心迷走节前神经元氨基酸能传入的相互影响及P物质和开胃素的调制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心率和心功能的调节是由心迷走神经主导的。心迷走节前神经元(CVN)主要位于延髓疑核(NA),少部分位于迷走背核(DMNV)以及疑核与迷走背核之间的中间带。CVN因缺乏“起搏细胞”样特性而不能自主性发放,它们的活动完全依赖其突触传入。CVN接受兴奋性谷氨酸能和胆碱能传入,以及抑制性GABA能和甘氨酸能传入。
     研究CVN突触传入的相互作用和调制对理解这些神经元的神经调控是非常重要的。既往的研究发现CVN的兴奋性和抑制性氨基酸能突触传入都可被烟碱受体激活所易化,而且呼吸性窦性心律的产生部分由GABA能突触传递的胆碱能易化所引起。已知,氨基酸能神经是CVN的主要突触传入,然而,它们是否、以及如何在调节这些神经元中相互作用尚不了解。这一问题如果放在癫痫病理背景下考虑,变得尤其重要。癫痫发作与抑制性突触传递下降有关,但癫痫发作时CVN的发放行为模式目前尚不知道。因此,本研究的第一个目的是探讨CVN的兴奋性和抑制性氨基酸能突触传入之间的相互作用,并验证“CVN在癫痫诱导条件下以痫样(seizure-like)模式发放”的假说。
     许多神经肽可通过作用于中枢调节心率和心功能。而包括心血管疾病在内的某些疾病,其发生发展与特定神经肽在中枢的释放和结合力改变有关。而有些神经肽已被发现通过调制CVN氨基酸能突触传入影响心迷走活动。
     Orexin-A和orexin-B是一族新的神经肽成员,由外侧下丘脑和穹隆周围的神经元产生。有证据表明Orexin参与心率和心功能的中枢迷走控制,但在突触水平其机制尚不清楚。Orexin是否对CVN的GABA能和甘氨酸能突触传入有不同的调制作用,并由此使两种抑制性突触传入对CVN产生不同的调节,也缺乏研究。本研究的第二个目的是研究orexin-A对CVN的GABA能和甘氨酸能突触传入的调制作用。
     P物质(SP)早被发现与心率和心功能的中枢迷走调控有关。但在突触水平,对SP如何影响CVN的活动所知甚少。这一问题如果与一些重要心血管疾病如心肌缺血和高血压一起考虑,就显得更为重要。心肌缺血和高血压患者伴有心迷走张力和心率变异性降低,其程度与心性猝死发生率的升高相关。心肌缺血和高血压时内脏传入末梢释放SP增加、与脑干神经核的结合力升高。但是,关于中枢SP浓度和结合力的变化是否与呼吸性心律变异性的降低有关尚无证据。本研究的第三个目的是研究SP是否可通过直接作用于CVN、或作用于CVN的氨基酸能突触传入来影响这些神经元的活动;研究SP是否可影响CVN抑制性突触传入的吸气性增强,并由此改变心律的呼吸性变异。
     实验在新生SD幼年大鼠进行。通过在心脏基底部脂肪垫或心包内注射rhodamine逆行标记CVN。在脑片用荧光鉴定CVN,并用膜片钳方法研究。在一些有自主呼吸节律的脑片,还通过抑制性突触传入的吸气性增强这一特征鉴定CVN。
     实验结果和结论如下:
     1.支配迷走背核内CVN的GABA能神经元接受紧张性谷氨酸能调控,而支配疑核内CVN的GABA能神经元很少或不接受紧张性谷氨酸能调控。这些结果提示迷走背核内CVN的调控与疑核内CVN的调控是不同的。这种差异可能使疑核内CVN和迷走背核内CVN在心率和心功能的迷走调控中起不同的作用。
     2.在阻断抑制性突触传递条件下,CVN在电压钳下产生间歇性兴奋性内向电流,或在电流钳下产生间歇性痫样放电。CVN的这种痫样激活与舌下神经运动神经元的痫样放电同步。这些结果提供了新的证据,提示癫痫时CVN可能以痫样模式发放。而这种发放模式可能与癫痫病人发作时的神经源性发作性心动过缓、心跳骤停、甚至猝死有关。
     3.Orexin-A剂量依赖性地增加CVN的GABA能和甘氨酸能自发性抑制性突触后电流(sIPSCs)的频率,且甘氨酸能sIPSCs对Orexin-A的反应比GABA能sIPSCs更为敏感,提示这两类突触传入都能抑制CVN,但在心迷走功能的突触调控中可能有不同的作用。
     4.P物质增强CVN的GABA能和甘氨酸能突触传入,并减弱这些突触传入的吸气性增强。提示P物质可抑制心迷走活动,并抑制心迷走活动的呼吸性变异。这一机制可能与心肌缺血和高血压时心迷走活动减弱、心率变异性降低有关。
The physiological control of heart rate and cardiac functions is dominated by the activity of the parasympathetic nerves. Preganglionic cardiac vagal neurons (the CVNs) are primarily located in the nucleus ambiguus (NA), although some can also be found in the dorsal motor nucleus of the vagus (DMNV) and in the intermediate zone between the NA and the DMNV. The CVNs are intrinsically silent, and their activity relies completely on their synaptic inputs. The CVNs receive excitatory glutamatergic and cholinergic inputs, and inhibitory GABAergic and glycinergic inputs.
     Studying the interaction and modulation of the synaptic inputs of the CVNs are critically important in understanding neural control of these neurons. Previous both excitatory and inhibitory amino acidergic inputs of the CVNs have been proved to be facilitated by nicotinic cholinergic receptors, and the nicotinic facilitation of the GABAergic inputs has been proved to be related to the genesis of respiratory sinus arrhythmia. However the amino acidergic inputs, the major synaptic inputs of the CVNs, have not been well understood with regard to whether and how they interact each other in controlling these neurons. This issue becomes particularly significant if considered under the background of epilepsy or seizures, since little is known about the firing behavior of the CVNs during epileptic attacks, which are well known to be related to decreased function of inhibitory neurotransmission. Thus, the first purpose of the present study is to investigate the interaction between the excitatory and the inhibitory amino acidergic inputs of the CVNs, and to test the hypothesis that the CVNs fire in seizure-like pattern under seizure-evoking condition.
     Many neuropeptides regulate heart rate and cardiac functions through their central actions; and altered central release and binding of certain neuropeptides are related to some diseases including cardiovascular disorders. Some neuropeptides have been proved to affect cardiac vagal activity by modulating the amino acidergic inputs of the CVNs.
     Orexin-A and orexin-B, also known as hypocretin-1 and hypocretin-2, are members of a new family of neuropeptides synthesized in the lateral hypothalamus and perifornical area neurons. Some evidence suggests that orexins might have a role in the parasympathetic control of heart rate and cardiac functions. However, the mechanisms by which orexins affect the CVNs are not clear at the synaptic level, and it is not known whether the GABAergic inputs and the glycinergic inputs are differentially regulated by orexins, and by which to play different roles in the control of the CVNs. The second purpose of the present study is to evaluate the effects of orexin-A on the glycinergic and the GABAergic inputs of the CVNs.
     Substance P (SP) has long been indicated to be involved in the vagal control of heart rate and cardiac functions. However, little is known about how SP alters the activity of the CVNs at synaptic level. This issue is more significant if considered with some important cardiovascular diseases such as myocardial ischemia and hypertension. Myocardial ischemia and hypertension are known to have diminished cardiac vagal tone and heart rate variability (including the respiratory-related), which have been well proved to be correlated with increased incidence of sudden cardiac death. It has also been found that these diseases have increased SP release from visceral afferents and enhanced SP binding in brainstem nuclei. However whether the increased central SP concentration and enhanced central SP binding are related to the diminished respiratory-related heart rate variability is not known. The third purpose of the present study is to test whether SP affects the CVNs directly or by acting on their amino acidergic inputs, and whether SP affects the respiratory-related enhancement of the inhibitory amino acidergic inputs, and by which to alter the respiratory-related heart rate variability.
     The CVNs were retrogradedly labeled by injecting rhodamine into the fat pads of the heart or into the cardiac sac of newborn rats. The CVNs were identified by presence of fluorescence in brainstem slices and studied using patch-clamp. In some slices with respiratory-like rhythm the CVNs were functionally identified by presence of inspiratory-related augmentation of their inhibitory inputs.
     Following are the results and conclusions:
     1. The GABAergic neurons preceding the CVNs in the DMNV are tonically excited by glutamatergic inputs, whereas the GABAergic neurons preceding the CVNs in the NA receive little, if any, glutamatergic control. These findings indicated that the CVNs in the DMNV are differentially regulated from the CVNs in the NA, which may be a possible mechanism that enables the CVNs in the DMNV to play different roles from those in the NA in the parasympathetic control of heart rate and cardiac functions.
     2. Blockade of inhibitory neurotransmission evoked intermittent seizure-like activation of the CVNs, as was recorded as intermittent excitatory inward currents (IEICs) under voltage clamp and intermittent seizure-like firing under current clamp. The seizure-like activation of the CVNs was in synchrony with that of the hypoglossal motor neurons. These results have given new evidence that the CVNs might fire in a seizure-like pattern during epileptic attack, which might be responsible for the neurogenic ictal bradyarrhythmia, cardiac asystole, or even the sudden deaths of patients of epilepsy.
     3. Orexin-A dose-dependently increased the frequency of both the glycinergic and the GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) of the CVNs; the glycinergic neurons preceding the CVNs were more sensitive to orexin-A than the GABAergic neurons preceding the CVNs, which might indicate that these two kinds of inhibitory neurons play different roles in the synaptic control of the CVNs.
     4. SP enhanced the GABAergic and the glycinergic inputs of the CVNs, and diminished the inspiratory-related augmentation of these inputs. These results suggested that SP inhibits cardiac vagal activity and diminishes its respiratory-related variability, which might be related to the weakened cardiac vagal tone and heart rate variability in myocardial ischemia and hypertension.
引文
1. Loewy AD, Spyer KM. Central Regulation of Autonomic Functions [M]. New York: Oxford University Press, 1990: 68-87.
    2. Cheng Z, Powley TL. Nucleus ambiguus projections to cardiac ganglia of rat atria: an anterograde tracing study [J]. J Comp Neurol, 2000, 424(4): 588-606.
    3. Standish A, Enquist LW, Escardo JA, Schwaber JS. Central neuronal circuit innervating the rat heart defined by transneuronal transport of pseudorabies virus [J]. 1995, J Neurosci, 15(3 Pt 1): 1998-2012.
    4. Standish A, Enquist LW, Schwaber JS. Innervation of the heart and its central medullary origin defined by viral tracing [J]. Science, 1994, 263(5144): 232-234.
    5. Mendelowitz D. Firing properties of identified parasympathetic cardiac neurons in nucleus ambiguus [J]. Am J Physiol, 1996, 271(6 Pt 2): H2609-2614.
    6. Willis A, Mihalevich M, Neff RA, Mendelowitz D. Three types of postsynaptic glutamatergic receptors are activated in DMNX neurons upon stimulation of NTS [J]. Am J Physiol, 1996. 271(6 Pt 2): R1614-1619.
    7. Neff RA, Mihalevich M, Mendelowitz D. Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus [J]. Brain Res, 1998a, 792(2): 277-282.
    8. Mendelowitz D. Nicotine excites cardiac vagal neurons via three sites of action [J]. Clin Exp Pharmacol Physiol, 1998, 25(6): 453-456.
    9. Wang J, Irnaten M, Neff RA, Venkatesan P, Evans C, Loewy AD, Mettenleiter TC, Mendelowitz D. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus [J]. Ann N Y Acad Sci, 2001a, 940 ( ): 237-246.
    10.Wang J, Irnaten M, Mendelowitz D. Characteristics of spontaneous and evoked GABAergic synaptic currents in cardiac vagal neurons in rats [J]. Brain Res, 2001b, 889(1-2): 78-83.
    11. Wang J, Wang X, Irnaten M, Venkatesan P, Evans C, Baxi S, and Mendelowitz D. Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons [J]. J Neurophysiol, 2003, 89(5): 2473-2481.
    12. Neff RA, Humphrey J, Mihalevich M, Mendelowitz D. Nicotine enhances presynaptic and postsynaptic glutamatergic neurotransmission to activate cardiac parasympathetic neurons [J]. Circ Res, 1998b, 83(12) :1241-1247.
    13. Wang J, Irnaten M, Mendelowitz D. Agatoxin-IVA-sensitive calcium channels mediate the presynaptic and postsynaptic nicotinic activation of cardiac vagal neurons [J]. J Neurophysiol, 2001c, 85(1): 164-168.
    14. Neff RA, Wang J, Baxi S, Evans C, Mendelowitz D. Respiratory sinus arrhythmia: endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons [J]. Circ Res, 2003, 93(6): 565-572.
    15. Ficker DM, So EL, Shen WK, Annegers JF, O' Brien PC, Cascino GD, Belau PG. Population-based study of the incidence of sudden unexplained death in epilepsy [J]. Neurology, 1998, 51: 1270-1274.
    16. Jay GW, Leestma JE. Sudden death in epilepsy. A comprehensive review of the literature and proposed mechanisms [J]. Acta Neurol Scand (Suppl), 1981, 82: 1-66.
    17. Leutmezer F, Schernthaner C, Lurger S, Potzelberger K, Baumgartner C. Electrocardiographic changes at the onset of epileptic seizures [J]. Epilepsia, 2003, 44(3): 348-354.
    18. Schernthaner C, Lindinger G, Potzelberger K, Zeiler K, Baumgartner C. Autonomic epilepsy—the influence of epileptic discharges on heart rate and rhythm [J]. Wien Klin Wochenschr, 1999, 111(10): 392-401.
    19. Mondon K, Charbonnier B, Hommet C, Corcia P, Autret A, de Toffol B. Ictal bradycardia followed by cardiac asystole: a case report [J]. Epileptic Disord, 2002, 4(4): 261-264.
    20. Tinuper P, Bisulli F, Cerullo A, Carcangiu R, Marini C, Pierangeli G, Cortelli P. Ictal bradycardia in partial epileptic seizures: autonomic investigation in three cases and literature review [J]. Brain, 2001, 124(): 2361-2371.
    21.Seeck M, Blanke O, Jallon P, Picard F, Zaim S. Symptomatic postictal cardiac asystole in a young patient with partial seizures [J]. Europace, 2001, 3(3): 247-252.
    22. Kelly AM, Porter CJ, McGoon MD, Espinosa RE, Osborn MJ, Hayes DL. Breath-holding spells associated with significant bradycardia: successful treatment with permanent pacemaker implantation [J]. Pediatrics, 2001, 108(3): 698-702.
    23. Fuhr P, Leppert D. Neuroimages. Cardiac arrest during partial seizure [J]. Neurology, 2000, 54(10): 2026.
    24. Locatelli ER, Varghese JP, Shuaib A, Potolicchio SJ. Cardiac asystole and bradycardia as a manifestation of left temporal lobe complex partial seizure [J]. Ann Intern Med, 2000, 132(): 165-166.
    25. Nashef L, Walker F, Allen P, Sander JW, Shorvon SD, Fish DR. Apnoea and bradycardia during epileptic seizures: relation to sudden death in epilepsy [J]. J Neurol Neurosurg Psychiatry, 1996, 600 : 297-300.
    26. Wang J, Irnaten M, Venkatesan P, Evans C, Mendelowitz D. Arginine vasopressin enhances GABAergic inhibition of cardiac parasympathetic neurons in the nucleus ambiguus [J]. Neuroscience, 2002, 111(3): 699-705.
    27. Venkatesan P, Wang J, Evans C, Irnaten M, Mendelowitz D. Endomorphin-2 inhibits GABAergic inputs to cardiac parasympathetic neurons in the nucleus ambiguus [J]. Neuroscience, 2002a, 113(4): 975-83.
    28. Venkatesan P, Wang J, Evans C, Irnaten M, Mendelowitz D. Nociceptin inhibits gamma-aminobutyric acidergic inputs to cardiac parasympathetic neurons in the nucleus ambiguus [J]. J Pharmacol Exp Ther 2002b, 300(1) : 78-82.
    29. Venkatesan P, Baxi S, Evans C, Neff R, Wang X, Mendelowitz D. Glycinergic inputs to cardiac vagal neurons in the nucleus ambiguus are inhibited by nociceptin and mu-selective opioids [J]. J Neurophysiol, 2003, 90(3): 1581-1588.
    30. de Lecea L, Kilduff T, Peyron C, Gao X, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity [J]. Proc Natl Acad Sci USA, 1998, 95(): 322-327.
    31.Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior [J]. Cell, 1998, 92(): 573-585.
    32. Burdakov D, Liss B, Ashcroft FM. Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium - calcium exchanger [J]. J Neurosci, 2003, 23(): 4951-4957.
    33. van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin [J]. J Neurosci, 1998, 18() : 7962-7971.
    34.Wu M, Zhang Z, Leranth C, Xu C, van den Pol AN, Alreja M. Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition [J]. J Neurosci, 2002, 22(): 7754-7765.
    35.Matsumura K, Tsuchihashi T, Abe I. Central orexin-A augments sympathoadrenal outflow in conscious rabbits [J]. Hypertension, 2001,37 0: 1382-1387.
    36.Samson WK, Gosnell B, Chang JK, Resch ZT, Murphy TC. Cardiovascular regulatory actions of the hypocretins in brain [J]. Brain Res, 1999, 831 () : 248-253.
    37. Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kannan H. Sympathetic and cardiovascular actions of orexins in conscious rats [J]. Am J Physiol, 1999, 277(): R1780-1785.
    38. Antunes VR, Brailoiu GC, Kwok EH, Scruggs P, Dun NJ. Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro [J]. Am J Physiol Regul Integr Comp Physiol, 2001, 281 (): R1801-1807.
    39. Chen CT, Hwang LL, Chang JK, Dun NJ. Pressor effects of orexins injected intracisternally and to rostral ventrolateral medulla of anesthetized rats [J]. Am J Physiol Regul Integr Comp Physiol, 2000, 278 (): R692 - 697.
    40. Machado BH, Bonagamba LG, Dun SL, Kwok EH, Dun NJ. Pressor response to microinjection of orexin/hypocretin into rostral ventrolateral medulla of awake rats [J]. Regul Pept, 2002, 104(): 75-81.
    41.Ciriello J, de Oliveira CV. Cardiac effects of hypocretin-1 in nucleus ambiguus [J]. Am J Physiol Regul Integr Comp Physiol, 2003, 284(): R1611-1620.
    42.de Oliveira CV, Rosas-Arellano MP, Solano-Flores LP, Ciriello J. Cardiovascular effects of hypocretin-1 in nucleus of the solitary tract [J]. Am J Physiol Heart Circ Physiol, 2003, 284(): H1369-1377.
    43. Smith PM, Connolly BC, Ferguson AV. Microinjection of orexin into the rat nucleus tractus solitarius causes increases in blood pressure [J]. Brain Res, 2002, 950 (): 261-267.
    44. Dergacheva 0, Wang X, Huang ZG, Bouairi E, Stephens C, Gorini C, et al. Hypocretin 1 (orexin A) facilitates inhibitory and diminishes excitatory synaptic pathways to cardiac vagal neurons in the nucleus ambiguus [J]. J Pharmacol Exp Ther, 2005, 314(3): 1322-1327.
    45. Fujiki N, Yoshida Y, Ripley B, Honda K, Mignot E, Nishino SCA. Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation [J]. Neuroreport, 2001, 12(): 993-997.
    46. John J, Wu MF, Maidment NT, Lam HA, Boehmer LN, Patton M, et al. Developmental changes in CSF hypocretin-1 (orexin-A) levels in normal and genetically narcoleptic Doberman pinschers [J]. J Physiol, 2004, 560(): 587-592.
    47. Kiyashchenko LI, Mileykovskiy BY, Maidment N, Lam HA, Wu MF, John J, et al. Release of hypocretin (orexin) during waking and sleep states [J]. J Neurosci, 2002, 22(): 5282-5286.
    48.Massari VJ, Johnson TA, Gillis RA, Gatti PJ. What are the roles of substance P and neurokinin-1 receptors in the control of negative chronotropic or negative dromotropic vagal motoneurons? A physiological and ultrastructural analysis [J]. Brain Res, 1996, 715(1-2): 197-207.
    49. Massari VJ, Johnson TA, Llewellyn-Smith IJ, Gatti PJ. Substance P nerve terminals synapse upon negative chronotropic vagal motoneurons [J]. Brain Res, 1994, 660(2): 275-87.
    50. Agarwal SK, Calaresu FR. Enkephalins, substance P and acetylcholine microinjected into the nucleus ambiguus elicit vagal bradycardia in rats [J]. Brain Res, 1991, 563(1-2): 203-208.
    51. Massari VJ, Shirahata M, Johnson TA, Lauenstein JM, Gatti PJ. Substance P immunoreactive nerve terminals in the dorsolateral nucleus of the tractus solitarius: roles in the baroreceptor reflex [J]. Brain Res, 1998, 785(2): 329-340.
    52. Gatti PJ, Shirahata M, Johnson TA, Massari VJ. Synaptic interactions of substance P immunoreactive nerve terminals in the baro- and chemoreceptor reflexes of the cat [J]. Brain Res, 1995, 693(1-2): 133-147.
    53. Abdala AP, Haibara AS, Colombari E. Cardiovascular responses to substance P in the nucleus tractus solitarii: microinjection study in conscious rats [J]. Am J Physiol (Heart Circ Physiol), 2003, 285(2): H891-898.
    54. Feldman PD. Neurokininl receptor mediation of the vasodepressor effects of substance P in the nucleus of the tractus solitarius [J]. J Pharmacol Exp Ther, 1995, 273 (): 617-623.
    55. Kubo T, Kihara M. Blood pressure modulation by substance P in the rat nucleus tractus solitarius [J]. Brain Res, 1987, 413(): 379-383.
    56. Hua F, Ardell JL, Williams CA. Left vagal stimulation induces dynorphin release and suppresses substance P release from the rat thoracic spinal cord during cardiac ischemia [J]. Am J Physiol (Regul Integr Comp Physiol), 2004, 287(6): R1468-1477.
    57. Hua F, Ricketts BA, Reifsteck A, Ardell JL, Williams CA. Myocardial ischemia induces the release of substance P from cardiac afferent neurons in rat thoracic spinal cord [J]. Am J Physiol (Heart Circ Physiol), 2004, 286(5): H1654-1664.
    58. Gao W, Li H, Ra Z, Ju G. Distribution of SPR-like immunoreactivity in the medullary visceral zone of the rat and changes following acute myocardial ischemia induced by intravenous injection of vasopressin [J]. J Hirnforsch, 1998, 39(2): 129-135.
    59. Shigematsu K, Niwa M, Kurihara M, Castren E, Saavedra JM. Alterations in substance P binding in brain nuclei of spontaneously hypertensive rats [J]. Am J Physiol, 1987, 252(2 Pt 2): H301-306.
    60.Shigematsu K, Niwa M, Saavedra JM. Increased density of substance P binding sites in specific brainstem nuclei of spontaneously hypertensive rats [J]. Brain Res, 1986, 370(2): 383-387.
    61. Irnaten, M., Neff, R. A., Wang, J., Loewy, A. D., Mettenleiter, T. C., Mendelowitz, D. Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP [J]. J Neurophysiol, 2001, 85(1): 435-438.
    62. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals [J]. Science, 1991, 254(5032): 726-729.
    63. Grkovic I, Fernandez K, McAllen RM, Anderson CR. Misidentification of cardiac vagal pre-ganglionic neurons after injections of retrograde tracer into the pericardial space in the rat [J]. Cell Tissue Res, 2005,321(3): 335-340.
    64. Chen Y, Li M, Liu H, Wang J. The airway-related parasympathetic motoneurons in the ventrolateral medulla of newborn rats were dissociated anatomically and in functional control [J]. Exp Physiol, 2006, 92(): 99-108.
    65. Kruszewska B, Lipski J & Kanjhan R. Anelectrophysiological and morphological study of esophageal motoneurons in rats [J]. Am J Physiol Regul Integr Comp Physiol, 1994, 266 (): R622-R632.
    66. Blinder KJ, Dickerson LW, Gray AL, Lauenstein JM, Newsome JT, Bingaman MT, Gatti PJ, Gillis RA, Massari VJ. Control of negative inotropic vagal preganglionic neurons in the dog: synaptic interactions with substance P afferent terminals in the nucleus ambiguus? [J]. Brain Res, 1998, 810(1-2): 251-256.
    67.Ciriello J, Caverson, MM. and Polosa C. Function of the ventrolateral medulla in the control of the circulation [J]. Brain Res, 1986, 396(): 359-391.
    68. Geis GS, Kozelka JW, Wurster RD. Organization and reflex control of vagal cardiomotor neurons [J]. J Auton Nerv Syst, 1981, 3(2-4): 437-450.
    69. Lathers CM, Schraeder PL, Weiner FL. Synchronization of cardiac autonomic neural discharge with epileptogenic activity: the lockstep phenomenon [J]. Electroencephalogr Clin Neurophysiol, 1987, 67(): 247-259.
    70. Evans C, Wang J, Neff R, Mendelowitz D. Hypoxia recruits a respiratory-related excitatory pathway to brainstem premotor cardiac vagal neurons in animals exposed to prenatal nicotine [J]. Neuroscience, 2005, 133(4): 1073-1079.
    71.Brockhaus J, Ballanyi K. Anticonvulsant A(1) receptor mediated adenosine action on neuronal networks in the brainstem-spinal cord of newborn rats [J]. Neuroscience, 2000, 96(2): 359-371.
    72.Shao XM, Feldman JL. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Botzinger complex: differential roles of glycinergic and GABAergic neural transmission [J]. J Neurophysiol, 1997, 77(4): 1853-1860.
    1.McAllen RM,Spyer KM.1976.The location of cardiac vagal preganglionic motoneurones in the medulla of the cat.J Physiol 258(1):187-204.
    2.McAllen RM,Spyer KM.1978.Two types of vagal preganglionic motoneurones projecting to the heart and lungs.J Physiol 282:353-364.
    3.Ciriello J,Calaresu FR.1980.Distribution of vagal cardioinhibitory neurons in the medulla of the cat.Am J Physiol 238(1):R57-64.
    4.Nosaka S,Yasunaga K,Tamai S.1982.Vagal cardiac preganglionic neurons:distribution,cell types,and reflex discharges.Am J Physiol 243(1):R92-98.
    5.Stuesse SL,Powell KS.1982.Cardiac vagal preganglionic fibers in neonatal rats:a comparison with cervical vagal components.Neurosci Lett.34(1):7-12.
    6.Mendelowitz D,Kunze DL.1991.Identification and dissociation of cardiovascular neurons from the medulla for patch clamp analysis.Neurosci Lett 132(2):217-221.
    7.Takanaga A,Hayakawa T,Tanaka K,Kawabata K,Maeda S,Seki M.2003.Immunohistochemical characterization of cardiac vagal preganglionic neurons in the rat.Auton Neurosci 106(2):132-137.
    8. Corbett EK, Saha S, Deuchars J, McWilliamPN, Batten TF. 2003. Ionotropic glutamate receptor subunit immunoreactivity of vagal preganglionic neurones projecting to the rat heart. Auton Neurosci 105(2):105-117.
    9. Izzo PN, Deuchars J, Spyer KM. 1993. Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine. J Comp Neurol 327(4): 572-83.
    10. Ter Horst GJ, Hautvast RW, De Jongste MJ, Korf J. 1996. Neuroanatomy of cardiac activity-regulating circuitry: a transneuronal retrograde viral labelling study in the rat. Eur J Neurosci 8(10):2029-2041.
    11. Ter Horst GJ, Van den Brink A, Homminga SA, Hautvast RW, Rakhorst G, Mettenleiter TC, De Jongste MJ, Lie KI, Korf J. 1994. Transneuronal viral labelling of rat heart left ventricle controlling pathways. Neuroreport. 4(12):1307-1310. 1993. Erratum in: Neuroreport 5(4):531.
    12. Standish A, Enquist LW, Escardo JA, Schwaber JS. 1995. Central neuronal circuit innervating the rat heart defined by transneuronal transport of pseudorabies virus. J Neurosci 15(3 Pt 1):1998-2012.
    13. Standish A, Enquist LW, Schwaber JS. 1994. Innervation of the heart and its central medullary origin defined by viral tracing. Science 263(5144): 232-234.
    14. Corbett EK, Batten TF, Kaye JC, Deuchars J, McWilliamPN. 1999. Labelling of rat vagal preganglionic neurones by carbocyanine dye Dil applied to the heart. Neuroreport 10(6):1177-1181.
    15. Chen Y, Lin D, Ohmori Y, Naito J. 1999. Localization of sympathetic, parasympathetic and sensory neurons innervating the heart of the Beijing duck by means of the retrograde transport of horseradish peroxidase. J Vet Med Sci 61(1): 1-5.
    16. Cabot JB, Carroll J, Bogan N. 1991. Localization of cardiac parasympathetic preganglionic neurons in the medulla oblongata of pigeon, Columba livia: a study using fragment C of tetanus toxin. Brain Res 544(1): 162-168.
    17. Hopkins DA, Gootman PM, Gootman N, Armour JA. 1997. Anatomy of medullary and peripheral autonomic neurons innervating the neonatal porcine heart. J Auton Nerv Syst 64(2-3):74-84.
    18. Todo K. 1977. Vagal preganglionic innervation of the cat heart—an attempt to identify the medullary "heart area" by the retrograde axoplasmic transport of horseradish peroxidase. Jpn Circ J 41(12): 1341-1352.
    19. Geis GS, Wurster RD. 1980. Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Res 182(1):19-30.
    20. Chuang KS, Liu WC, Liou NH, Liu JC. 2004. Horseradish peroxidase localization of sympathetic postganglionic and parasympathetic preganglionic neurons innervating the monkey heart. Chin J Physiol. 47(2):95-99. 2004. Erratum in: Chin J Physiol 47(3): 160.
    21. Geis GS, Kozelka JW, Wurster RD. 1981. Organization and reflex control of vagal cardiomotor neurons. J Auton Nerv Syst 3(2-4):437-450.
    22. Hsieh JH, Chen RF, Wu JJ, Yen CT, Chai CY. 1998. Vagal innervation of the gastrointestinal tract arises from dorsal motor nucleus while that of the heart largely from nucleus ambiguus in the cat. J Auton Nerv Syst. 70(1-2) :38-50.
    23. Nosaka S, Yamamoto T, Yasunaga K. 1979. Localization of vagal cardioinhibitory preganglionic neurons with rat brain stem. J Comp Neurol 186(1):79-92.
    24. Bennett JA, Kidd C, Latif AB, McWilliam PN. 1981. A horseradish peroxidase study of vagal motoneurones with axons in cardiac and pulmonary branches of the cat and dog. Q J Exp Physiol 66(2):145-154.
    25. Hopkins DA, Armour JA. 1982. Medullary cells of origin of physiologically identified cardiac nerves in the dog. Brain Res Bull 8(4): 359-65.
    26. Ciriello J, Calaresu FR. 1982. Medullary origin of vagal preganglionic axons to the heart of the cat. J Auton Nerv Syst 5(1):9-22.
    27. Maqbool A, Batten TF, McWilliamPN. 1991. Ultrastructural Relationships Between GABAergic Terminals and Cardiac Vagal Preganglionic Motoneurons and Vagal Afferents in the Cat: A Combined HRP Tracing and Immunogold Labelling Study. Eur J Neurosci 3(6):501-513.
    28. Ruggiero DA, Zhao N, Anwar M, Sica AL. 2004. Organization of the newborn piglets vagal motor complex: insights into integrated autonomic control mechanisms. Auton Neurosci 115(1-2):41-53.
    29. Batten TF. 1995. Immunolocalization of putative neurotransmitters innervating autonomic regulating neurons (correction of neurones) of cat ventral medulla. Brain Res Bull 37(5):487-506.
    30. Massari VJ, Johnson TA, Gillis RA, Gatti PJ. 1996. What are the roles of substance P and neurokinin-1 receptors in the control of negative chronotropic or negative dromotropic vagal motoneurons? A physiological and ultrastructural analysis. Brain Res 715(1-2):197-207.
    31. Massari VJ, Johnson TA, Gatti PJ. 1995. Cardiotopic organization of the nucleus ambiguus? An anatomical and physiological analysis of neurons regulating atrioventricular conduction. Brain Res 679(2):227-240.
    32. Gatti PJ, Johnson TA, Massari VJ. 1996. Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? J Auton Nerv Syst 57(1-2):123-127.
    33. Blinder KJ, Moore CT, Johnson TA, John Massari V. 2007. Central control of atrio-ventricular conduction and left ventricular contractility in the cat heart: Synaptic interactions of vagal preganglionic neurons in the nucleus ambiguus with neuropeptide Y-immunoreactive nerve terminals. Auton Neurosci 131(1-2):57-64.
    34. Blinder KJ, Johnson TA, Massari VJ. 2005. Enkephalins and functionally specific vagal preganglionic neurons to the heart: ultrastructural studies in the cat. Auton Neurosci 120(1-2)-.52-61.
    35. Blinder KJ, Johnson TA, John Massari V. 1998a. Negative inotropic vagal preganglionic neurons in the nucleus ambiguus of the cat: neuroanatomical comparison with negative chronotropic neurons utilizing dual retrograde tracers. Brain Res 804(2):325-330.
    36. Blinder KJ, Gatti PJ, Johnson TA, Lauenstein JM, Coleman WP, Gray AL, Massari VJ. 1998b. Ultrastructural circuitry of cardiorespiratory reflexes: there is a monosynaptic path between the nucleus of the solitary tract and vagal preganglionic motoneurons controlling atrioventricular conduction in the cat. Brain Res 785(1):143-157.
    37. Blinder KJ, Dickerson LW, Gray AL, Lauenstein JM, Newsome JT, Bingaman MT, Gatti PJ, Gillis RA, Massari VJ. 1998c. Control of negative inotropic vagal preganglionic neurons in the dog: synaptic interactions with substance P afferent terminals in the nucleus ambiguus? Brain Res 810(1-2):251-256.
    38. Massari VJ, Dickerson LW, Gray AL, Lauenstein JM, Blinder KJ, Newsome JT, Rodak DJ, Fleming TJ, Gatti PJ, Gillis RA. 1998. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals. Brain Res 802(1-2):205-220.
    39. Grkovic I, Fernandez K, McAllen RM, Anderson CR. 2005. Misidentification of cardiac vagal pre-gangl ionic neurons after injections of retrograde tracer into the pericardial space in the rat. Cell Tissue Res 321(3): 335-340.
    40. Chen Y, Wang J, Li M, and Liu H. 2006. The airway-related parasympathetic motoneurons in the ventrolateral medulla of newborn rats were dissociated anatomically and in functional control. Exp Physiol. 92: 99-108.
    41. Kruszewska B, Lipski J & Kanjhan R. 1994. Anelectrophysiological and morphological study of esophageal motoneurons in rats. Am J Physiol Regul Integr Comp Physiol 266: R622 - R632.
    42. Neff RA, Wang J, Baxi S, Evans C, Mendelowitz D. 2003. Respiratory sinus arrhythmia: endogenous activation of nicotinic receptors mediates respiratory modulation of brainstem cardioinhibitory parasympathetic neurons. Circ Res 93(6): 565-572.
    43. Chen HI, Chai CY. 1976. Integration of. the cardiovagal mechanism in the medulla oblongata of the cat. Am J Physiol 231(2):454-461.
    44. Mendelowitz D. 1996. Firing properties of identified parasympathetic cardiac neurons in nucleus ambiguus. Am J Physiol 271(6 Pt 2):H2609-2614.
    45. Mihalevich M, Neff RA, Mendelowitz D. 1996. Voltage-gated currents in identified parasympathetic cardiac neurons in the nucleus ambiguus. Brain Res 739(1-2):258-262.
    46. Neff RA, Mihalevich M, Mendelowitz D. 1998. Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus. Brain Res 792(2):277-282.
    47. Wang J, Irnaten M, Mendelowitz D. 2001. Characteristics of spontaneous and evoked GABAergic synaptic currents in cardiac vagal neurons in rats. Brain Res 889(1-2):78-83.
    48. Wang J, Wang X, Irnaten M, Venkatesan P, Evans C, Baxi S, Mendelowitz D. 2003. Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons. J Neurophysiol 89(5):2473-2481.
    49. Mendelowitz D. 1998. Nicotine excites cardiac vagal neurons via three sites of action. Clin Exp Pharmacol Physiol 25(6):453-456.
    50. Neff RA, Hansen MK, Mendelowitz D. 1995. Acetylcholine activates a nicotinic receptor and an inward current in dorsal motor nucleus of the vagus neurons in vitro. Neurosci Lett 195(3):163-166.
    51. Irnaten M, Neff RA, Wang J, Loewy AD, Mettenleiter TC, Mendelowitz D. 2001. Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP. J Neurophysiol 85(1):435-438.
    52. Mendelowitz D. 2000. Superior laryngeal neurons directly excite cardiac vagal neurons within the nucleus ambiguus. Brain Res Bull 51 (2): 135-138.
    53. Kinney HC, Filiano JJ, Harper RM. 1992. The neuropathology of the sudden infant death syndrome. A review. J. Neuropath. Exp Neurol 51:115-126.
    54.Spyer KM and Gilbey MP.1988.Cardiorespiratory interactions in heart-rate control.Ann NY fcad Sci 533:350- 357.
    55.Venkatesan P,Bail S,Evans C,Neff R,Wang X,Mendelowitz D.2003.Glycinergic inputs to cardiac vagal neurons in the nucleus ambiguus are inhibited by nociceptin and mu-selective opioids.J Neurophysiol 90(3):1581-1588.
    56.Venkatesan P,Wang J,Evans C,Irnaten M,Mendelowitz D.2002a.Endomorphin-2 inhibits GABiergic inputs to cardiac parasympathetic neurons in the nucleus ambiguus.Neuroscience 113(4):975-983.
    57.Venkatesan P,Wang J,Evans C,Irnaten M,Mendelowitz D.2002b.Nociceptin inhibits gamma-aminobutyric acidergic inputs to cardiac parasympathetic neurons in the nucleus ambiguus.J Pharmacol Exp Ther 300(1):78-82.
    58.Wang J,Irnaten M,Venkatesan P,Evans C,Mendelowitz D.2002.irginine vasopressin enhances GABAergic inhibition of cardiac parasympathetic neurons in the nucleus ambiguus.Neuroscience 111(3):699-705.
    59.Kamendi H,Dergacheva O,Wang X,Huang ZG,Bouairi E,Gorini C,Mendelowitz D.2006.NO differentially regulates neurotransmission to premotor cardiac vagal neurons in the nucleus ambiguus.Hypertension 48(6):1137-1142.
    60.陈咏华 王继江.心脏副交感节前神经元的研究进展.生理科学进展36(1):45-49,2005。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700