运动想象脑电信号处理与P300刺激范式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑机接口(BCI)不依赖于外围神经和肌肉组织,在大脑和外围设备之间建立一条独立的信息传输通道,是一种新兴的人机交互方式。BCI技术在助残、康复、辅助控制、神经机器人、娱乐等领域有着广泛的应用前景。
     在非植入式BCI研究中,基于头皮脑电(EEG)的采集方式具有无损伤、使用方便、设备便宜等优点,使得基于EEG的BCI技术具有很好的研究价值。用于BCI研究的EEG信号有多种模式,本文在充分研究各种模式特点的基础上,以运动想象脑电和P300电位为切入点,系统的研究了BCI系统构建、离线算法研究到在线实现的多个层面的问题,取得了较好的成果。
     BCI的研究需要一个系统的软硬件平台,为了快速构建一套BCI系统,论文对目前的软硬件平台进行了研究。经过比较和已有实验条件,利用Neuroscan脑电采集设备和BCI2000软件系统快速构建了一套在线BCI系统。通过对BC12000的二次开发,积累了一些在线实验的经验,为实验室后续研究创造了条件。
     信号处理算法将采集到的信号进行分析处理,识别出大脑意图并转换成控制指令,信号处理算法的好坏直接影响BCI系统性能。论文对BCI中的信号处理算法进行了研究,详细介绍了几种常用算法的原理和特点。针对BCI系统中存在的信息传输率较慢和脑电信号识别正确率较低的问题,对多通道四类运动想象脑电信号进行了研究,提出了一种基于共空间模式(CSP), Hilbert变换和支持向量机(SVM)的特征提取和分类算法。经过BCI竞赛数据的验证,该算法具有分类正确率高和时间开销小的特点,随着阈值的增大,平均分类正确率从87.22%提高到92.22%,但是时间开销增长到2.15倍,通过阈值的调节,在正确率和算法复杂度之间获得平衡。算法复杂度明显比采用多个SVM组合的多类分类算法要低,为实现算法的在线应用打下基础。
     传统对脑电信号的识别通常是用不同的信号处理算法,然后选择一个最好的解决方案。然而,不同的信号处理算法性能存在差异,相互之间存在互补信息。为了充分利用各个信号处理算法的互补信息,论文提出了一种基于置信系数的组合分类算法,对不同分类难易程度的样本采用不同的分类策略。样本越容易分类,则组合分类算法侧重于提高算法的执行速度;样本越难分类,则组合分类算法侧重于提高算法的分类正确率。在提高算法分类能力同时兼顾算法的时间开销。经过BCI竞赛数据的验证,提出的基于置信系数的组合分类算法比分量分类器的平均分类能力提高15.4%。
     基于P300的BCI是一类重要的BCI实现形式。自从Farwell和Donchin提出行列刺激范式(RCP)的P300字符输入系统以来,基于P300的BCI得到了广泛关注,研究人员从信号处理、刺激装置和实验范式等多个角度进行了广泛研究。论文则从实验范式角度进行了深入研究,提出了一种基于子矩阵的刺激范式(SBP),将整个字符矩阵划分为多个子矩阵,随机闪烁子矩阵中的一个字符,经过多次叠加,不仅可以提高脑电信号的信噪比,还能识别目标字符所在的子矩阵,显著提高了字符识别正确率和信息传输率。与RCP相比,SBP的最高实际信息传输率提升幅度达到10.8%。此外,SBP还具有不存在邻接干扰和双闪问题、子矩阵划分方式灵活、增加可选择的字符数量并不明显延长目标字符识别时间、更容易被受试者接受等优点。
     为了进一步提高SBP的信息传输率并实现BCI的在线实验,论文提出了一种自适应的在线BCI系统。通过设定一个阈值来实现对P300叠加次数的动态调节,因此,阈值算法的研究是自适应算法的重要部分。论文在分析SBP原理和P300成分分布特点基础上,提出了最大值法和类峭度法两种阈值算法,均获得了较好的实验结果,其中最大值法可以获得最高34.36bits/min的实际信息传输率,比棋盘格刺激范式(CBP)的实际信息传输率提高9.04%,比Jin等人的自适应系统(NFA)的实际信息传输率提高11.2%。
Brain computer interface (BCI) builds an independent communication channel between the brain and external devices without using brain's normal output pathways of peripheral nerves and muscles, and acts as a new interactive way. BCI technology has a widely application prospect in rehabilitation, auxiliary control, neurorobotics, entertainment and so on.
     In non-invasive BCI research, electroencephalography (EEG)-based BCIs are the most common for studies, because the recording method is safe, convenient and inexpensive. Various types of EEG signals have been used in BCIs. This thesis takes motor imagery EEG data and P300potential as key point, systematically describes the framework of the BCI, offline algorithm and online realization, and achieves some good results.
     BCI is a complex system integrating hardware and software platforms. Now, several hardware and general-purpose software are available to build an online system rapidly. On the base of platform comparison and existing experimental condition, Neuroscan hardware devices and BCI2000software are combined to build an online BCI system. The thesis provides some online experimental experiences for future research on BCI by the secondary development of BCI2000.
     Signal processing algorithm converts brain signals into control signals, the results of algorithm directly affect the performance of BCI system. The thesis presents a study on some frequently used signal processing method in detail. Due to the low information transfer rate and low recognition accuracy in BCI, the thesis proposes an algorithm based on common spatial pattern (CSP), Hilbert transformation and support vector machine (SVM) for feature extraction and classification of multi-channel four-class motor imagery EEG signals. With the datasets of BCI competition III, experimental results show that the proposed algorithm produces high classification accuracy and less time consumption, moreover, classification result can be further improved at the expense of algorithmic complexity by the threshold adjustment. With the increase of threshold, average classification accuracy is improved from87.22%to92.22%while the time consumption is increased to2.15times.
     To choose the best solution, different feature extraction and classification algorithms are usually considered in BCI experiment. However, there is complementary information between different methodologies or different features that can improve the classification performance. In order to use the complementary information efficiently, the confidence coefficient is proposed to determine classification difficulty levels of samples in a classifier, and then combination of multiple classifiers based on confidence coefficient is proposed in this thesis. The technique uses different classification strategies by measuring base classifier outputs values to utilize the complementary information. Meanwhile, the execution speed is taken into account. We perform comparative analysis of five feature extraction methods and their combinations on EEG signal from BCI competition IV. Experimental results show that the proposed combination method could utilize complementary information between multiple classifiers effectively. The average kappa value of our combination method is0.63which has15.38%of rising than that of all base classifiers.
     The P300event-related potential (ERP), with advantages of highly stability and not need initial training, is one of the most commonly used in BCI applications. The traditional row/column paradigm (RCP) that flashes an entire column or row of a visual matrix has succeeded in helping patients to spell words. However, the RCP remains subject to errors that slow communication, such as adjacency-distraction errors and double-flash errors. After extensive research, a new visual stimulus presentation paradigm called the submatrix-based paradigm (SBP) is proposed in this thesis. The SBP divide the whole keyboard matrix into several submatrices, and each submatrix flash in single display paradigm (SDP) mode and performs ensemble averaging method according to sequences separately. With an increasing number of sequences, SBP can detect the target submatrix and the attended item simultaneously. Compared with RCP, SBP can improve the practical bit rate by10.8%. Besides, the SBP has advantages of eliminating adjacency-distraction errors and double-flash errors, flexible division of matrix, better expansion and user acceptability.
     To further improve the information transfer rate and realize online BCI system, an adaptive SBP online BCI is proposed. The adaptive algorithms employ a threshold which dynamically limits the number of sequences. Two threshold algorithms named maximum value algorithm and pseudo-kurtosis algorithm are proposed and compared in the thesis. Online experimental results show that both adaptive algorithms are effective, and the highest practical bit rate of maximum value algorithm is34.36bits/min which is9.04%higher than that of checkerboard paradigm (CBP) and11.2%higher than that of Jin's n-flash adaptive system (NFA).
引文
[1]唐孝威,杜继曾,陈学群,等.脑科学导论[M].杭州:浙江大学出版社,2006.
    [2]Berger H. Uber das elektrenkephalogramm des menschen[J]. European Archives of Psychiatry and Clinical Neuroscience,1929,81(1):527-570.
    [3]Vidal J J. Toward direct brain-computer communication[J]. Annual Review of Biophysics and Bioengineering,1973,2:157-180.
    [4]Vidal J J. Real-time detection of brain events in EEG[J]. Proceedings of the IEEE,1977, 65(5):633-641.
    [5]Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology:a review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000,8(2):164-173.
    [6]曾华锋,石海明,刘昱东.美国正研制生物战士意欲夺取“制脑权”[N].科技日报,2012-3-20.
    [7]王毅军.基于节律调制的脑机接口系统—从离线到在线的跨越[D].北京:清华大学,2007.
    [8]周鹏.基于运动想象的脑机接口的研究[D].天津:天津大学,2007.
    [9]Nicolas-Alonso L F, Gomez-Gil J. Brain computer interfaces, a review[J]. Sensors,2012, 12(2):1211-1279.
    [10]Schlogl A, Kronegg J, Huggins J E, et al. Evaluation Criteria for BCI Research[M]// Dornhege G, Del R Millan J, Hinterberger T, et al. Toward Brain-Computer Interfacing. MIT Press,2007:327-342.
    [11]McFarland D J, Sarnacki W A, Wolpaw J R. Brain-computer interface (BCI) operation: optimizing information transfer rates[J]. Biological Psychology,2003,63(3):237-251.
    [12]Blankertz B, Muller K R, Krusienski D J, et al. The BCI competition. III:Validating alternative approaches to actual BCI problems[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14(2):153-159.
    [13]Pfurtscheller G, Neuper C, Guger C, et al. Current trends in Graz Brain-Computer Interface (BCI) research[J]. IEEE Transactions on Rehabilitation Engineering,2000,8(2):216-219.
    [14]Muller-Putz G R, Scherer R, Pfurtscheller G, et al. EEG-based neuroprosthesis control:a step towards clinical practice[J]. Neuroscience Letters,2005,382(1-2):169-174.
    [15]Scherer R, Lee F, Schlogl A, et al. Toward self-paced brain-computer communication: navigation through virtual worlds[J]. IEEE Transactions on Biomedical Engineering,2008, 55(2):675-682.
    [16]Scherer R, Schloegl A, Lee F, et al. The self-paced graz brain-computer interface:methods and applications[J]. Computational Intelligence and Neuroscience,2007:79826.
    [17]Haufe S, Treder M S, Gugler M F, et al. EEG potentials predict upcoming emergency brakings during simulated driving[J]. Journal of Neural Engineering,2011,8(5):56001.
    [18]Muller K R, Tangermann M, Dornhege G, et al. Machine learning for real-time single-trial EEG-analysis:from brain-computer interfacing to mental state monitoring[J]. Journal of Neuroscience Methods,2008,167(1):82-90.
    [19]Bensch M, Karim A A, Mellinger J, et al. Nessi:an EEG-controlled web browser for severely paralyzed patients[J]. Computational Intelligence and Neuroscience,2007:71863.
    [20]Berlin Brain-Computer Interface (BBCI)[EB/OL]. http://www.bbci.de/,2012-6-2.
    [21]Wolpaw J R, McFarland D J, Vaughan T M. Brain-computer interface research at the Wadsworth Center[J]. IEEE Transactions on Rehabilitation Engineering,2000,8(2): 222-226.
    [22]Wolpaw J R, McFarland D J, Vaughan T M, et al. The Wadsworth Center brain-computer interface (BCI) research and development program[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(2):204-207.
    [23]McFarland D J, Krusienski D J, Wolpaw J R. Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms[J]. Progress in Brain Research, 2006,159:411-419.
    [24]Krusienski D J, Wolpaw J R. Brain-computer interface research at the wadsworth center developments in noninvasive communication and control[J]. International Review of Neurobiology,2009,86:147-157.
    [25]Schalk G, McFarland D J, Hinterberger T, et al. BCI2000:a general-purpose brain-computer interface (BCI) system[J]. IEEE Transactions on Biomedical Engineering,2004,51(6): 1034-1043.
    [26]Cheng M, Gao X R, Gao S K, et al. Design and implementation of a brain-computer interface with high transfer rates[J]. IEEE Transactions on Biomedical Engineering,2002,49(10): 1181-1186.
    [27]Wang Y J, Zhang Z G, Gao X R, et al. Lead selection for SSVEP-based brain-computer interface[C]. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2004,6:4507-4510.
    [28]Jia C, Xu H L, Hong B, et al. A human computer interface using SSVEP-based BCI technology[C]. Proceedings of the 3rd International Conference on Foundations of Augmented Cognition, Beijing, China: Springer,2007,4565:113-119.
    [29]Wang Y J, Hong B, Gao X R, et al. Implementation of a brain-computer interface based on three states of motor imagery[C]. Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France,2007,2007: 5059-5062.
    [30]Zheng X X, Zhang S M, Liu J, et al. Brain-Machine Interfaces Researches in Rats[C]. Proceedings of the 7th Asian Control Conference, Hong Kong, China,2009,982-987.
    [31]Zhang H J, Dai J H, Zhang S M, et al. Neural Ensemble Decoding of Rat's Motor Cortex by Kalman Filter and Optimal Linear Estimation[C]. Proceedings of the 2009 2nd International Congress on Image and Signal Processing, Tianjin, China,2009,4452-4456.
    [32]Zhang Q S, Zhang S M, Lin J Y, et al. Building brain machine interfaces:From rat to monkey[C]. Proceedings of 2011 8th Asian Control Conference, Kaohsiung, Taiwan,2011, 886-891.
    [33]余靖静.中国科学家实现猴子大脑信号“遥控”机械手[N].新华网,2012-2-22.
    [34]吴边,苏煜,张剑慧,等.基于P300电位的新型BCI中文输入虚拟键盘系统[J].电子学报,2009,37(8):1733-1738.
    [35]Li Y, Zhang J H, Su Y, et al. P300 based BCI messenger[C]. Proceedings of the 2009 International conference on Complex Medical Engineering, Tempe,2009,26-30.
    [36]Zhang B, Wang Y J, Fuhlbrigge T. A review of the commercial brain-computer interface technology from perspective of industrial robotics[C]. Proceedings of the 2010 IEEE International Conference on Automation and Logistics, Hong Kong and Macau,2010, 379-384.
    [37]NeuroSky[EB/OL]. http://www.neurosky.com/,2012-6-2.
    [38]Emotiv Systems[EB/OL]. http://emotiv.com/,2012-6-2.
    [39]Ranky G N, Adamovich S. Analysis of a commercial EEG device for the control of a robot arm[C].2010 IEEE 36th Annual Northeast Bioengineering Conference, New York,2010.
    [40]OCZ Technology[EB/OL]. http://www.ocztechnology.com/,2012-6-2.
    [41]Nijholt A, Plass-Oude Bos D, Reuderink B. Turning Shortcomings into Challenges: Brain-Computer Interfaces for Games[J]. Entertainment Computing,2009,1:85-94.
    [42]Zhu D, Bieger J, Molina G G, et al. A survey of stimulation methods used in SSVEP-based BCIs[J]. Computational Intelligence and Neuroscience,2010,2010:1-12.
    [43]Pineda J A, Allison B Z, Vankov A. The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP's):toward a brain-computer interface (BCI)[J]. IEEE Transactions on Rehabilitation Engineering,2000,8(2):219-222.
    [44]Mason S G, Bashashati A, Fatourechi M, et al. A comprehensive survey of brain interface technology designs[J]. Annals of Biomedical Engineering,2007,35(2):137-169.
    [45]Bashashati A, Fatourechi M, Ward R K, et al. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals[J]. Journal of Neural Engineering, 2007,4(2):R32-R57.
    [46]Allison B Z, Brunner C, Kaiser V, et al. Toward a hybrid brain-computer interface based on imagined movement and visual attention[J]. Journal of Neural Engineering,2010,7(2): 26007.
    [47]Pfurtscheller G, Allison B Z, Brunner C, et al. The hybrid BCI[J]. Frontiers in Neuroscience, 2010,4:30.
    [48]Long J Y, Li Y Q, Wang H T, et al. A Hybrid Brain Computer Interface to Control the Direction and Speed of a Simulated or Real Wheelchair[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, in press.
    [49]Hinterberger T, Schmidt S, Neumann N, et al. Brain-computer communication and slow cortical potentials[J]. IEEE Transactions on Biomedical Engineering,2004,51(6): 1011-1018.
    [50]Wolpaw J R, McFarland D J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans[C]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(51):17849-17854.
    [51]Wikipedia. Human brain[EB/OL]. http://en.wikipedia.org/wiki/Human_brain,2012-6-5.
    [52]梅锦荣.神经心理学[M].北京:中国人民大学出版社,2011.
    [53]赵仑.ERP实验教程[M].天津:天津社会科学院出版社,2004.
    [54]Jasper H, Penfield W. Electrocorticograms in man:Effect of voluntary movement upon the electrical activity of the precentral gyrus[J]. European Archives of Psychiatry and Clinical Neuroscience,1949,183(1):163-174.
    [55]User Tutorial. EEG Measurement Setup[EB/OL]. http://www.bci2000.org/wiki/index.php/ User_Tutorial:EEG_Measurement_Setup.2012-6-2.
    [56]Niedermeyer E, Silva F L D. Electroencephalography:Basic Principles, Clinical Applications, and Related Fields[M]. Lippincott Williams & Wilkins,2004.
    [57]Wikipedia. Electroencephalography[EB/OL]. http://en.wikipedia.org/wiki/EEG,2012-6-5.
    [58]李洁.多模态脑电信号分析及脑机接口应用[D].上海:上海交通大学,2009.
    [59]Sitaram R, Weiskopf N, Caria A, et al. fMRl Brain-Computer Interfaces[J]. IEEE Signal Processing Magazine,2008,25(1):95-106.
    [60]Weiskopf N, Mathiak K, Bock S W, et al. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI)[J]. IEEE Transactions on Biomedical Engineering,2004,51(6):966-970.
    [61]Power S D, Kushki A, Chau T. Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity:toward a three-state NIRS-BCl[J]. BMC Research Notes,2012,5(1):141.
    [62]Hinterberger T, Weiskopf N, Veit R, et al. An EEG-driven brain-computer interface combined with functional magnetic resonance imaging (fMRI)[J]. IEEE Transactions on Biomedical Engineering,2004,51(6):971-974.
    [63]Bin G Y, Gao X R, Wang Y J, et al. VEP-based brain-computer interfaces:time, frequency, and code modulations[J]. IEEE Computational Intelligence Magazine,2009,4(4):22-26.
    [64]Momose K. Evaluation of an eye gaze point detection method using VEP elicited by multi-pseudorandom stimulation for brain computer interface[C]. Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France,2007,2007:5063-5066.
    [65]Odom J V, Bach M, Barber C, et al. Visual evoked potentials standard (2004)[J]. Documenta Ophthalmologica 2004,108(2):115-123.
    [66]Allison B Z, McFarland D J, Schalk G, et al. Towards an independent brain-computer interface using steady state visual evoked potentials[J]. Clinical Neurophysiology,2008, 119(2):399-408.
    [67]Birbaumer N, Elbert T, Canavan A G, et al. Slow potentials of the cerebral cortex and behavior[J]. Physiological Reviews.,1990,70(1):1-41.
    [68]Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed[J]. Nature,1999,398(6725):297-298.
    [69]王攀,沈继忠,施锦河.基于小波变换和时域能量熵的P300特征提取算法[J].仪器仪表学报,2011,32(6):1284-1289.
    [70]Duncan-Johnson C C, Donchin E. On quantifying surprise:the variation of event-related potentials with subjective probability[J]. Psychophysiology,1977,14(5):456-467.
    [71]Farwell L A, Donchin E. Talking off the top of your head:toward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography and Clinical Neurophysiology,1988,70(6):510-523.
    [72]Jin J, Allison B Z, Sellers E W, et al. An adaptive P300-based control system[J]. Journal of Neural Engineering,2011,8(3):36006.
    [73]Lenhardt A, Kaper M, Ritter H J. An adaptive P300-based online brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2008,16(2):121-130.
    [74]Takano K, Komatsu T, Hata N, et al. Visual stimuli for the P300 brain-computer interface:a comparison of white/gray and green/blue flicker matrices[J]. Clinical Neurophysiology,2009, 120(8):1562-1566.
    [75]Ikegami S, Takano K, Saeki N, et al. Operation of a P300-based brain-computer interface by individuals with cervical spinal cord injury[J]. Clinical Neurophysiology,2011,122(5): 991-996.
    [76]Guan C, Thulasidas M, Wu J K. High performance P300 speller for brain-computer interface[C]. Proceedings of the IEEE International Workshop on Biomedical Circuits and Systems,2004, S3.5.INV13-16.
    [77]Townsend G, Lapallo B K, Boulay C B, et al. A novel P300-based brain-computer interface stimulus presentation paradigm:moving beyond rows and columns[J]. Clinical Neurophysiology,2010,121(7):1109-1120.
    [78]Fazel-Rezai R, Abhari K. A region-based P300 speller for brain-computer interface[J]. Canadian Journal of Electrical and Computer Engineering,2009,34(3):81-85.
    [79]Shi J H, Shen J Z, Ji Y, et al. A submatrix-based P300 brain-computer interface stimulus presentation paradigm[J]. Journal of Zhejiang University-Science C-Computers & Electronics,2012,13(6):452-459.
    [80]Schreuder M, Blankertz B, Tangermann M. A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue[J]. PLoS One,2010,5(4):e9813.
    [81]Furdea A, Halder S, Krusienski D J, et al. An auditory oddball (P300) spelling system for brain-computer interfaces[J]. Psychophysiology,2009,46(3):617-625.
    [82]Kubler A, Furdea A, Halder S, et al. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients[C]. Proceedings of the Annals of the New York Academy of Sciences,2009,1157:90-100.
    [83]Brouwer A M, van Erp J B. A tactile P300 brain-computer interface[J]. Frontiers in Neuroscience,2010,4:19.
    [84]Mak J N, Arbel Y, Minett J W, et al. Optimizing the P300-based brain-computer interface: current status, limitations and future directions[J]. Journal of Neural Engineering,2011,8(2): 25003.
    [85]Pfurtscheller G, Lopes D S F. Event-related EEG/MEG synchronization and desynchronization:basic principles[J]. Clinical Neurophysiology,1999,110(11):1842-1857.
    [86]Thomas K P, Guan C, Lau C T, et al. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces[J]. IEEE Transactions on Biomedical Engineering,2009,56(11):2730-2733.
    [87]Wan B K, Liu Y G, Ming D, et al. Feature recognition of multi-class imaginary movements in brain-computer interface[C]. Proceedings of the IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems, Hong Kong,2009, 250-254.
    [88]Hwang H J, Kwon K, Im C H. Neurofeedback-based motor imagery training for brain-computer interface (BCI)[J]. Journal of Neuroscience Methods,2009,179(1):150-156.
    [89]Li J H, Zhang L Q. Active training paradigm for motor imagery BCI[J]. Experimental Brain Research,2012,219(2):245-254.
    [90]Jin J, Allison B Z, Brunner C, et al. P300 Chinese input system based on Bayesian LDA[J]. Biomedizinische Technik,2010,55(1):5-18.
    [91]Piccione F, Giorgi F, Tonin P, et al. P300-based brain computer interface:reliability and performance in healthy and paralysed participants[J]. Clinical Neurophysiology,2006,117(3): 531-537.
    [92]Kanoh S, Miyamoto K, Yoshinobu T. A P300-based BCI system for controlling computer cursor movement[C]. Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, USA,2011,2011:6405-6408.
    [93]Pires G, Nunes U. A Brain Computer Interface methodology based on a visual P300 paradigm [C]. Proceedings of the IEEE International Conference on Intelligent Robots and Systems, St. Louis, USA,2009,4193-4198.
    [94]Yue J W, Jiang J, Zhou Z T, et al. SMR-Speller: A novel Brain-Computer Interface spell paradigm[C]. Proceedings of the 3rd International Conference on Computer Research and Development, Shanghai, China,2011,187-190.
    [95]Lalor E C, Kelly S P, Finucane C, et al. Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment[J]. EURASIP Journal on Applied Signal Processing,2005,2005:3156-3164.
    [96]肖丹丹,官金安,肖贵贤.一种基于DSP的脑机接口硬件系统设计[J].现代科学仪器,2009,4(2):24-27.
    [97]王永,何庆华,田逢春,等.基于FPGA的脑机接口实时系统[J].电子技术应用,2009,35(4):133-136.
    [98]谢水清,杨阳,杨仲乐.脑-机接口中基于VxWorks的ARM嵌入式系统[J].中南民族大学学报(自然科学版),2004,23(1):42-45.
    [99]Schalk G, Mellinger J著,胡三清译.BC12000与脑机接口[M].北京:国防工业出版社,2011.
    [100]Renard Y, Lotte F, Gibert G, et al. OpenViBE:An Open-Source Software Platform to Design, Test, and Use Brain-Computer Interfaces in Real and Virtual Environments[J]. Presence-Teleoperators and Virtual Environments,2010,19(1):35-53.
    [101]Lecuyer A, Renard Y. OpenViBE:Open-Source Software for Brain-Computer Interfaces[N]. ERCIM News 78,2009,39-40.
    [102]Delorme A, Makeig S. EEGLAB:an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis[J]. Journal of Neuroscience Methods, 2004,134(1):9-21.
    [103]Delorme A, Mullen T, Kothe C, et al. EEGLAB, SIFT, NFT, BCILAB, and ERICA:new tools for advanced EEG processing[J]. Computational Intelligence and Neuroscience,2011, 2011:130714.
    [104]Vidaurre C, Sander T H, Schlogl A. BioSig:the free and open source software library for biomedical signal processing[J]. Computational Intelligence and Neuroscience,2011,2011: 935364.
    [105]Delorme A, Kothe C, Vankov A, et al. MATLAB-Based Tools for BCI Research[M]//Tan D S, Nijholt A. Brain-Computer Interfaces, Human-Computer Interaction Series. Springer Verlag,2010,241-259.
    [106]Muller-Putz G R, Breitwieser C, Cincotti F, et al. Tools for Brain-Computer Interaction:A General Concept for a Hybrid BCI[J]. Frontiers in Neuroinformatics,2011,5:30.
    [107]Brunner P, Bianchi L, Guger C, et al. Current trends in hardware and software for brain-computer interfaces (BCIs)[J]. Journal of Neural Engineering,2011,8(2):25001.
    [108]计瑜,沈继忠,施锦河.基于BSS的EEG信号中眼电伪迹的自动去除方法[J].浙江大学学报(工学版),(已录用).
    [109]Vijila C K S, Kanagasabapathy P, Johnson S, et al. Artifacts Removal in EEG Signal using Adaptive Neuro Fuzzy Inference System[C]. Proceedings of the International Conference of Signal Processing, Communications and Networking, Chennai, India,2007,589-591.
    [110]Yi J, Su F, Cai A. A hybrid RABWC-STF method for eye-blink removal from EEG[C]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey,2010,4288-4294.
    [111]Benkherrat M, Bouguerra R, Choufa T. Removal of Ocular Artifacts from Related Evoked Potentials using VSSLMS Adaptive Filter[C]. Proceedings of the International Conference on "Computer as a Tool", Warsaw,2007,349-352.
    [112]Shih E 1, Shoeb A H, Guttag J V. Sensor selection for energy-efficient ambulatory medical monitoring[C]. Proceedings of the 7th International Conference on Mobile Systems, Applications and Services, Cracow, Poland,2009,347-358.
    [113]Lal T N, Schroder M, Hinterberger T, et al. Support vector channel selection in BCI[J]. IEEE Transactions on Biomedical Engineering,2004,51(6):1003-1010.
    [114]Serby H, Yom-Tov E, Inbar G F. An improved P300-based brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(1):89-98.
    [115]Sellers E W, Donchin E. A P300-based brain-computer interface:initial tests by ALS patients[J]. Clin. Neurophysiol.,2006,117(3):538-548.
    [116]Krusienski D J, Sellers E W, Cabestaing F, et al. A comparison of classification techniques for the P300 Speller[J]. Clinical Neurophysiology,2006,3(4):299-305.
    [117]Kaper M, Meinicke P, Grossekathoefer U, et al. BCI Competition 2003--Data set IIb: support vector machines for the P300 speller paradigm[J]. IEEE Transactions on Biomedical Engineering,2004,51(6):1073-1076.
    [118]王攀.基于小波变换和多域融合的脑电信号特征提取[D].杭州:浙江大学,2011.
    [119]Schroder M, Lal T N, Hinterberger T, et al. Robust EEG channel selection across subjects for brain-computer interfaces [J]. EURASIP Journal on Applied Signal Processing,2005,19: 3103-3112.
    [120]Rakotomamonjy A, Guigue V, Mallet G, et al. Ensemble of SVMs for improving Brain Computer Interface P300 speller performances[C]. Proceedings of the 15th International Conference on Artificial Neural Networks, Warsaw, Poland,2005,3696:45-50.
    [121]McFarland D J, Anderson C W, Muller K R, et al. BCI Meeting 2005--workshop on BCI signal processing:feature extraction and translation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14(2):135-138.
    [122]Mensh B D, Werfel J, Seung H S. BCI Competition 2003--Data set la:combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals[J]. IEEE Transactions on Biomedical Engineering,2004, 51(6):1052-1056.
    [123]Anderson C W, Stolz E A, Shamsunder S. Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks[J]. IEEE Transactions on Biomedical Engineering,1998,45(3):277-286.
    [124]Wang P, Shen J Z, Shi J H. Research of P300 feature extraction algorithm based on Wavelet transform and Fisher distance[C]. Proceedings of the Third International Workshop on Education Technology and Computer Science. Wuhan, Hubei, China: 2011,47-50.
    [125]杨绿溪.现代数字信号处理[M].北京:科学出版社,2007.
    [126]Jansen B H, Boume J R, Ward J W. Autoregressive estimation of short segment spectra for computerized EEG analysis[J]. IEEE Transactions on Biomedical Engineering,1981,28(9): 630-638.
    [127]Krusienski D J, McFarland D J, Wolpaw J R. An evaluation of autoregressive spectral estimation model order for brain-computer interface applications[C]. Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, USA,2006,1:1323-1326.
    [128]Schlogl A, Lee F, Bischof H, et al. Characterization of four-class motor imagery EEG data for the BCI-competition 2005 [J]. Journal of Neural Engineering,2005,2(4):L14-L22.
    [129]McFarland D J, Wolpaw J R. Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis[J]. Journal of Neural Engineering, 2008,5(2):155-162.
    [130]郑治真,沈萍,杨选辉,等.小波变换及其MATLAB工具的应用[M].北京:地震出版社,2001.
    [131]Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [132]Wang G, Xu Y H, Li X L. Time-Frequency Thresholding: A New Algorithm In Wavelet Package Speech Enhancement[C]. Proceedings of the 1st International Congress on Image and Signal Processing, Sanya, China,2008,4:327-330.
    [133]Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE Transactions on Rehabilitation Engineering,2000, 8(4):441-446.
    [134]Tang Y, Tang J T, Gong A D. Multi-Class EEG Classification for Brain Computer Interface based on CSP[C]. Proceedings of the 1st International Conference on Biomedical Engineering and Informatics, Sanya, China,2008,2:469-472.
    [135]Ang K K, Chin Z Y, Zhang H H, et al. Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface[C]. Proceedings of the International Joint Conference on Neural Networks, Hong Kong,2008,2390-2397.
    [136]李明爱,刘净瑜,郝冬梅.基于改进CSP算法的运动想象脑电信号识别方法[J].中国生物医学工程学报,2009,28(2):161-165.
    [137]Wang Y J, Gao S K, Gao X R. Common Spatial Pattern Method for Channel Selelction in Motor Imagery Based Brain-computer Interface[C]. Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, China,2005,5:5392-5395.
    [138]Wu W, Gao X R, Gao S K. One-Versus-the-Rest(OVR) Algorithm:An Extension of Common Spatial Patterns(CSP) Algorithm to Multi-class Case[C]. Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, China,2005,2387-2390.
    [139]Chin Z Y, Ang K K, Wang C C, et al. Multi-class filter bank common spatial pattern for four-class motor imagery BCI[C]. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis,2009,571-574.
    [140]Lotte F, Congedo M, Lecuyer A, et al. A review of classification algorithms for EEG-based brain-computer interfaces [J]. Journal of Neural Engineering,2007,4(2):R1-R13.
    [141]杨淑莹.模式识别与智能计算-Matlab技术实现[M].北京:电子工业出版社,2008.
    [142]Muller K R, Anderson C W, Birch G E. Linear and nonlinear methods for brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003, 11(2):165-169.
    [143]Vapnik V N. Statistical learning theory[M]. New York:Jone Wiley & Sons,1998.
    [144]Xu P, Yang P, Lei X, et al. An enhanced probabilistic LDA for multi-class brain computer interface[J]. PLoS One,2011,6(1):e14634.
    [145]Boord P, Craig A, Tran Y, et al. Discrimination of left and right leg motor imagery for brain-computer interfaces[J]. Medical and Biological Engineering and Computing,2010, 48(4):343-350.
    [146]Dornhege G, Blankertz B, Curio G, et al. Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms[J]. IEEE Transactions on Biomedical Engineering,2004,51(6):993-1002.
    [147]Dornhege G, Blankertz B, Curi G, et al. Increase information transfer rates in BCI by CSP extension to multi-class[J]. Advances in Neural Information Processing Systems,2004,16: 733-740.
    [148]Obermaier B, Neuper C, Guger C, et al. Information transfer rate in a five-classes brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2001,9(3):283-288.
    [149]Wilson J A, Mellinger J, Schalk G, et al. A procedure for measuring latencies in brain-computer interfaces[J]. IEEE Transactions on Biomedical Engineering,2010,57(7): 1785-1797.
    [150]BCI competition III[DB/OL]. http://www.bbci.de/competition/ⅲ,2012-6-5.
    [151]Ghanbari A A, Kousarrizi M R N, Teshnehlab M, et al. Wavelet and Hilbert transform-based Brain Computer Interface[C]. Proceedings of the International Conference on Advances in Computational Tools for Engineering Applications, Beirut,2009,438-442.
    [152]Wang L, Xu G, Wang J, et al. Application of Hilbert-Huang transform for the study of motor imagery tasks[C]. Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, Canada,2008,3848-3851.
    [153]王璐,吴小培,高湘萍.四类运动想象任务的脑电特征分析及分类[J].计算机技术与发展,2008,18(10):23-26.
    [154]Shoaie Z, Esmaeeli M, Shouraki S B. Combination Of Multiple Classifiers With Fuzzy Integral Method for Classifying The EEG Signals in Brain-Computer Interface[C]. Proceedings of the International Conference on Biomedical and Pharmaceutical Engineering, Singapore,2006,157-161.
    [155]Liu C. Classifier combination based on confidence transformation[J]. Pattern Recognition, 2005,38(1):11-28.
    [156]Schapire R E. The strength of weak learnability[J]. Machine Learning,1990,5(2): 197-227.
    [157]付忠良.分类器线性组合的有效性和最佳组合问题的研究[J].计算机研究与发展,2009,46(7):1206-1216.
    [158]Sun S L, Zhang C S, Zhang D. An experimental evaluation of ensemble methods for EEG signal classification[J]. Pattern Recognition Letters,2007,28(15):2157-2163.
    [159]Rakotomamonjy A, Guigue V. BCI competition Ⅲ:dataset Ⅱ-ensemble of SVMs for BCI P300 speller[J]. IEEE Transactions on Biomedical Engineering,2008,55(3):1147-1154.
    [160]Brodu N, Lotte F, Lecuyer A. Comparative study of band-power extraction techniques for Motor Imagery classification[C]. Proceedings of the IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind and Brain, Paris,2011,1-6.
    [161]Yang R T, Gray D A, Ng B W, et al. Comparative analysis of signal processing in brain computer interface[C]. Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications, Xian, China,2009,575-580.
    [162]Hjorth B. EEG analysis based on time domain properties[J]. Electroencephalography and Clinical Neurophysiology,1970,29(3):306-310.
    [163]Vidaurre C, Kramer N, Blankertz B, et al. Time Domain Parameters as a feature for EEG-based Brain-Computer Interfaces[J]. Neural Networks,2009,22(9):1313-1319.
    [164]BCI competition IV[DB/OL]. http://www.bbci.de/competition/iv,2012-6-5.
    [165]Huang G, Liu G Q, Zhu X Y. BCI Competition 2008, Dataset iib[EB/OL]. http://www.bbci. de/competition/iv/results/ds2b/HuangGan_desc.pdf,2012-6-5.
    [166]Chin Z Y, Ang K K, Wang C C, et al. BCI Competition Ⅳ Dataset iib[EB/OL]. http://www. bbci.de/competition/iv/results/ds2b/ZhengYangChin_desc.pdf,2012-6-5.
    [167]Sutton S, Braren M, Zubin J, et al. Evoked-potential correlates of stimulus uncertainty [J]. Science,1965,150(3700):1187-1188.
    [168]Luck S J. An Introduction to the Event-related Potential Technique[M]. Cambridge, MA: MIT,2005.
    [169]Pires G, Castelo-Branco M, Nunes U. Visual P300-based BCI to steer a wheelchair: a Bayesian approach[C]. Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, Canada,2008,658-661.
    [170]Frye G E, Hauser C K, Townsend G, et al. Suppressing flashes of items surrounding targets during calibration of a P300-based brain-computer interface improves performance[J]. Journal of Neural Engineering,2011,8(2):25024.
    [171]Jin J, Sellers E W, Wang X. Targeting an efficient target-to-target interval for P300 speller brain-computer interfaces[J]. Medical and Biological Engineering and Computing,2012, 50(3):289-296.
    [172]Liu Y, Zhou Z, Hu D. Gaze independent brain-computer speller with covert visual search tasks[J]. Clinical Neurophysiology,2011,122(6):1127-1136.
    [173]Acqualagna L, Treder M S, Schreuder M, et al. A novel brain-computer interface based on the rapid serial visual presentation paradigm[C]. Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina,2010,2686-2689.
    [174]Liu Y, Zhou Z T, Hu D W. Comparison of stimulus types in visual P300 speller of brain-computer interfaces[C]. Proceedings of the 9th IEEE International Conference on Cognitive Informatics, Beijing, China,2010,273-279.
    [175]Mak J N, Wolpaw J R. Clinical Applications of Brain-Computer Interfaces:Current State and Future Prospects[J]. IEEE Reviews in Biomedical Engineering,2009,2:187-199.
    [176]Krusienski D J, Sellers E W, McFarland D J, et al. Toward enhanced P300 speller performance[J]. Journal of Neuroscience Methods,2008,167(1):15-21.
    [177]Schlogl A, Keinrath C, Zimmermann D, et al. A fully automated correction method of EOG artifacts in EEG recordings[J]. Clinical Neurophysiology,2007,118(1):98-104.
    [178]Hoffmann U, Vesin J M, Ebrahimi T, et al. An efficient P300-based brain-computer interface for disabled subjects[J]. Journal of Neuroscience Methods,2008,167(1):115-125.
    [179]Rivet B, Cecotti H, Perrin M, et al. Adaptive training session for a P300 speller brain-computer interface[J]. Journal of Physiology-Paris,2011,105(1-3):123-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700