in hippocampal area induced by penicillin was detected with HPLC associated with the microdialysis and in vivo sampling technique. Penicillin was injected into lateral ventricle through microinjection probe and the microdialysis was performed to detect the level of hippocampal glutamate. The glutamate concentration increased greatly with the application of penicillin 1000KIU/L and higher dose brought the behavioral seizure symptoms. When JuA was co-injected into the lateral ventricle with penicillin, the increase of glutamate induced by penicillin decreased with the dose of JuA. From this, it can be deduced that JuA reversed the effects of penicillin on the level of hippocampal glutamate.
    A new method of simultaneous in vivo cortical EEG and hippocampal glutamate(Glu) detection in rats was established in order to monitor neuroelectrophysiological and neurochemical signals at the same time. EEG signals were recor
引文
Akay M., Akay Y.M., Cheng E, et al., Time-frequency analysis of the electrocortical activity during maturation using wavelet transform, Biological Cybernetics, 1994, 71 : 169-176
    Albertson T.E.and Joy R.M., Modefication of evoked hippocampal dentate inhibition by diazepam and three antagonists in urethane-anesthetized rats, Experimental Neurology, 1989,106:142-149
    Alvarez, N., Barbiturates in the treatment of epilepsy in people with intellectual disability. J. Intellect. Disabil. Res., 1998; 42, 16-23.
    Andersen P., Bliss T. V. P., Skrede K. K., Lamellar organization of hippocampal excitatory pathways, Exp. Brain Res., 1971, 13:222-238
    Anderton B.H., Callahan L., Coleman P., Dendritic changes in Alzheimer's disease and factors that may underlie these changes. Prog Neurobiol, 1998; 55:595
    Arito H., Tsuruta H., Nakagaki K., Tanaka S., Partial insomnia, hyperactivity and hyperdipsia induced by repeated administration of toluene in rats: their relation to brain monoamine metabolism. Toxicology 1985; 37(1-2): 99-110
    Bassam, D., Food and water intake suppression by intracerebroventricular administration of substance P in food- and water-deprived rats. Brain Res., 1999; 830, 38-42.
    Begley, D.J., Reichel, A., Ermisch,A., Simple high-performance liquid chromatographic analysis of free primary amino acid concentrations in rats plasma and cisternal cerebrospinal fluid, J. Chromatogr. B, 1994; 657:185-191.
    Bergquist J., Vona M.J., Stiller C.O., O'Connor W.T., Falkenberg T., Ekman R., Capillary electrophoresis with laser-induced fluorescence detection: a sensitive method for monitoring extracellular concentrations of amino acids in the periaqueductal grey matter. J Neurosci Methods. 1996; 65(1): 33-42.
    Bijak M., Misgeld U., Suppression by GABAB receptors of 4-aminopyridine-induced hyperactivity in guinea-pig dentate neurons. Neurosci Lett. 1996; 205(1): 49-52.
    Bland S.T., Gonzale R.A., Schallert T., Movement-related glutamate levels in rat hippocampus, striatum, and sensorimotor cortex.Neurosci Lett. 1999, 24; 277 (2):119-22.
    
    
    Bourne J.A., Fosbraey P., Novel method of monitoring electroencephalography at the site of microdialysis during chemically evoked seizures in a freely moving animal. J Neurosci Methods. 2000; 99(1-2):85-90.
    Bourne J.A., Fosbraey P., Halliday J., Changes in striatal electroencephalography and neurochemistry induced by kainic acid seizures are modified by dopamine receptor antagonists. Eur J Pharmacol. 2001 Feb 16; 413 (2-3):189-98.
    Bradford, H.F., 1995. Glutamate, GABA and epilepsy, Prog. Neurobiol., 47:477-511.
    Burdette L.J., Gilbert M.E., Stimulus parameters affecting paired-pulse depression of dentate granule cell field potentials. Ⅰ. Stimulus intensity[J], Brain Research, 1995a May 22;680 (1-2):53-62
    Burdette L.J., Masukawa L.M., Stimulus parameters affecting paired-pulse depression of dentate granule cell field potentials. Ⅱ. Low-frequency stimulation[J], Brain Research, 1995b May 22;680 (1-2):63-72
    Carter A.J., Kehr J., Microbore high-performance liquid chromatographic method for measuring acetylcholine in microdialysis samples: optimizing performance of platinum electrodes. J Chromatogr B Biomed Sci Appl. 1997; 692(1): 207-12.
    Chaulk P.C., Harley C.W., Intracerebroventricular norepinephrine potentiation of the perforant path-evoked potential in dentate gyrus of anesthetized and awake rats: a role for both α- and β-adrenoceptor activation, Brain Research, 1998, 787:59-70
    Chen, X.C., Sheng, C., Zheng, X.X., Direct nitric oxide imaging in cultured hippocampal neurons with diaminoanthraquinone and confocal microscopy, Cell Biol. Int. 2001, 25: 593-598.
    Cossart R., Dinocourt C., Hirsch J.C., Merchan-Perez A., De Felipe J., Ben-Ari Y., Esclapez M., Bernard C., Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nat Neurosci 2001 Jan;4(1):52-62
    Coyle, J.T. and Puttfarcken P., Oxidative stress, glutamate, and neurodegenerative disorders. Science, 1993, 262, 689-695
    Culic M., Saponjic J., Jankovic B., Udovic S., Popovic S., Rakic L., Effect of neurotoxin DSP4 on EEG power spectra in the rat acute model of epilepsy.Neurosci Lett. 1995; 196(1-2): 49-52.
    Darbin O., Risso J.J., Rostain J.C., Helium-oxygen pressure induces striatal glutamate increase: a microdialysis study in freely-moving rats, Neuroscience Letters 2001, 297:37-40
    
    
    Donzanti B.A., Yamamoto B.K., An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 1988; 43 (11):913-22
    During M.J., Spencer D.D., Intercellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet, 1993; 241: 1607
    Ehiers C.L., Slawecki C. J., Effects of chronic ethanol exposure on sleep in rats[J]. Alcohol, 2000, 20:173-179
    Eilers H., Bickler P.E., Hypothermia and isoflurane similarly inhibit glutamate release evoked by chemical anoxia in rat cortical brain slices. Anesthesiology 1996; 85(3):600-7
    El-Yamany, N.A., Horn, E., Time courses of aspartate and glutamate concentrations in the focus area during penicillin sodium induced epileptiform activity in awake rats, Arch. Ital. Biol., 2002, 140: 13-30.
    Engstrom E.R., Hillered L., Flink R., Kihlstrom L., Lindquist C., Nie J.X., Olsson Y., Silander H.C., Extracellular amino acid levels measured with intracerebral microdialysis in the model of posttraumatic epilepsy induced by intracortical iron injection. Epilepsy Res. 2001 Feb; 43(2):135-44.
    Fathollahi Y., Motamedi F., Semnanian S., Zardoshti M., Repeated administration of pentylenetetrazol alters susceptibility of rat hippocampus to primed-burst stimulation: evidence from in vitro study on CA 1 of hippocampal slices. Brain Res 1996; 738(1): 138-41
    Feng Z.Y., Anlysis of Rat Electroencephalogram during Slow Wave Sleep and Transition Sleep Using Wavelet Transform, Acta Biochimica Biophisica Sinica, 2003; 35(8):741-746
    Fiacro J., Francisco, V., Jose, C.R., Francisco, E.V., Marcos, V., Hector, P., 1999. Seizures induced by penicillin microinjections in the mesencephalic tegmentum, Epilepsy Research, 38: 33-44.
    Fishman R.A., Active transport and the blood-brain barrier to penicillin and related orgnic acids. Trans Am Neurol Assoc. 1964; 89:51-5.
    Furuya Y., Kagaya T., Nishizawa Y., Ogura H., Differential effects of the strychnine-insensitive glycine site antagonist (+)-HA-966 on the hyperactivity and the disruption of prepulse inhibition induced by phencyclidine in rats. Brain Res. 1998; 781(1-2): 227-35.
    Futamachi, K.J., Prince, D.A., Effects of penicillin on an excitatory synapse, Brain Research, 1975, 100: 589-597.
    
    
    Gerozissis K., De Saint Hilaire Z., Orosco M., Rouch C., Nicolaidis S., Changes in hypothalamic prostaglandin E2 may predict the occurrence of sleep or wakefulness as assessed by parallel EEG and microdialysis in the rat. Brain Res. 1995 Aug 21;689(2):239-44.
    Gibbs J.W., Sombati S., Delorenzo R.J., Coulter D.A., Physiological and pharmacological alterations in postsynaptic GABA_A receptor function in a hippocampal culture model of chronic spontaneous seizure. J Neurophysiol, 1997; 77:2139
    Gilbert M.E., Mack C.M., Field potential recordings in dentate gyrus of anesthetizedrats: stability of baseline, Hippocampus, 1999,9:277-287.
    Gorji A., Madeja M., Straub H., Kohling R., Speckmann E.J., Lowering of the potassium concentration induces epileptiform activity in guinea-pig hippocampal slices. Brain Res 2001; 908(2): 130-9
    Gramatte T., Schmidt J., The effect of early postnatal hypoxia on the development of locomotor activity in rats. Biomed Biochim Acta 1986; 45(4): 523-9
    Greenamyre J.T., The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol, 43:1058
    Greaney M.D., Marshall D.L., Bailey B.A., Acworth I.N., Improved method for the routine analysis of acetylcholine release in vivo: quantitation in the presence and absence of esterase inhibitor. J Chromatogr 1993; 622(2): 125-35
    Grimaldi B.L., The central role of magnesium deficiency in Tourette's syndrome: causal relationships between magnesium deficiency, altered biochemical pathways and symptoms relating to Tourette's syndrome and several reported comorbid conditions. Med Hypotheses. 2002; 58(1): 47-60.
    Hall S., Milne B., Jhamandas K., Excitatory action of N-methyl-D-aspartate on the rat locus coeruleus is mediated by nitric oxide: an in vivo voltammetric study. Brain Res 1998; 796 (1-2) : 176-86
    Harajiri S., Wood G., Desiderio D.M., Analysis of proenkephalin A, proopiomelanocortin and protachykinin neuropeptides in human lumbar cerebrospinal fluid by reversed-phase high-performance liquid chromatography, radioimmunoassay and enzymolysis. J Chromatogr. 1992; 575(2) :213-22
    Hill D.W., Waiters F.H., Wilson T.D., Stuart J.D., High performance liquid chromatographic
    
    determination of amino acids in the picomole range. Anal Chem. 1979; 51(8): 1338-41.
    Horn, E., Eeling, K., 1993. Arrest of seizure series induced by an intracortical injection of penicillin in the awake rat, Pharm. Biochem. Behav., 45: 857-863.
    Horn, E., Esseling, K., Wagner, R., 1991. Time course of interictal EEG patterns induced by a penicillin injection into the olfactory cortex, Pharmacol. Biochem. Behav., 40: 351-357.
    Jarolimek W., Lewen A., Misgeld U., A furosemide-sensitive K~+-CIl~- cotransporter counteracts intracellular Cl~- accumulation and depletion in cultured rat midbrain neurons. J Neurosci. 1999; 19(12): 4695-704.
    Jourdain P., Nikonenko I., Alberi S., Muller D., Remodeling of hippocampal synaptic networks by a brief anoxia-hypoglycemia. J Neurosci 2002; 22 (8): 3108-16
    Joy R.M., Albertson T.E., NMDA receptors have a dominant role in population spike-paired pulse facilitation in the dentate gyrus of urethane-anesthetized rats, Brain Research, 1993, 26;604 (1-2):273-82.
    Kehr J., Yoshitake T., Wang F.H., Wynick D., Holmberg K., Lendahl U., Bartfai T., Yamaguchi M., Hokfelt T., Ogren S.O., Microdialysis in freely moving mice: determination of acetylcholine, serotonin and noradrenaline release in galanin transgenic mice. J Neurosci Methods 2001; 109(1): 71-80
    Kiloh L. G., McCoMAS A. J., Clinical Electroencephalography[M]. Fourth Edition. Butterworths. 1981
    Kovacs A., Mihaly A., Komaromi A., Gyengesi E., Szente M., Weiczner R., Krisztin-Peva B., Szabo G., Telegdy G., Seizure, neurotransmitter release, and gene expression are closely related in the striatum of 4-aminopyridine-treated rats. Epilepsy Res. 2003 Jun-Jul;55(1-2): 117-29.
    Kozhechkin, S.N., 2003. Comparative electroencephalographic evaluation of anxiolytics afobazol and diazepam in MR and MNRA inbred rats with different anxiety levels, Eksp Klin Farmakol., 66:38-41.
    Kral T., Luhmann H.J., Mittmann T., Heinemann U., Role of NMDA receptors and voltage-activated calcium channels in an in vitro model of cerebral ischemia. Brain Res 1993; 612(1-2): 278-88
    Li Y.M., Qu Y., Vandenbussche E., Arckens L., Vandesande F.,Analysis of extracellular
    
    gamma-aminobutyric acid, glutamate and aspartate in cat visual cortex by in vivo microdialysis and capillary electrophoresis-laser induced fluorescence detection. J Neurosci Methods. 2001; 105(2): 211-5.
    Lowenstein D.H., Recent advances related to basic mechanisms of epileptogenesis. Epilepsy Res (Suppl), 1996; 11: 45
    Ludvig N., Altura B.T., Fox S.E., Altura B.M., The suppressant effect of ethanol, delivered via intrahippocampal microdialysis, on the firing of local pyramidal cells in freely behaving rats. Alcohol. 1995 Sep-Oct; 12 (5): 417-21.
    Ludvig N., Tang H.M., Cellular electrophysiological changes in the hippocampus of freely behaving rats during local microdialysis with epileptogenic concentration of N-methyl-D-aspartate. Brain Res Bull 2000; 51 (3) : 233-40
    Lux H.D., Potassium activity in the cat cortex: experimental epilepsy. Arch Psychiatr Nervenkr. 1976; 221(3): 227-44.
    Marijtje, L.A.J., Clementina, M.R., Jan, E., Willie, J.S., Anke, S., Anton, M.L.C., 2000. The influence of diazepam on the electroencephalogram evoked potential interrelation in rats, Neurosci. Lea., 293: 83-86.
    Marrosu F., Portas C., Mascia M.S., Casu M.A., Fa M., Giagheddu M., Imperato A., Gessa G.L., Microdialysis measurement of cortical and hippocampal acetyicholine release during sleep-wake cycle in freely moving cats. Brain Res. 1995 Feb 13;671(2):329-32
    Michael Unser, Akram Aldroubi, A review of wavelet in biomedical applications, Proceedings of the IEEE, 1996, 84:626-638
    Muller M., Science, medicine, and the future: Microdialysis, B.M.J. 2002 Mar 9; 324(7337):588-91
    Muthuswamy J., Thakor N.V., Spectral analysis methods for neurological signals, Journal of Neuroseience Methods, 1998, 83:1-14
    O'Shaughnessy D., Gerber C.J., Damage induced by systemic kainic acid in rats is dependent upon seizure aetivity—a behavioral and morphological study. Neurotoxicology 1986; 7 (3) : 187-202
    Otoom S.A., Alkadhi K.A., Epileptiform activity of veratridine model in rat brain slices: effects of antiepileptic drugs. Epilepsy Res. 2000; 38(2-3): 161-70.
    
    
    Park S.P., Lopez-Rodriguez F., Wilson C,L., Maidment N., Matsumoto Y., Engel J. Jr., In vivo microdialysis measures of extracellular serotonin in the rat hippocampus during sleep-wakefulness. Brain Res. 1999 Jul 3;833(2):291-6
    Peinado J.M., McManus K.T., Myers R.D., Rapid method for micro-analysis of endogenous amino acid neurotransmitters in brain perfusates in the rat by isocratic HPLC-EC. J Neurosci Methods 1986; 18(3): 269-76
    Portas C.M., Bjorvatn B., Ursin R., Serotonin and sleep/wake cycle:special emphasis on microdialysis studies, Progress in Neurobiology, 2000; 60: 13-35.
    Pycock C.J., Horton R.W., Dopamine-dependent hyperactivity in the rat following manipulation of GABA mechanisms in the region of the nucleus accumbens. J Neural Transm 1979; 45(1): 17-33
    Ribak C.E., Epilepsy hypothesis, Science 1987; 238:1292-1293.
    Richards D.A., Morrone L.A., Bagetta G., Bowery N.G., Effects of alpha-dendrotoxin and dendrotoxin K on extracellular excitatory amino acids and on electroencephalograph spectral power in the hippocampus of anaesthetised rats. Neurosci Lett. 2000 Nov 3 ;293 (3): 183-6.
    Rick J.T., Milgram N.W., Instability of dentate gyrus field potentials in awake and anesthetized rats, Hippocampus, 1999,9:333-339.
    Santhakumar V., Ratzliff A.D., Jeng J., Toth Z., Soltesz I., Long-term hyperexcitability in the hippocampus after experimental head trauma, Ann Neurol 2001 ; 50 (6) : 708-17
    Sakowitz O.W., Unterberg A.W., Stover J.F., Neuronal activity determined by quantitative EEG and cortical microdialysis is increased following controlled cortical impact injury in rats. Acta Neurochir Suppl. 2002; 81:221-3.
    Samsonova, N.A., Rekhtman, M.B., Glebov, R.N., Kryzhanovskii, G.N., 1979. Effect of diazepam on the Na, K-ATPase state in a penicillin-induced hyperactivity focus in the cerebral cortex. Biull. Eksp. Biol. Med., 88: 655-659.
    Sang-Hee Woo, Hack-Seang Kim, Inhibition of diazepam on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity, Pharmacological research, 44 (6) :2001; 467-472.
    Schneiderman J.H., The role of long-term potentiation in persistent epileptiform burst-induced
    
    hyperexcitability following GABAA receptor blockade. Neuroscience 1997; 81(4): 1111-22
    Shen E.Y., Lai Y.J., In vivo microdialysis study of excitatory and inhibitory amino acid levels in the hippocampus following penicillin-induced seizures in mature rats. Acta Paediatr Taiwan. 2002 Nov-Dec ; 43(6):313-8.
    Shou, C.H., Feng, Z.Y., Wang, J., Zheng, X.X., 2002. The inhibitory effects ofjujuboside A on rat hippocampus in vivo and in vitro, Planta Med., 68: 799-803.
    Shou, C.H., Wang, J., Zheng, X.X., Guo, D.W., 2001. Inhibitory effects of Jujuboside A on penicillin sodium induced hyperactivity in rat hippocampal CA1 area in vitro, Acta Pharmacol. Sin., 22: 986-990.
    Shouse M.N., Staba R.J., Saquib S.F., Farber P.R., Monoamines and sleep: microdialysis findings in pons and amygdala. Brain Res. 2000 ; 860 (1-2): 181-9.
    Soderpalm, B., 2002. Anticonvulsants: aspects of their mechanisms of action, Eur. J Pain, 6( Suppl A): 3-9.
    Stale, L. (1991). The use of microdialysis in pharmacokinetics and pharmacodynamics. In: T.E. Robinson and J.B. Justice (Eds.), Microdialysis in the Neurosciences (pp. 3-22). Amsterdam: Elsevier Science.
    Strecker R.E., Nalwalk J., Dauphin L.J., Thakkar M.M., Chen Y., Ramesh V., Hough L.B., McCarley R.W., Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience. 2002; 113 (3): 663-70.
    Su, S., Zhang, H.Y., Zheng, X.X., 2003. Soring the sleep stages of rat based on the gravity frequency and complexity measure, Chinese Pharamcol. Bulletin, 19: 949-953.
    Theoret Y., Brown A., Fleming S.P., et al., Hippocampal field potential: a microcomputer aided comparison of amplitude and integral, Brain Research Bulletin, 1984, 12: 589-595.
    Thomas P.M., Phillips J.P., Delanty N., O'Connor W.T., Elevated extraceilular levels of glutamate, aspartate and gamma-aminobutyric acid within the intraoperative, spontaneously epileptiform human hippocampus. Epilepsy Res. 2003 Apr;54(1):73-9.
    Ticku, M.K., Benzodiazepine-GABA receptor-ionophore complex, Current concepts. Neuropharmacol., 1983; 22:1459-1470.
    Ungerstedt, U. (1991). Introduction to intracerebral microdialysis. In: T.E. Robinson and J.B.
    
    Justice (Eds.), Microdialysis in the Neurosciences (pp.3-22). Amsterdam: Elsevier Science.
    Uysal, H., Kuli, P., Caglar, S., Inan, L.E., Akarsu, E.S., Palaoglu, O., Ayhan, I.H., 1996. Antiseizure activity of insulin: insulin inhibits pentylenetetrazole, penicillin and kainic acid-induced seizures in rats, Epilepsy Research, 25:185-190.
    Wang, X.Y., etc., Profiles of glutamate and GABA efflux in core versus peripheriral zones of focal cerebral ischemia in mice, Neuroscience Letters, 2001, (313): 121-124.
    Watson P.L., Andrew R.D., Effects of micromolar and nanomolar calcium concentrations on non-synaptic bursting in the hippocampal slice. Brain Res 1995; 700(1-2): 227-34
    Wolfgang Klimesch, EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis, Brain Research Reviews, 1999, 29:169-195
    Woo, S.H. and Kim, H.S., Inhibition of diazepam on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity. Pharnacol. Res., 2001; 44, 467-472.
    Yang Y., Li Q., Miyashita H., Yang T., Shuaib A., Different dynamic patterns of extracellular glutamate release in rat hippocampus after permanent or 30-min transient cerebral ischemia and histological correlation. Neuropathology 2001 Sep; 21 (3): 181-7
    Ye, W.L., 1988. High performance liquid chromatographic determination of amino acids in brain by precolumn derivatization with o-phthaldialdehyde, Acta Physiologica Sin., 40:308-313.
    Zhang, M., Ning, G.M., Shou, C.H., Lu, Y.J., Hong, D.H., Zheng, X.X., 2003. Inhibitory effect of jujuboside A on glutamate-mediated excitatory signal pathway in hippocampus, Planta Med., 69:692-695
    Zhang Y.Y., Li P.F., Li D., Effect of Ginkgo biloba leaf extract on electroencephalography of rat with cerebral ischemia and reperfusion, Acta Pharmacol Sin, 2003, 24(2): 157-162.
    包新民,舒斯云,大鼠脑立体定位图谱[M],北京:人民卫生出版社,1991
    陈怀琛,王朝英,高西全等译,数字信号处理及其MATLAB实现[M],北京:电子工业出版社,1998
    陈奇主编,中药药理研究方法学[M],北京:人民卫生出版社,1993
    陈维益主编,英汉医学辞典,上海科学技术出版社,1996,第二版
    丁敏,柱前衍生高效液相色谱法分析脑脊液氨基酸[J],上海医学检验杂志,1995,10(1):24—25
    
    
    方文贤,中药药理研究实验设计浅析[J],中国中药杂志,1996,121(6):361-363
    封洲燕,郑筱祥,大鼠皮层脑电和海马电位的复杂度和功率谱分析[J],航天医学与医学工程,2002,15(4):276-280
    封洲燕,郭殿武等,酸枣仁皂甙A镇静和抗惊厥作用试验[J],浙江大学学报:医学版,2002,31(2):103-106
    高鸿翔,张烈雄,褪黑素对大鼠海马神经元谷氨酸所致毒性的拮抗作用[J],生理学报,1999年,第51卷,第4期
    顾拥军,倪文,包维丽,程介士,反相高效液相色谱荧光法测定氨基酸类神经递质[J],上海医科大学学报,1995,22(3):210—212
    关卓,苗莉,张万琴:脑透析术—测定神经递质和神经肽释放的一种新技术[J],中国应用生理学杂志,1997,13(2),185—187
    郭胜民,范晓雯,宋少刚等,酸枣仁总皂甙中枢抑制作用研究[J],西北药学杂志,1996,11(4):166-168
    韩太真,吴馥梅主编,学习与记忆的神经生物学[M],北京:北京医科大学、中国协和医科大学联合出版社,1998
    郝光荣主编,实验动物学[M],上海:第二军医大学出版社,1999第一版
    洪庚辛,曹斌,酸枣仁研究进展[J],中药通报,1987,12(8):51-53
    胡昌勤,金少鸿,高效液相色谱中的误差分析[J],中国抗生素杂志.1993;18(4):312-318
    黄建国,武延祥,杨世兴译,现代谱估计原理与应用[M],北京:科学出版社,1994
    黄铁华,Peter T.Kissinger,微柱液相色谱—电化学法测定鼠脑微透析液中神经传递物质[J],分析化学,1998,26(6):748-751
    蒋袁絮,余建强,大鼠脑缺血再灌注对脑生物电变化的影响,宁夏医学院学报[J],1998,20(4):1-3
    李海生,于利人,王安林,酸枣仁单方注射液对猫多导睡眠图描记的影响[J],武警医学院学报,2000,9(1):21-23.
    李宁,吴建中,蒋京生,脑缺血时海马细胞外液中兴奋性氨基酸的变化[J],中国病理生理杂志,1993:9(6)
    李仪奎,中药药理实验方法学[M],上海:上海科学技术出版社,1991
    李树新,李中华,库宝善,家兔睡眠时相自动分析系统的建立[J],中国药理学通报,1996:12(5):429-430
    
    
    林高翔,傅善中,脑电功率谱分析和双波谱分析技术在麻醉深度监测中的研究[J],华夏医学,2001,14卷,第6期
    娄松年,冯宝麟,夏丽英,生、炒酸枣仁水煎剂镇静、安眠作用的比较[J],中成药研究,1987,2:18-20
    梅镇彤,学习和记忆的神经生物学[M],上海:上海科技教育出版社,1997:38-44.
    庞懿综述,单胺类神经递质与脑缺血[J],昆明医学院学报1999年,第20卷,第一期
    靳照宇,库宝善,姚海燕等,一种新的大鼠睡眠自动分析系统[J],中国药理学通报,1999;15(5):411-412
    邱亿腾,朱冬生,王伟光,蔡小梅,张小玲,林晓卿,言语型学习困难儿童脑电功率谱分析[J],实用医学杂志,1999年 第15卷 第8期
    屈志炜,刘云,张均田,用高效液相色谱电化学检测器测定大小鼠脑内单胺类物质的研究[J],中国医学科学院学报,1987,9(5):371-375
    谭郁玲主编,临床脑电图与脑电地形图学[M],人民卫生出版社,1999第一版
    唐爱国,吴轰,高洁生等,高效液相色谱—电化学检测法同时测定血浆中5—羟色胺和5—羟吲哚乙酸[J],色谱,1995,13(6):473
    王伯扬,神经电生理学[M],北京:高等教育出版社,1991 第二版
    王莉莉,郭治安,赵德化等,高效液相色谱法测定血小板释放的5—HT[J],色谱,1999,17(2),223-224
    王晓菲,罗晓星,周四元,RP—HPLC法检测海马脑片灌流液中氨基酸类神经递质[J],J Fourth Mil Med Univ,2002,23(5):426-428
    吴树勋,张建新,徐涛,酸枣(仁、叶、肉)与酸枣皂甙A对中枢神经系统作用的实验研究[J],中国中药杂志,1993,18(11):685-687
    吴新全,周井泉,沈元隆,信号与系统——时域、频域分析及MATLAB软件的应用[M],北京:电子工业出版社,1999
    肖成华,吴逊,黄敏文,鲁云兰,卡马西平对脑电活动影响的动态观察与定量研究[J],中华神经杂志,1998年2月第31卷第1期
    徐科,神经生物学纲要[M],北京:科学出版社,2000第一版
    许绍芬,神经生物学[M],上海:上海医科大学出版社,1999第二版
    徐叔云,卞如濂,陈修主编,药理学实验方法学[M],人民卫生出版社,第三版
    杨世杰主编,药理学[M],人民卫生出版社,2001年8月第一版
    
    
    叶惟泠,邻苯二甲醛衍生化高效液相色谱法分析脑氨基酸[J],生理学报,1988;40(3):308—313
    曾小鲁,辜清,戴惠娟,海马的形态结构与生理功能[J],生物学通报,1996,31(3):1-3
    张丰德 樊廷玉:现代生物学技术[M],南开大学出版社,1995
    张家俊,陈文为,中药酸枣仁、龙齿、石昌蒲对小鼠脑组织单胺类神经递质及其代谢产物的影响[J],北京中医药大学学报,1995;18(6):64-66
    张贤达,现代信号处理[M],北京:清华大学出版社,1995
    张振民,周未艾,蔡振华,崔树青,中国乒乓球世界冠军运动员脑功能特征研究[J],中国运动医学杂志,2002年9月,第21卷,第5期
    赵秋华,岳云,于代华,芮燕,龙健晶,氯胺酮和咪唑安定麻醉下脑皮层谷氨酸含量的变化:活体脑微透析研究[J],临床麻醉学杂志,2001 17(7):381-384
    芮燕,于代华,岳云,赵秋华,异氟醚和NMDA拮抗剂AP5与脑皮层谷氨酸含量变化的研究[J],中华麻醉学杂志,2001;21(3):173-176
    邹冈主编,基础神经药理学,科学出版社,第二版,1999
    朱国庆,钟明奎,张景行,越乐章,柯道平,王敏,施蕾,5-羟色胺和环磷酸腺苷对睡眠的影响[J],中国药理学通报,1999;15(2):141-143
    朱林,朱家壁:微透析取样技术及其在药代动力学中的应用[J],国外医学—药学分册,2002,29(5):296-301
    朱彭龄,云自厚,谢光华著,现代液相色谱[M],兰州大学出版社,1989年第一版
    朱晓峰,赵西龙,朱长庚等,马桑内酯对培养大鼠大脑皮质神经元胞内游离钙的作用[J],Acta Pharmaclolgica Sinica 1998,4:336-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700