分尺度复杂性及希尔伯特-黄变换在脑电分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脑是一个高度复杂的非线性非平稳系统,所以脑电图和皮层脑电图也是非线性非平稳信号,基于线性和平稳假设的分析方法尽管取得了一些重要的研究成果,但是无法对神经系统进行更加深入的解释。复杂性分析方法和时频分析方法为分析脑电分析提供了新的手段,本文第一部分对复杂性方法的粗粒化问题进行了研究,第二部分将希尔伯特—黄变换方法用于分析运动表象。
     Lempel-Ziv复杂性是一种实用的脑电分析方法,但现有的二值化方法会丢失部分原始信息。另外,在不同尺度下复杂性一般是不同的,计算小尺度下序列的复杂性,可以得到更多的信息,所以需要在不同尺度下计算信号的复杂性。增加符号数目可以减少信息损失但会增加符号序列长度和计算时间。本文提出了一种新的二值化方法,将原始信号分为多个区间,用“0”“1”表示序列在一定尺度范围内的下降和上升。这种方法在不增加符号数目的情况下减小信息损失并且可以计算不同尺度下的复杂性。以下工作证明了此方法的有效性:
     用叠加了正弦曲线的Logistic映射对这种方法进行了分析,分析结果显示此方法可以刻画在小尺度下序列的复杂性;将这一方法应用于区分文字和照片,实验发现随着复杂性计算尺度的减小,照片复杂性的增加大于文字复杂性的增加,这一结果表明不同尺度下的复杂性可以作为文字和照片分类的一个特征;对精神分裂症病人和正常人的脑电分析显示,在计算复杂性过程中选用小尺度下二值化方法同传统的二值化方法相比,可以降低误判率。
     运动表象分析是脑机接口(BCI)的一个分支,因为脑电是非平稳非线性信号,所以本文采用了一种全新的非平稳、非线性分析方法:希尔伯特—黄变换(HHT)分析运动表象。和其它分解方法不同,HHT的基函数来自数据本身,具有局部性、自适应性并且是数据驱动的。分析结果如下:
     在对BCI2005数据Ⅲb的分析过程中,在不同频率下观察到了事件相关去同步化(ERD)和事件相关同步化(ERS)现象。利用时频窗口内的振幅标准差和能量对想象的左手和右手进行分类,一名被试的分类误判率低于10%。发现了一名被试左右脑的不对称现象,在单独利用两个对称电极中的一个进行运动表象分类
Brain is a very complex non-linear system, and electroencephalograph (EEG) and electrocorticogram (ECoG) are also non-stationary and nonlinear in nature, signal processing methods based on linear and stationary assumptions, although has obtained important result, can not grasp the entire picture of neuroscience. Complexity and time-frequency analysis give us chances to analyze EEG by these entirely new methods, in the first part of this paper coarse graining of Lempel-Ziv complexity was analyzed and in the second part Hilbert-Huang transform was used to analyze motor imagery.Lempel-Ziv complexity is a useful method to analyze EEG, but current binary processing might lose some useful information of the original signal. In addition, complexity is different at different scales, and we can derive some useful information by calculating complexity at small scale, so sometimes we need to calculate Lempel-Ziv complexity at different scale. Increasing the number of symbol can decrease the information loss but need more data and time for calculation. In this paper we divide the original signal into more than two parts, "0" and "1" denote decrease and increase respectively. This new binary method can reduce the information loss and calculate Lempel-Ziv complexity at multi-scale but do not increase the number of symbol. The following works testify the validity of this new binary method:We test this method with Logistic map added by sine wave and have a good result when the added sine wave has low frequency; This new approach was also presented for distinguishing textual images from pictorial images and we found that the pictorial images' complexity had more significant increase than the textual images' complexity did when the calculating scale became small. The test shows that multi-scale Lempel-Ziv complexity can be used as an image classification method or as a feature of image classifier; Schizophrenia and normal EEG was classified by
    large-scale compleiity and small-seale complexity, the error rate of small-scale complexity is low than large-scale complexity.Motor imagery is a branch of brain computer interface (BCI). As EEG is non-stationary. Hilbert-Huang Transform (HHT), a novel approach for analyzing nonlinear and non-stationary signals, was presented to motor imagery analysis. The basis function of HHT comes from signal itself, the decomposition is local, self-adaptive and data driven. The results are as follows:When BCI2005 data Illb (EEG) was analyzed we observed event-related desynchronization (ERD) and event-related synchronization (ERS) at different frequency. Using standard deviation of amplitude and energy in time-frequency window as a feature to classify imagined left and right hand movement, the error of one subject is lower than 10%.One subject of data Illb has asymmetry phenomena, that is, only one of the two symmetry leads was used to classify two imagined movements, one can get error rate as low as 27.43% while the other get error as high as 37.69%.We use the same feature as used in data Illb to classify imagined tongue and left small finger movement (ECoG BCI2005 data I), the lowest error rate is 16.19% by featuring from one time-frequency window. Using standard deviation of time-frequency window from 7 electrodes, single frequency band and 11 continuous time windows as feature, the error rate can be as low as 11.87%. Compared with energy, the standard deviation of time-frequency window performs better. Surface Laplacian Filter is a good EEG preprocessing method, we use this method to preprocess ECoG but can not reduce error rate, this prompt us that not all method used in EEG can be used to analyze ECoG.
引文
1 孟欣.意识的定量刻划[D].复旦大学博士学位论文,2001.
    2 Miller R. Cortico-hippocampal interplay and the representation of contexts of the brain [M]. Springer Verlag, Berlin Heidelgerg, New York.
    3 王兆源,周龙旗.脑电信号的分析方法[J].第一军医大学学报,2000,20(2):189—190.
    4 J. Pardey, S. Roberts, L. Tarassenko. A review of parametric modelling techniques for EEG analysis[J]. Med. Eng. Phys., 1996, 18(1): 2-11.
    5 洪时中.非线性时间序列分析的最新进展及其在地球科学中的应用前景[J].地球科学进展,1999,14(6):559—565.
    6 吴晓彬,邱天爽.基于时频分析的EEG信号分析处理方法研究进展[J],国外医学生物医学工程分册,2004,27(6):321—326.
    7 Tao Wang, Jie Deng, Bin He. Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns[J]. Clinical Neurophysiology, 2004, (115): 2744-2753.
    8 徐泾平,吴延军.生物医学信号的广义时频分析[J].生物医学工程学杂志,1996,13(1):67—74.
    9 K. Lehnertz. Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy—an overview [J]. International Journal of Psychophysiology, 1999, 34: 45-52
    10 Pritchard W S, Duke D W. Measuring Chaos in the Brain - A Tutorial Review of EEG Dimension Estimation [J]. Brain and Cognition, 1995, 27(3): 353-397.
    11 Jong-Min Lee, Dae-Jin Kim, In-Young Kim et al. Nonlinear-analysis of human sleep EEG using detrended fluctuation analysis[J]. Medical Engineering & Physics, 2004, 26: 773-776.
    12 Geoffroy Melancon, Yves Joanette. Chaos, Brain, and Cognition: Toward a Nonlinear Order? [J]. Brain and Cognition, 2000, 42: 33-36.
    13 Grassberger. P, Procaccia. I. Measuring the strangeness of strange attractors [J]. PhysicaD, 1983, 9: 189-208.
    14 Wolf A, Swift J B, Swinney H Let al. Determing Lyapunov exponents from a time series [J]. Physica D, 1985, 16: 285-317.
    15 Hao Bailin. Elementary Symbolic Dynamics and Chaos in Dissipative Systems [M]. Singapore: World Scientific 1989.
    16 Strenge H, Fritzer G, Goder R et al. Non-linear electroencephalogram dynamics in patients with spontaneous nocturnal migraine attacks [J]. Neurosci Lett, 2001, 309(2):105-108.
    17 Kobayashi T, Madokoro S, Wada Yet al. Effect of ethanol on human sleep EEG using correlation dimension analysis [J]. Neuropsychobiology, 2002, 46(2): 104-110.
    18 Y. Shena, E. Olbricha, P. Acherrnarmb et al. Dimensional complexity and spectral properties of the human sleep EEG [J]. Clinical Neurophysiology, 2003, 114: 199-209
    19 沈恩华.脑电的复杂度分析[D].复旦大学博士学位论文,2004.
    20 黎臧,邱志诚,顾凡及.复杂度脑电地形图研究[J].生物物理学报,2000,16(1):114-118.
    21 万柏坤,綦宏志,黄玉玺,朱欣,廖君.基于大脑皮层信息传输的脑电信息图示方法[J].生物物理学报,1999,15(3):503-509.
    22 黄力宇,王伟勋,程敬之.基于大脑皮层互信息理论的睡眠分级研究[J].生物物理学报,2001,17(1):98-104.
    23 刘慧,丁北生,刘洁等.局限性癫痫脑电时间序列的三种复杂度计算比较[J].生物物理学报,1998,14(2):269-274.
    24 陈芳,顾凡及,徐京华等.一种新的人脑信息传输复杂性的研究[J].生物物理学报,1998,14(3):508-512.
    25 裴文江,苧克,杨绿溪等.基于复杂性度量的心率变异信号非线形分析[J].生物物理学报,1998,14(4):706~712.
    26 董筠.心音的非线性时间序列分析[D].浙江大学硕士学位论文.2003.
    27 蔡立羽,王志中,张海虹.基于复杂性度量的表面肌电信号分类方法[J].生物物理学报,2000,16(1):119-124.
    28 陈旭,庄天戈,滑炎卿.复杂性测度特征在肺部HRCT图像分析中的应用[J].上海交通大学学报,2003,37(2):224-227.
    29 李敏丹,张宏,童勤业.基于复杂性的说话人识别技术探讨[J].航天医学与医学工程,2003,16(3):215—219.
    30 郝柏林.复杂性的刻画与“复杂性科学”[J].物理.2001,30(8):466-471
    31 伍文凯.脑电的非线性时间序列分析[D].浙江大学硕士学位论文,1999.
    32 李凌云,童勤业.分区复杂性在时间序列分析中的应用[J].电子学报,2000,28(12):97—98,93.
    33 和卫星,陈晓平.LZ复杂度算法中的二值化方法分析及改进[J].江苏大学学报(自然科学版),2004,25(3)261—264.
    34 Christoph Bandt, Bernd Pompe. Permutation Entropy: A Natural Complexity Measure for Time Series[J]. PHYSICAL REVIEW LETTERS, 2002, 88(17) Article: 174102.
    35 赵治栋.基于舒张期心音信号分析与特征提取的冠心病无损诊断研究[D].浙江大学博士学位论文,2004.
    36 郭元林,金吾伦.复杂性是什么[J].科学技术与辩证法,2003,20(6):22—28.
    37 S. M. Pincus. Approximate entropy as a measure of system complexity[A]. In: Proceedings of the National Academy of Sciences. USA. Washington, 1991. 2297-2301.
    38 杨福生,廖旺才.近似熵:一种适用于短数据的复杂性度量[J].中国医疗器械杂志,1997,21(5):283—286.
    39 ABRAHAM LEMPEL, JACOB ZIV, On complexity of finite sequences[J]. IEEE Trans. Inform. Theor, 1976, 22: 75~88.
    40 E Kaspar, H. G. Schuster. Easily calculable measure for the complexity of spatiotemporal patterns[J]. Phys. Rev. A, 1987, 36(2): 842-848.
    41 徐京华.生命科学中的物理问题讲座第八讲人脑电图的复杂性[J].物理,1995,24(2):113—119.
    42 Xu JH, Wu XB. Using Complexity Measure to Characterize Information Transmission of Human Brain Cortex [J]. Science in China(Series B), 1994, 37(12): 1455-1462.
    43 徐京华,童勤业,刘仁.大脑皮层信息传输和精神分裂症[J].生物物理学报1996,12(1):103-108.
    44 黄力宇,程敬之.基于大脑皮层信息传输理论的局灶性癫痫脑电研究[J].仪器仪表学报,2001,22(2):196-299.
    45 孟欣,沈恩华,陈芳等.脑电图复杂度分析中的粗粒化问题Ⅰ.过分粗粒化和三种复杂度的比较[J].生物物理学报,2000,16(4):701—706.
    46 Zhang Xu-Sheng, Roy Rob J, Jensen Erik Weber. EEG Complexity as a Measure of Depth of Anesthesia for Patients[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001,48(12): 1424-1433.
    47 Tang Yuan Y, Lee Seong-whan, Suen Ching Y. Automatic document processing: A survey[J]. Pattern Recognition, 1996, 29(12): 1931-1952.
    48 Jain Anil K, Zhong Yu. Page segmentation using texture analysis[J]. Pattern Recognition, 1996, 29 (5): 743-770.
    49 Srihari Sargur N, Govindaraju Venugopal. Analysis of textual images using the Hough transform[J]. Machine Vision and Applications, 1989, 2(3): 141-153.
    50 Fan Kuochin, Wang Liangshen. Classification of document blocks using density feature and connectivity histogram[J]. Pattern Recognition Letters, 1995, 16(9): 955-962.
    51 Schettini R, Brambilla C, Ciocca G., et al. A hierarchical classification strategy for digital documents[J]. Pattern Recognition, 2002, 35(8): 1759-1769.
    52 Wang Yalin, Phillips Ihsin T, Haralick Robert M. A method for document zone content classification[A]. In: Proceedings of 16th International Conference on Pattern Recognition, Quebec City, 2002. 196-199.
    53 Agnelli Davide, Bollini Alessandro, Lombardi Luca. Image classification: an evolutionary approach[J]. Pattern Recognition Letters, 2002, 23 (1-3): 303-309.
    54 罗希平,田捷,诸葛婴等.图像分割方法综述[J].模式识别与人工智能,1999,12(3):300-312.
    55 杭燕,杨育彬,陈兆乾.基于内容的图像检索综述[J].计算机应用研究,2002,19(9):9-13,29.
    56 Kong Jun, Chi Zheru. Image classification using Kolmogorov complexity measure with randomly extracted blocks[J]. IEICE Transactions on Information and Systems. 1998, E81-D(11): 1239-1246.
    57 黄海.基于Hilben-Huang变换的语音信号特征信息提取方法与实验研究[D].浙江大学博士学位论文,2005.
    58 Huang, N. E, Zheng Shen, Steven R. Long et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [A]. In: Proceedings of the Royal Society. London: The Royal Society, 1998, 454: 903-995.
    59 Jonathan R. Wolpaw, Niels Birbaumer, Dennis J. McFarland, et al. Brain-computer interfaces for communication and control [J]. Clinical Neurophysiology. 2002, 113: 767-791
    60 Steven G. Mason, Gary E. Birch. A general framework for brain-computer interface design[J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003, 11 (1): 70-85.
    61 Sterman MB. Basic concepts and clinical findings in the treatment of seizure disorders with EEG operant conditioning[J]. Clin Neurophysiol, 2000, 31: 45-55.
    62 Benjamin Blankertz, Klaus-Robert Muller, Gabriel Curio et al. The BCI Competition 2003: Progress and Perspectives in Detection and Discrimination of EEG Single Trials[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51(6): 1044-1051.
    63 Eleanor A. Curran, Maria J. Stokes. Learning to control brain activity: review of the production and control of EEG components for driving brain-computer interface (BCI) systems[J]. Brain and Cognition, 2003, 51: 326-336.
    64 C. Guger, G. Edlinger, W. Harkam et al. How many people are able to operate an EEG-based brain-computer interface (BCI)? [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2003,11 (2): 145-147.
    65 Matthew Middendorf, Grant McMillan, Gloria Calhoun et al. Brain-computer interfaces based on the steady-state visual-evoked response[J]. IEEE TRANSACTIONS ON REHABILITATION ENGINEERING, 2000, 8(2): 211-214.
    66 Brett D. Mensh, Justin Werfel, H. Sebastian Seung. BCI Competition 2003—Data Set Ia: Combining Gamma-Band Power With Slow Cortical Potentials to Improve Single-Trial Classification of Electroencephalographic Signals[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51(6): 1052-1056.
    67 何庆华,彭承琳,吴宝明.脑机接口技术研究方法[J].重庆大学学报,2002,25(12):106-109.
    68 Matthias Kaper, Peter Meinicke, Ulf Grossekathoefer, et al. BCI Competition 2003—Data Set Ⅱb: Support Vector Machines for the P300 Speller Paradigm[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51(6): 1073-1076.
    69 Vladimir Bostanov. BCI Competition 2003—Data Sets Ⅰb and Ⅱb: Feature Extraction From Event-Related Brain Potentials With the Continuous Wavelet Transform and the t-Value Scalogram [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (6): 105 7-1061.
    70 Steven Lemm, Christin Schafer, Gabriel Curio. BCI Competition 2003—Data Set Ⅲ: Probabilistic Modeling of Sensorimotor mu Rhythms for Classification of Imaginary Hand Movements[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (6): 1077-1080.
    71 GERT PFURTSCHELLER, CHRISTA NEUPER. Motor imagery and direct brain-computer communication [J]. In: PROCEEDINGS OF THE IEEE, 2001, 89(7): 1123-1134.
    72 Jeannerod, M. Mental imagery in the motor context [J]. Neuropsychologia, 1995, 33(11): 1419-1432.
    73 R. Beisteiner, P. Hollinger, G. Lindinger. Mental representations of movements. Brain potentials associated with imagination of hand movements [J]. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 1995, 96(2): 183-193.
    74 Peter Dechent, Klaus-Dietrnar Merboldt, Jens Frahm. Is the human primary motor cortex involved in motor imagery[J]. Cognitive Brain Research, 2004, 19: 138-144.
    75 Alfons Schnitzler, Stephan Salenius, Riitta Salmelin et al. Involvement of Primary Motor Cortex in Motor Imagery: A Neurornagnetic Study[J]. NEUROIMAGE, 1997, 6(3): 201-208.
    76 Decety, Jean. The neurophysiological basis of motor imagery[J]. Behavioural Brain Research, 1996, 77(1-2): 45-52.
    77 M. Hallett, J. Fieldman, L. G. Cohen et al. Involvement of primary motor cortex in motor imagery and mental practice[J]. Behav. Brain Sci., 1994, 17: 210-210.
    78 W. Singer. Synchronization of cortical activity and its putative role in information processing and learning[J]. Annu. Rev. Physiol., 1993, 55: 349-374.
    79 H. H. Jasper, W. Penfield. Electrocorticograms in man: effect of the voluntary movement upon the electrical activity of the precentral gyms[J]. Arch. Psychiat. Z. Neurol, 1949, 83: 163-174.
    80 F. H. L. da Silva. Neural mechanisms underlying brain waves: from neural membranes to networks[J]. Electroeneephalography and Clinical Neurophysiology, 1991, 79: 81-93.
    81 G. Pfurtscheller, A. Aranibar. Event-related cortical desynchronization detected by power measurements of scalp EEG [J]. Electroencephalography and Clinical Neurophysiology, 1977, 42(6): 817-826.
    82 Neuper, Christa, Pfurtscheller, Gert. Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man[J]. Neuroseience Letters, 1996, 216(1): 17-20.
    83 G. Pfurtscheller and C. Neuper. Motor imagery activates primary sensorimotor area in humans[J]. Neuroscience Letters, 1997, 239(2/3): 65-68.
    84 G. Pfurtscheller, Ch. Neuper, D. Flotzinger et al. EEG-based discrimination between imagination of right and left hand movement [J]. Electroencephalography and Clinical Neurophysiology, 1997, 103 (6): 642-651.
    85 孙即祥 等.现代模式识别[M].国防科技大学出版社.2003.
    86 RICHARD O. Pattern Classification and Scene Analysis[M]. John Wiley & Sons, Inc. 1973.
    87 Gert Pfurtscheller, Alois Schlogl. Dataset Ⅲb: Non-stationary 2-class BCI data [ED/OL]. http://ida.first.fraunhofer.de/projects/bei/competition iii/dese Ⅲb. pdf, 2005.
    88 C. Vidaurre, A. Schlogl, R. Cabeza. A fully on-line adaptive brain computer interface[J]. biomed. tech. band 49,2004, special issue 2: 760-761.
    89 Robert Leeb, Reinhold Scherer, Felix Lee et al. Navigation in Virtual Environments through Motor Imagery[A]. In: Proceedings of the CVWW'04,99-108.Slovenia Pattern Recognition Society, Ljubljana, 2004.
    90 Freeman W J, Holmes M D, Burke B C et al. Spatial spectra of scalp EEG and EMG from awake humans[J]. Clin. Neurophysiol, 2003,114: 1053-1068.
    91 Srinivasan R, Nunez P L, Silberstein R B. Spatial filtering and neocortical dynamics: estimates of EEG coherence[J]. IEEE Transactions on Biomedical Engineering, 1998,45:814-826.
    92 J. E. Huggins, S. P. Levine, J. A. Fessler. Electrocorticogram as the Basis for a Direct Brain Interface: Opportunities for Improved Detection Accuracy [A]. In: Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering. Capri Island, Italy, 2003: 587-590.
    93 Pfurtscheller G, Cooper R. Frequency dependence of the transmission of the EEG from cortex to scalp[J]. Electroencephalography and Clinical Neurophysiology, 1975, 38: 93-96.
    94 Pfurtscheller G, Graimann B, Huggins J E et al. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement[J]. Clinical Neurophysiology. 2003,114:1226-1236.
    95 B. Graimann, J. E. Huggins, S. P. Levine et al. Towards a direct brain interface based on human subdural recordings and wavelet packet analysis[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 954-962.
    96 E. C. Leuthardt, G. Schalk, J. R. Wolpaw et al. A brain computer interface using electrocorticographic signals in humans [J]. Journal of Neural Engineering, 2004,1: 63-71.
    97 Rosenstiel et al. Data set I [ED/OL]. http://ida.first.fraunhofer.de/proiects/bci/competition iii/desc I.html. 2005
    98 Thomas Lal, Thilo Hinterberger, Guido Widman et al. Methods Towards Invasive Human Brain Computer Interfaces [J]. Advances in Neural Information
     Processing Systems (NIPS), 2004 (to appear).
    99 B. Graimarm, J. E. Huggins, S. P. Levine. Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data [J]. Clinical Neurophysiology, 2002 113: 43-47.
    100 边肇祺 张学工 等.模式识别 第二版[M].清华大学出版社 2000.
    101 McFarland DJ, McCane LM, David SV et al. Spatial. filter selection for EEG-based communication[J]. Electroencephalography and Clinical Neurophysiology.1997, 103(3): 386-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700