12/15-LOX花生四烯酸代谢通路在脑梗死继发性脑损伤中的作用及氧化苦参碱治疗对脑梗死12/15-LOX通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分12/15-LOX在脑梗死继发性脑损伤中的作用
     目的:缺血性脑血管病是引起人类死亡及残疾的主要原因之一。脑梗死后继发性脑组织损伤是病情加重及影响预后的重要原因。由于神经组织的易损难复特性,局部损伤将导致永久性的神经结构的丢失及功能障碍。虽然大量的动物实验证实,许多针对不同作用机制的神经保护药物可以明显减轻缺血后脑组织损伤,但迄今为止,无一证据证明神经保护治疗的临床有效性。随着对脑损伤后病理机制的研究进展,科学家发现,脑缺血后炎症反应在继发性脑组织损伤病理发展过程中起非常重要的作用。脑梗死急性期,外周循环炎症细胞向脑组织迁移聚集、小胶质细胞迅速激活增殖、缺血脑组织中炎症相关信号通路过度激活、炎症介质持续高度表达,引起血脑屏障功能破坏、导致神经元凋亡坏死。因此,炎症损伤机制为临床治疗脑梗死提供新的治疗策略。
     花生四烯酸(Arachidonic acid)代谢通路为炎性介质及过氧化产物的主要来源之一。促炎细胞因子白介素1β(interleukin-1β)及肿瘤坏死因子α (tumor necrosis factor alpha, TNFα),通过NF-κB及AP-2等信号通路调节包括花生四烯酸系列代谢酶在内的多种因子的表达。缺血脑组织中,解离的花生四烯酸及炎性代谢产物影响信号通路的转导、基因转录、神经元活性、细胞凋亡、及其他生物学过程。12/15-脂氧合酶(12/15-lipoxygenase,12/15-LOX)通路是花生四烯酸的主要代谢途径之一,催化花生四烯酸形成白三烯及二十碳烯酸类活性代谢产物。前期的研究发现,脑梗死后24~48h,缺血脑组织中12/15-LOX高度表达。12/15-LOX基因敲除小鼠,血脑屏障的渗透性明显减轻降低、脑损伤减轻,提示12/15-LOX在缺血脑损伤过程中起重要作用。本研究通过应用12/15-LOX抑制剂baicalein研究花生四烯酸代谢酶12/15-LOX在缺血后脑损伤中的作用。
     方法:成年健康雄性Sprague-Dawley大鼠,应用改良线栓法建立大鼠右侧大脑中动脉闭塞模型(middle cerebral artery occlusion, MCAO)。实验动物随机分为假手术组(Sham)、假手术+安慰剂组(Sham+DMSO)、MCAO组、MCAO+安慰剂组(vehicle, MCAO+DMSO)及baicalein组(MCAO+baicalein)。脑梗死后24h,进行神经功能评分,采用2,3,5—氯化三苯基四氮唑染色(2,3,5-Triphenyltetrazolium chloride, TTC)测定脑梗死体积,干湿重法测定脑组织含水量,western blot、逆转录多聚酶链反应(Reverse transcription–polymerase chain reaction, RT-PCR)测定缺血脑组织12/15-LOX蛋白及基因表达。同时行为学评分后,4%多聚甲醛固定脑组织,采用石蜡包埋、免疫组织化学测定缺血侧脑组织中12/15-LOX阳性细胞数。Baicalein溶于DMSO,MCAO模型成功建立后,即刻颈静脉注射30mg/kg baicalein,安慰剂组给予同等体积的DMSO治疗。
     结果:
     1脑缺血24h后,缺血脑组织中12/15-LOX蛋白及基因表达明显升高(MCAO vs. Sham, P <0.05),12/15-LOX阳性细胞数明显增多(MCAOvs. Sham, P <0.05)。
     212/15-LOX抑制剂baicalein明显降低缺血脑组织中12/15-LOX蛋白及基因的表达(Bai vs. MCAO, P <0.05),减少12/15-LOX阳性细胞数(Baivs. MCAO, P <0.05)。
     3脑缺血24h后,MCAO组、安慰剂组、baicalein组大鼠均出现不同程度的左侧肢体偏瘫。Baicalein抑制12/15-LOX表达后神经功能评分明显改善。
     4脑缺血24h后,MCAO组缺血侧脑组织含水量明显升高(MCAOvs. Sham,85.94%±1.17%vs.77.5%±2.28%)。Baicalein抑制12/15-LOX治疗明显减轻脑组织含水量(Bai,82.93%±0.67%, P <0.05)。
     5脑缺血24h后,与MCAO组相比,baicalein抑制12/15-LOX治疗组明显减小脑梗死体积(Bai vs. MCAO,43.10%±2.81%vs.52.51%±2.10%; P <0.05)。
     6安慰剂治疗组与MCAO相比,神经功能评分、脑组织含水量及脑梗死体积无明显改变(P>0.05)。
     结论:Baicalein抑制12/15-LOX表达后,明显改善脑梗死后神经功能损伤、降低脑水肿及梗死体积,有效保护缺血脑组织。结果提示12/15-LOX在缺血脑组织中的过度表达促进缺血性脑损伤。
     第二部分12/15-LOX对脑梗死p38MAPK及cPLA2表达的影响
     目的:研究表明12/15-LOX通路通过激活p38丝裂原激活的蛋白激酶(p38mitogen-activated protein kinase, p38MAPK)在病理过程中起重要作用。胞质型磷脂酶A2(cytosolic phospholipaseA2, cPLA2)催化膜磷脂
     释放游离的花生四烯酸,为花生四烯酸代谢的限速步骤,并且cPLA2为催化花生四烯酸生成的主要蛋白酶之一。研究发现12/15-LOX促进cPLA2的磷酸化,进而激活cPLA2,诱导花生四烯酸的大量产生。并且cPLA2的活化与转录因子p38MAPK的活性密切相关。据此推测,12/15-LOX在缺血脑组织中的过度表达可能与调节促炎转录因子p38MAPK及花生四烯酸代谢通路主要蛋白酶cPLA2的活性有关。本研究应用baicalein抑制缺血脑组织中12/15-LOX的表达,观察12/15-LOX是影响缺血脑组织中其他花生四烯酸代谢相关蛋白酶的活性,是否影响缺血脑组织中炎症介质的表达。
     方法:成年健康雄性Sprague-Dawley大鼠,应用改良线栓法建立MCAO动物模型。将baicalein溶于DMSO,MCAO模型成功建立后,即刻颈静脉注射30mg/kg baicalein。实验动物随机分为假手术组(Sham)、假手术组+安慰剂组(Sham+DMSO)、MCAO组、MCAO+安慰剂组(vehicle, MCAO+DMSO)及baicalein组(MCAO+baicalein)。脑梗死后24h,采用石蜡切片免疫组织化学染色测定缺血脑组织中磷酸化p38MAPK (phosphorylated p38mitogen-activated protein kinase,p-p38MAPK)、cPLA2阳性细胞数。Western blot及RT-PCR测定缺血脑组织p-p38MAPK、cPLA2蛋白的表达及cPLA2基因表达。
     结果:
     1脑缺血24h后,缺血脑组织中p-p38MAPK、cPLA2蛋白及cPLA2基因表达明显升高(MCAO vs. Sham, P <0.05),p-p38MAPK及cPLA2阳性细胞数明显增多(MCAO vs. Sham, P <0.05)。
     2脑缺血24h后, baicalein明显降低缺血脑组织中p-p38MAPK蛋白的表达(Bai vs. MCAO,1.95±0.191.21±0.09; P <0.05),减少p-p38MAPK阳性细胞数(Bai vs. MCAO, P <0.05)。
     3脑缺血24h后, baicalein明显降低缺血脑组织中cPLA2蛋白及基因的表达(P <0.05),减少缺血脑组织中cPLA2阳性细胞数(P <0.05)。
     结论:Baicalein治疗明显抑制缺血脑组织p38MAPK的活性,降低cPLA2的表达,提示12/15-LOX为缺血脑损伤过程中重要的促炎因子,在炎症损伤过程中起重要作用。
     第三部分氧化苦参碱对脑梗死缺血脑组织中12/15-LOX花生四烯酸代谢通路的影响
     目的:氧化苦参碱(oxymatrine)为中国传统中药苦参的主要成分。我们前期的研究结果证实,氧化苦参碱治疗后,MCAO大鼠于术后24h及72h神经功能缺损明显减轻、局部脑梗死体积明显减小,同时缺血脑组织中NF-κB、TLR4、TLR2等炎症因子的表达明显降低,证明氧化苦参碱对缺血脑组织具有明显的神经保护作用。因此本研究通过系统应用氧化苦参碱治疗,检测12/15-LOX花生四烯酸代谢通路是否参与脑梗死后氧化苦参碱的神经保护机制。从而验证,12/15-LOX花生四烯酸代谢通路为脑梗死继发性脑损伤的新治疗靶点。
     方法:成年健康雄性Sprague-Dawley大鼠,应用改良线栓法建立MCAO动物模型。MCAO模型成功建立后,即刻腹腔注射120mg/kg氧化苦参碱。实验动物随机分为假手术组(Sham)、MCAO组(MCAO+vehicle)及氧化苦参碱组(MCAO+oxymatrine)。脑梗死后24h,进行神经功能评分,采用干湿重法测定脑组织含水量, TTC测定脑梗死体积,免疫组织化学染色测定缺血脑组织中12/15-LOX、p-p38MAPK、cPLA2阳性细胞数,western blot和RT-PCR分别测定缺血脑组织12/15-LOX、p-p38MAPK、cPLA2蛋白的表达及12/15-LOX、cPLA2基因表达。
     结果:
     1与MCAO组相比,缺血后24h,氧化苦参碱治疗明显减小脑梗死体积(MCAO vs. OMT,53.54±1.7%vs.42.37±2.1%)。
     2与MCAO组相比,缺血后24h,氧化苦参碱治疗明显减轻缺血侧脑组织含水量(MCAO vs. OMT,86%±1%vs.82%±1%; P <0.05),但不影响损伤对侧组织含水量。
     3与MCAO组相比,缺血后24h,氧化苦参碱治疗明显降低缺血侧脑组织12/15-LOX阳性细胞数(P <0.05)、蛋白及基因的表达(MCAO vs.OMT,1.62±0.21vs.1.2±0.05; P <0.05)。
     4与MCAO组相比,缺血后24h,氧化苦参碱治疗明显降低缺血侧脑组织p-p38MAPK阳性细胞数(P <0.05)及蛋白的表达(MCAO vs. OMT,0.71±0.06vs.0.56±0.03; P <0.05)。
     5与MCAO组相比,缺血后24h,氧化苦参碱治疗明显降低缺血侧脑组织cPLA2阳性细胞数(P <0.05)、蛋白和基因的表达(MCAO vs. OMT,2.85±0.73vs.1.18±0.32; P <0.05)。
     结论:氧化苦参碱治疗明显降低缺血侧脑组织中12/15-LOX通路花生四烯酸代谢酶的表达激活,减轻缺血后脑组织损伤。12/15-LOX花生四烯酸代谢途径为脑梗死后继发性脑损伤的治疗提供新的作用靶点。
Part I The role of12/15-LOX in cerebral ischemia
     Objective: Cerebral ischemia is one of the leading causes of death andadult disability wordwide. The secondary injury after cerebral ischemiaaggravated the progress of stroke and influenced the recovery of strokepatients. Despite the significant efficiency of neuroprotective reagents in alarge growing of experimental stroke models, none of these drugs was provedavailable in stroke patients. With the advanced understanding ofpathophysiology of cerebral ischemia in recent years, it has been found thatinflammation plays an important role in the progress of ischemic injury afterstroke. The production of inflammatory mediators induced by the recruitmentof blood-derived leukocytes and the activation of resident inmmune cells inischemic brain will damage the blood-brain barrier and promoted neuronalnecrosis after stroke. Because of the susceptibility of neurons to variousstimuli, local brain injury will cause permanent neuronal dysfunction afterstroke. Thereafter, inflammaroty response provides a new therapeutic strategyfor stroke therapy. Pro-inflammatory cytokines including interleukin-1β (IL-1β) and tumornecrosis factor α (TNFα) regulates the expression of arachidonicacid cascades enzymes through NF-κB and AP-2signaling pathways. In thebrain, arachidonic acid and its metabolites influence gene transcription, signaltransduction, neuronal activity, aptosis and other process.12/15-LOX is one ofthe major enzymes that catalyze the metabolism of arachidonic acid. Ourprevious studies have demonstrated that the expression of12/15-LOX wasup-regulated after stroke. Deficiency of12/15-LOX improved blood-brainbarrier permeability and functional recovery after stroke. In this study, weinvestigated the potential effect of12/15-LOX in cerebral ischemia by using the specific inhibitor, bacalain.
     Methods: Male and healthy Sprague-Dawley rats were subjected tomodified permanent middle cerebral artery occlusion (MCAO). Baicalein wasadministered at a dose of30mg/ml by jugular vein injection immediately afterMCAO. Rats were randomly assigned to four groups: Sham operated group(Sham), MCAO, vehicle (MCAO+DMSO), and baicalein group (MCAO+baicalein). At24h after ischemia neurological deficit was evaluated, brainwater content was measured by wet-dry method, infarct size were analyzedwith2,3,5-triphenyltetrazolium chloride (TTC) staining.Immunohistochemistry, reverse transcription–polymerase chain reaction(RT-PCR) and western blot were used to analyze the expression of12/15-LOX.
     Results:
     1The expression of12/15-LOX protein and gene as well as the12/15-LOX positive cells was significantly increased at24h after cerebralischemia.
     2The inhibitor of12/15-LOX, baicalein, efficiently suppressed theexpression of12/15-LOX in ischemic brain.
     3Rats in MCAO group, vehicle group and baicalein group all showedsome degree of neurological deficit at24h after stroke. The12/15-LOXinhibitor, baicalein, significantly improved functional recovery after stroke.
     4The brain water content of ischemic hemisphere was increased at24hafter stroke. Compared with vehicle treatment, baicalein significantlydecreased brain water content after stroke.
     5Compared with vehicle treatment, baicalein significantly decreasedinfarct size at24h after stroke.
     6Vehicle did not have effect on behavior test, brain edema and infarctsize.
     Conclusion: Inhibition of12/15-LOX significantly improvedneurological deficit, decreased brain water content and infarct size at24hafter stroke.12/15-LOX contributes to the brain injury after stroke.
     Part II The influence of12/15-LOX in the expression p38MAPK andcPLA2in cerebral ischemia
     Objective: It has been demonstrated that activation of p38mitogen-activated protein kinase (p38MAPK) is one of the most importantmechanism for12/15-LOX pathway. Release of AA induced by cytosolicphospholipase A2(cPLA2) is the rate-limiting step in the12/15-LOX pathway.Several reports have shown that12/15-LOX derivatives from AA can directlyactivate p38MAPK and cPLA2, induce more release of AA. The activatedp38MAPK is also linked to activation and phosphorylation of cPLA2and AArelease. However, little is known about the relationship between12/15-LOXexpression and the activity of p38MAPK and cPLA2in ischemic stroke. Inthis study, we investigated whether inhibition of12/15-LOX influences thesefactors’ expression after stroke.
     Methods: Male and healthy Sprague-Dawley rats were subjected tomodified permanent middle cerebral artery occlusion (MCAO). Baicalein wasadministered at a dose of30mg/ml by jugular vein injection immediately afterMCAO. Rats were randomly assigned to four groups: Sham operated group(Sham), MCAO, vehicle (MCAO+DMSO), and baicalein group (MCAO+baicalein). At24h after ischemia the phosphorylated p38mitogen-activatedprotein kinase (p-p38MAPK) and cytosolic phospholipase A2(cPLA2)positive cells were detected using immunohistochemistry. And the expressionof p-p38MAPK and cPLA2protein was measured using western blot. RT-PCRwas used to analyze the gene expression of cPLA2.
     Results:
     1The number of p-p38MAPK and cPLA2positive cells was significantlyincreased after cerebral ischemia, and the expression of p-p38MAPK andcPLA2showed increase in western blot and RT-PCR.
     2Baicalein significantly decreased the expression of p-p38MAPK and p-p38MAPK positive cells in ischemic brain at24h after MCAO.
     3Baicalein significantly decreased the expression of cPLA2and cPLA2positive cells in ischemic brain at24h after MCAO.
     Conclusion: Bacalein protected the brain against cerebral ischemicdamage by inhibiting the activation of p38MAPK and down-regulating theexpression of cPLA2. Inhibition of AA metabolism contributes to theneuroprotection induced by baicalein after stroke.
     Part III The role of oxymatrine in the expression of12/15-LOX pathwayin cerebral ischemia
     Objective: Oxymatrine is an alkaloid extracted from the root of Sophoraflavescent Arr (Kushen). Our previous studies have demonstrated thatoxymatrine protects the brain against ischemic injury by inhibitinginflammatory responses after stroke. In this study, we investigated whetheroxymatrine treatment has influence in the expression and activity ofarachidonic acid cascade enzymes after stroke, and demonstrated thatinhibition of arachidonic acid metabolism is an efficient therapeutic target forstroke.
     Methods: Male and healthy Sprague-Dawley rats were subjected topermanent MCAO. Oxymatrine was administered at a dose of120mg/ml byperitoneal injection immediately after MCAO. Rats were randomly assignedto three groups: Sham operated group (Sham), MCAO (MCAO+vehicle), andoxymatrine group (MCAO+oxymatrine). At24h after ischemia, neurologicaldeficit was evaluated, brain water content was measured by wet-dry method,and infarct size was analyzed with TTC staining. The expression of12/15-LOX, p-p38MAPK, and cPLA2was respectively detected usingimmunohistochemistry, western blot and RT-PCR at24h after ischemia.
     Results:
     1Oxymatrine significantly decreased infarct size at24h after stroke.
     2Oxymatrine significantly decreased ipsilesional but not contralesionalbrain water content at24h afte stroke.
     3Compared with MCAO group, the number of12/15-LOX positive cellsas well as the protein and gene expression of12/15-LOX in ischemic brainwas significantly decreased by oxymatrine at24h after stroke.
     4Compared with MCAO group, the number of p-p38MAPK positivecells as well as the protein expression in ischemic brain was significantlydecreased by oxymatrine at24h after stroke.
     5Compared with MCAO group, the number of cPLA2positive cells aswell as the protein and gene expression of cPLA2in ischemic brain wassignificantly decreased by oxymatrine at24h after stroke.
     Conclusion: Oxymatrine protected the brain against cerebral ischemicdamage by inhibiting the activation and expression of arachidonic acidcascade enzymes after stroke. Inhibition of arachidonic acid metabolism istherapeutic target for anti-inflammatory threatment after stroke.
引文
1Jin G, Arai K, Murata Y, et al. Protecting against cerebrovascular injury:contributions of12/15-lipoxygenase to edema formation aftertransientfocal ischemia. Stroke,2008,39(9):2538-2543
    2Cui L, Zhang X, Yang R, et al. Baicalein is neuroprotective in rat MCAOmodel: role of12/15-lipoxygenase, mitogen-activated protein kinase andcytosolic phospholipase A2. Pharmacol Biochem Behav,2010,96(4):469-475
    3Czubowicz K, Czapski GA, Cie lik M, et al. Lipoxygenase inhibitorsprotect brain cortex macromolecules against oxidation evoked bynitrosative stress. Folia Neuropathol,2010,48(4):283-292
    4Gregus AM, Doolen S, Dumlao DS, et al. Spinal12-lipoxygenase-derivedhepoxilin A3contributes to inflammatory hyperalgesia via activation ofTRPV1and TRPA1receptors. Proc Natl Acad Sci U SA,2012,109(17):6721-6726
    5Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. JNeuroimmunol,2007,184(1-2):53-68
    6Heiss WD. The ischemic penumbra: how does tissue injury evolve? AnnN Y Acad Sci,2012,1268:26-34
    7Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute andchronic cerebrovascular disease. Stroke,2011,42(11):3323-3328
    8Li M, Zhang X, Cui L, et al. The neuroprotection of oxymatrine incerebral ischemia/reperfusion is related to nuclear factor erythroid2-relatedfactor2(nrf2)-mediated antioxidant response: role of nrf2andhemeoxygenase-1expression. Biol Pharm Bull,2011,34(5):595-601
    9Hu M, Zhang X, Liu W, et al. Longitudinal changes of defensive andoffensive factors in focal cerebral ischemia-reperfusion in rats. Brain ResBull,2009,79(6):371-375
    10Fan H, Li L, Zhang X, et al. Oxymatrine downregulates TLR4, TLR2,MyD88, and NF-kappaB and protects rat brains against focal ischemia.Mediators Inflamm,2009;2009:704-706
    11Liu Y, Zhang XJ, Yang CH, et al. Oxymatrine protects rat brains againstpermanent focal ischemia and downregulates NF-kappaB expression.Brain Res,2009,1268:174-180
    12Wang L, Zhang X, Liu L, et al. Tanshinone II A down-regulatesHMGB1, RAGE, TLR4, NF-kappaB expression, ameliorates BBBpermeability andendothelial cell function, and protects rat brains againstfocal ischemia. Brain Res,2010,1321:143-151
    13Cui L, Zhang X, Yang R, Wang L, Liu L, Li M, Du W. Neuroprotectionof early and short-time applying atorvastatin in the acute phase of cerebralischemia: down-regulated12/15-LOX, p38MAPK and cPLA2expression,ameliorated BBB permeability. Brain Res,2010,1325:164-173
    14Yang C, Zhang X, Fan H, et al. Curcumin upregulates transcription factorNrf2, HO-1expression and protects rat brains against focal ischemia.Brain Res,2009,1282:133-141
    15Liu L, Zhang X, Wang L, et al. The neuroprotective effects of TanshinoneIIA are associated with induced nuclear translocation of TORC1andupregulated expression of TORC1, pCREB and BDNF in the acutestage of ischemic stroke. Brain Res Bull,2010,82(3-4):228-233
    16Acarin L, Peluffo H, Gonzalez B, et al. Expression of inducible nitricoxide synthase and cyclooxygenase-2after excitotoxic damage to theimmature rat brain. J Neurosci Res,2002,68(6):745-754
    17Jupp OJ, Vandenabeele P, MacEwan DJ. Distinct regulation of cytosolicphospholipase A2, phosphorylation, translocation, proteolysis andactivation by tumour necrosis factor-receptor subtypes. The Biochemicaljournal,2003,374(Pt2):453-461
    18Bauer MK, Lieb K, Schulze-Osthoff K, et al. Expression and regulation ofcyclooxygenase-2in rat microglia. Eur J Biochem,1997,243(3):726-731
    19Kam PC, See AU. Cyclo-oxygenase isoenzymes: physiological andpharmacological role. Anaesthesia,2000,55(5):442-449
    20O’Banion MK. Cyclooxygenase-2: molecular biology, pharmacology, andneurobiology. Crit Rev Neurobiol.1999,13(1):45-82.
    21Murakami M, Kudo I. Phospholipase A2. J Biochem (Tokyo),2002,131(3):285-292
    22Akiba S, Mizunaga S, Kume K, et al. Involvement of group VICa2+-independent phospholipase A2in protein kinase C-dependentarachidonic acid liberation in zymosan-stimulated macrophage-likeP388D1cells. J Biol Chem,1999,274(28):19906-19912
    23Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology.Science,2001,294(5548):1871-1875
    24Conrad DJ, Lu M. Regulation of human12/15-lipoxygenase bySTAT6-dependent transcription. Am J Respir Cell Mol Bio,2000,22(2):226-234
    25Wen Y, Gu J, Chakrabarti SK, et al. The role of12/15-lipoxygenase in theexpression of interleukin-6and tumor necrosis factor-alpha inmacrophages. Endocrinology,2007,148(3):1313-1322
    26Kuwata H, Nonaka T, Murakami M, et al. Search of factors thatintermediate cytokine-induced group IIA phospholipase A2expressionthrough the cytosolic phospholipase A2-and12/15-lipoxygenase-dependent pathway. J Biol Chem,2005,280(27):25830-25839
    27Paintlia AS, Paintlia MK, Singh I, et al. IL-4-induced peroxisomeproliferator-activated receptor gamma activation inhibits NF-kappaB transactivation in central nervous system(CNS)glial cells and protectsoligodendrocyte progenitors under neuroinflammatory disease conditions:implication for CNS-demyelinating diseases. J Immunol,2006,176(7):4385-4398
    28Li Y, Maher P, Schubert D. A role for12-lipoxygenase in nerve cell deathcaused by glutathione depletion. Neuron,1997,19:453-463
    29Moskowitz MA, Kiwak KJ, Hekimian K, et al. Synthesis of compoundswith properties of leukotrienes C4and D4in gerbil brains after ischemiaand reperfusion. Science,1984,224:886-889
    30van Leyen K, Kim HY, Lee SR, et al. Baicalein and12/15-lipoxygenase inthe ischemic brain. Stroke,2006,37(12):3014-3018
    31Jin G, Arai K, Murata Y, et al. Protecting against cerebrovascular injury:contributions of12/15-lipoxygenase to edema formation aftertransientfocal ischemia. Stroke,2008,39(9):2538-2543
    32Cui L, Zhang X, Yang R, et al. Neuroprotection of early and short-timeapplying atorvastatin in the acute phase of cerebral ischemia:down-regulated12/15-LOX, p38MAPK and cPLA2expression,ameliorated BBB permeability. Brain Res,2010,1325:164-173
    1Nakao J, Ooyama T, Ito H, et al. Comparative effect of lipoxygenaseproducts of arachidonic acid on rat aortic smooth muscle cell migration.Atherosclerosis.1982,44(3):339-342
    2Patricia MK, Kim JA, Harper CM, et al. Lipoxygenase products increasemonocyte adhesion to human aortic endothelial cells. Arterioscler ThrombVasc Biol.1999,19(11):2615-2622
    3Natarajan R, Gerrity RG, Gu JL, et al. Role of12-lipoxygenase andoxidant stress in hyperglycaemia-induced acceleration of atherosclerosisin a diabetic pig model. Diabetologia.2002,45(1):125-133
    4Wen Y, Gu J, Chakrabarti SK, et al. The role of12/15-lipoxygenase in theexpression of interleukin-6and tumor necrosis factor-alpha inmacrophages. Endocrinology,2007,148(3):1313-1322
    5Reddy MA, Thimmalapura PR, Lanting L, et al.The oxidized lipid andlipoxygenase product12(S)-hydroxyeicosatetraenoic acid induceshypertrophy andfibronectin transcription in vascular smooth muscle cellsvia p38MAPK and cAMP response element-binding protein activation.Mediation of angiotensin II effects. J Biol Chem.2002,277(12):9920-9928
    6Coulon L, Calzada C, Moulin P, et al. Activation of p38mitogen-activatedprotein kinase/cytosolic phospholipase A2cascade in hydroperoxide-stressed platelets. Free Radic Biol Med.2003,35(6):616-625
    7Waterman WH, Molski TF, Huang CK, et al. Tumour necrosisfactor-alpha-induced phosphorylation and activation of cytosolicphospholipase A2are abrogated by an inhibitor of the p38mitogen-activated protein kinase cascade in human neutrophils. Biochem J.1996;319(Pt1):17-20
    8Nito C, Kamada H, Endo H, et al. Role of the p38mitogen-activatedprotein kinase/cytosolic phospholipase A2signaling pathway inblood-brainbarrier disruption after focal cerebral ischemia andreperfusion.J Cereb Blood Flow Metab.2008;28(10):1686-1696
    9Bazan NG. Arachidonic acid in the modulation of excitable membranefunction and at the onset of brain damage. Ann N Y Acad Sci,1989,559:1-16
    10Shelat PB, Chalimoniuk M, Wang JH, et al. Amyloid beta peptide andNMDA induce ROS from NADPH oxidase and AA release from cytosolicphospholipase A2in cortical neurons. Journal of Neurochemistry,2008,106:45-55
    11Shen Y, Kishimoto K, Linden DJ, Sapirstein A. Cytosolic phospholipaseA(2) alpha mediates electrophysiologic responses of hippocampalpyramidal neurons to neurotoxic NMDA treatment. Proceedings of theNational Academy of Sciences of the United States of America,2007,104:6078-6083
    12Zhu D, Hu C, Sheng W, et al. NADPH oxidase-mediated reactive oxygenspecies alter astrocyte membrane molecular order via phospholipase A2.Biochemistry Journal,2009,421:201-210
    13Zhu D, Tan KS, Zhang X, et al. Hydrogen peroxide alters membrane andcytoskeleton properties and increases intercellular connections inastrocytes. Journal of Cell Science,2005,118:3695-3703
    14Nanda BL, Nataraju A, Rajesh R, et al. PLA2mediated arachidonate freeradicals: PLA2inhibition and neutralization of free radicals byanti-oxidants–a new role as anti-inflammatory molecule. Current Topics inMedicinal Chemistry,2007,7:765-777
    15Stella N, Estellés A, Siciliano J, et al. Interleukin-1enhances theATP-evoked release of arachidonic acid from mouse astrocytes. JNeurosci,1997,17(9):2939-2946
    16Sapirstein A, Bonventre JV. Phospholipases A2in ischemic and toxicbrain injury. Neurochem Res,2000,25(5):745-753
    17Clemens JA, Stephenson DT, Smalstig EB, et al. Reactive glia expresscytosolic phospholipase A2after transient global forebrain ischemia in therat. Stroke,1996,27(3):527-535
    18Cui L, Zhang X, Yang R, et al. Neuroprotection of early and short-timeapplying atorvastatin in the acute phase of cerebral ischemia:down-regulated12/15-LOX, p38MAPK and cPLA2expression,ameliorated BBB permeability. Brain Res,2010,1325:164-173
    19Tabuchi S, Uozumi N, Ishii S, et al. Mice deficient in cytosolicphospholipase A2are less susceptible to cerebral ischemia/reperfusioninjury. Acta Neurochir Suppl,2003,86:169-172
    20Kummer TL, Rao PK, Heidenreich KA. Apoptosis induced by withdrawalof trophic factors is mediated by p38mitogen-activated protein kinase. JBiol Chem,1997,272:20490-20494
    21Lee JC, Young PR. Role of CSB/p38/RK stress response kinase in LPSand cytokine signalling mechanisms. J Leukoc Biol,1996,59:152-157
    22Skaper SD, Walsh FS. Neurotrophic molecules: strategies for designingeffective therapeutic molecules in neurodegeneration. Mol Cell Neurosci,1998,12:179-193
    23Raingeaud J, Gupta S, Rogers JS, et al. Pro-inflammatory cytokines andenvironmental stress cause p38mitogen-activated protein kinaseactivation by dual phosphorylation on tyrosine and threonine. J Biol Chem,1995,270:7420-7426
    24Freshney N, Rawlinson L, Guesdon F, et al. Interleukin-1activates a novelprotein kinase cascade that results in the phosphorylation of Hsp27. Cell,1994,78:1039-1049
    25Walton KM, DiRocco R, Bartlett BA, et al. Activation of p38MAPK inmicroglia after ischemia. J Neurochem,1998,70:1764-1767
    26Shioda S, Ozawa H, Dohi K, et al. PACAP protects hippocampal neuronsagainst apoptosis: involvement of JNK/SAPK signalling pathway. Ann NY Acad Sci,1998,865:111-117
    27Wu D-C, Ye W, Che X-M, et al. Activation of mitogen activated proteinkinase after permanent cerebral artery occlusion in mouse brain. J CerebBlood Flow Metab,2000,20:1320-1330
    28Barone FC, Irving EA, Ray AM, et al. Inhibition of p38mitogen-activatedprotein kinase provides neuroprotection in cerebral focal ischemia. MedRes Rev,2001,21:129-145
    29Shen YC, Chiou WF, Chou YC, et al. Mechanisms in mediating theanti-inflammatory effects of baicalin and baicalein in human leukocytes.Eur J Pharmacol,2003,465:171-181
    30Hara H, Sukamoto T, Ohtaka H, et al. Effects of baicalein andalpha-tocopherol on lipid peroxidation, free radical scavenging activityand12-Otetradecanoylphorbol acetate-induced ear edema. Eur JPharmacol,1992,221:193–198
    31Li XX, He GR, Mu X, et al. Protective effects of baicalein againstrotenone-induced neurotoxicity in PC12cells and isolatedrat brainmitochondria. Eur J Pharmacol,2012,674(2-3):227-233
    32Liu C, Wu J, Xu K, et al. Neuroprotection by baicalein in ischemic braininjury involves PTEN/AKT pathway. J Neurochem,2010,112(6):1500-1512
    33Oh SB, Park HR, Jang YJ, et al. Baicalein attenuates impairedhippocampal neurogenesis and the neurocognitive deficits induced byγ-ray radiation. Br J Pharmacol,2013,168(2):421-431
    34Lapchak PA, Maher P, Schubert D, et al. Baicalein, an antioxidant12/15-lipoxygenase inhibitor improves clinical rating scores followingmultiple infarct embolic strokes. Neuroscience,2007,150:585-591
    35Liu C, Wu J, Gu J, et al. Baicalein improves cognitive deficit induced bychronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav,2007,86:423-430
    36Van Leyen K, Kim HY, Lee SR, et al. Baicalein and12/15-lipoxygenasein the ischemic brain. Stroke,2006,37:3014-3018
    37Lee JH, Lee SR. The effect of Baicalein on hippocampal neuronal damageand metalloproteinase activity following transient global cerebralischaemia. Phytother Res,2012,26(11):1614-1619
    38Xu YW, Sun L, Liang H, et al.12/15-Lipoxygenase inhibitor baicaleinsuppresses PPAR gamma expression and nuclear translocation induced bycerebral ischemia/reperfusion. Brain Res,2010,1307:149-157
    1Fan H, Li L, Zhang X, et al. Oxymatrine downregulates TLR4, TLR2,MyD88, and NF-kappaB and protects rat brains against focal ischemia.Mediators Inflamm,2009,2009:704-706
    2Liu Y, Zhang XJ, Yang CH, Fan HG. Oxymatrine protects rat brainsagainst permanent focal ischemia and downregulates NF-kappaBexpression. Brain Res,2009,1268:174-180
    3Li M, Zhang X, Cui L, Yang R, Wang L, Liu L, Du W.Theneuroprotection of oxymatrine in cerebral ischemia/reperfusion is relatedto nuclear factor erythroid2-relatedfactor2(nrf2)-mediated antioxidantresponse: role of nrf2and hemeoxygenase-1expression. Biol Pharm Bull,2011,34(5):595-601
    4Kamboj V. P. Herbal medicine. Current Science,2000,78:35-39
    5Egan B, Hodgkins C, Shepherd R, et al. An overview of consumerattitudes and beliefs about plant food supplements. Food Funct,2011,2:747-752
    6Bent S. Herbal medicine in the United States: review of efficacy, safety,and regulation: grand rounds at University of California, San FranciscoMedical Center. J Gen Intern Med,2008,23:854-859
    7Ritchie M. R. Use of herbal supplements and nutritional supplements inthe UK: what do we know about their pattern of usage? Proc Nutr Soc,2007,66:479-482
    8Niizuma K, Endo H, Chan PH. Oxidative stress and mitochondrialdysfunction as determinants of ischemic neuronal death and survival. JNeurochem,2009,109Suppl1:133-138
    9Crack PJ, Taylor JM. Reactive oxygen species and the modulation ofstroke. Free Radic Biol Med,2005,38:1433-1444
    10Zhang Y, Wang X, Wang X, et al. Protective effect of flavonoids fromScutellaria baicalensis Georgi on cerebral ischemia injury. JEthnopharmacol,2006,108:355-360
    11Satoh T, Kosaka K, Itoh K, et al. Carnosic acid, a catechol-typeelectrophilic compound, protects neurons both in vitro and in vivo throughactivation of the Keap1/Nrf2pathway via S-alkylation of targetedcysteines on Keap1. J Neurochem,2008,104:1116-1131
    12Rathore P, Dohare P, Varma S, et al. Curcuma oil: reduces earlyaccumulation of oxidative product and is anti-apoptogenic in transientfocal ischemia in rat brain. Neurochem Res,2008,33:1672-1682
    13Sinha K, Chaudhary G, Gupta YK. Protective effect of resveratrol againstoxidative stress in middle cerebral artery occlusion model of stroke in rats.Life Sci,2002,71(6):655-665
    14Shin JA, Lee H, Lim YK, et al. Therapeutic effects of resveratrol duringacute periods following experimental ischemic stroke. J Neuroimmunol,2010,227(1-2):93-100
    15Rivera F, Costa G, Abin A, et al. Reduction of ischemic brain damage andincrease of glutathione by a liposomal preparation of quercetin inpermanent focal ischemia in rats. Neurotox Res,2008,13(2):105-114
    16Van Leyen K, Kim HY, Lee SR, et al. Baicalein and12/15-lipoxygenasein the ischemic brain. Stroke,2006,37:3014-3018
    17Li L, Zhang X, Cui L, et al. Ursolic acid promotes the neuroprotection byactivating Nrf2pathway after cerebral ischemia in mice. Brain Res,2013,1497:32-39
    18Jones QR, Warford J, Rupasinghe HP, et al. Target-based selection offlavonoids for neurodegenerative disorders. Trends Pharmacol Sci,2012,33(11):602-610
    19Thimmulappa RK, Lee H, Rangasamy T, et al. Nrf2is a critical regulatorof the innate immune response and survival during experimental sepsis. JClin Invest,2006,116(4):984-995
    20Nagai N, Thimmulappa RK, Cano M, et al. Nrf2is a critical modulator ofthe innate immune response in a model of uveitis. Free Radic Biol Med,2009,47(3):300-306
    21Yang C, Zhang X, Fan H, et al. Curcumin upregulates transcription factorNrf2, HO-1expression and protects rat brains against focal ischemia.Brain Res,2009,1282:133-141
    22Wu PF, Zhang Z, Wang F, et al. Natural compounds from traditionalmedicinal herbs in the treatment of cerebral ischemia/reperfusion injury.Acta Pharmacol Sin,2010,31(12):1523-1531
    23Shah ZA, Li RC, Ahmad AS, et al. The flavanol ()-epicatechin preventsstroke damage through the Nrf2/HO1pathway. J Cereb Blood FlowMetab,2010,30(12):1951-1961
    24Cai F, Li CR, Wu JL, et al. Theaflavin ameliorates cerebralischemia-reperfusion injury in rats through its anti-inflammatory effectand modulation of STAT-1. Mediators Inflamm,2006,2006:30490
    25Cho J, Lee HK. Wogonin inhibits ischemic brain injury in a rat model ofpermanent middle cerebral artery occlusion. Biol Pharm Bull,2004,27:1561-1564
    26Wang L, Zhang X, Liu L, et al. Tanshinone II A down-regulates HMGB1,RAGE, TLR4, NF-kappaB expression, ameliorates BBB permeabilityandendothelial cell function, and protects rat brains against focal ischemia.Brain Res,2010,1321:143-151
    27Lee IY, Lee JH, Yun BS. Polychlorinated compounds with PPAR-gammaagonistic effect from the medicinal fungus Phellinus ribis. Bioorg Med.Chem Lett,2008,18:4566-4568
    28Genovese S, Foreman JE, Borland MG, et al. A natural propenoic acidderivative activates peroxisome proliferator-activated receptor-β/δ(PPARβ/δ). Life Sci,2010,86:493-498
    29Li Y, He D, Zhang X, et al. Protective effect of celastrol in rat cerebralischemia model: down-regulating p-JNK, p-c-Jun and NF-κB. Brain Res,2012,1464:8-13
    30Zhang X, Zhang X, Wang C, et al. Neuroprotection of early andshort-time applying berberine in the acute phase of cerebral ischemia:up-regulatedpAkt, pGSK and pCREB, down-regulated NF-κB expression,ameliorated BBB permeability. Brain Res,2012,1459:61-70
    31Kim JY, Jung KJ, Choi JS, Chung HY. Modulation of the age-relatednuclear factor-kappaB(NF-kappaB) pathway by hesperetin. Aging Cell,2006,5:401-411
    1Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia: theischemic penumbra. Stroke,198,12:723-725
    2Branston NM, Strong AJ, Symon L. Extracellular potassium activity,evoked potential and tissue blood flow. Relationships during progressiveischaemia in baboon cerebral cortex. J Neurol Sci,1977,32(3):305-321
    3Morawetz RB, DeGirolami U, Ojemann RG, et al. Cerebral blood flowdetermined by hydrogen clearance during middle cerebral artery occlusionin unanesthetized monkeys. Stroke,1978,9(2):143-149
    4Hossmann KA. Viability thresholds and the penumbra of focal ischemia.Ann Neurol,1994,36(4):557-565
    5Heiss WD, Thiel A, Grond M, et al. Which targets are relevant for therapyof acute ischemic stroke? Stroke,1999,30(7):1486-1489
    6Fisher M, Bastan B. Identifying and utilizing the ischemic penumbra.Neurology,2012,79(13Suppl1):S79-85
    7Heiss W-D, Hayakawa T, Waltz AG. Cortical neuronal function duringischaemia. Arch Neurol,1976,33:813-820
    8Hossmann KA. Viability thresholds and the penumbra of focal ischemia.Ann Neurol,1994,36(4):557-565
    9Mies G, Ishimaru S, Xie Y, et al. Ischemic thresholds of cerebral proteinsynthesis and energy state following middle cerebral artery occlusion inrat.J Cereb Blood Flow Metab,1991,11(5):753-761
    1O'Dell MW, Lin CC, Harrison V. Stroke rehabilitation: strategies toenhance motor recovery. Annu Rev Med,2009,60:55-68
    2Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and strokestatistics--2012update: a report from the American HeartAssociation.Circulation,2012,125(22):e1002
    3The National Institute of Neurological Disorders and Stroke rtPA StrokeStudy Group. Tissue plasminogen activator for acute ischemic stroke. NEngl J Med,1995,333:1581-1587
    4Eesa M, Schumacher HC, Higashida RT, et al. Advances inrevascularization for acute ischemic stroke treatment: an update. ExpertRev Neurother,2011,11(8):1125-1139
    5Albers GW, Olivot JM. Intravenous alteplase for ischaemic stroke.Lancet,2007,369:249-250
    6Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase3to4.5hours after acute ischemic stroke. N Engl J Med,2008,359(13):1317-1329
    7Zangerle A, Kiechl S, Spiegel M, et al. Recanalization after thrombolysisin stroke patients: predictors and prognostic implications. Neurology,2007,68(1):39-44
    8Bhatia R, Shobha N, Menon BK, et al. Combined full-dose IV andendovascular thrombolysis in acute ischaemic stroke. Int J Stroke,2012
    9Boast CS, Gerhardt B, Pastor G, et al. The N-methyl-D-aspartateantagonist CGS19755and CPP reduce ischemic brain damage in gerbils.Brain Res,1988,442:345-348
    10Kidwell CS, Liebeskind DS, Starkman S, et al. Trends in acute ischemicstroke trial through the20th century. Stroke,2001,32:1349-1359
    11Guyot LL, Diaz FG, O’Regan MH, et al. Real-time measurement ofglutamate release from the ischemic penumbra of the rat cerebral cortexusing a focal middle cerebral artery occlusion model. Neurosci Lett,2001,299:37-40
    12Cheng YD, Al-Khoury L, Zivin JA. Neuroprotection for ischemic stroke:two decades of success and failure. NeuroRx,2004,1(1):36-45
    13Saver JL, Kidwell CS, FAST-MAG Trial Group. The FieldAdministration of Stroke Therapy—Magnesium (FAST-MAG) phase3trial. Paper presented at The American Heart Association27thInternational Stroke Conference. Ongoing clinical trial session,2002
    14Diener HC, for the European and Australian Lubeluzole IschaemicStroke Study Group. ultinational randomised controlled trial oflubeluzole in acute ischaemic stroke Cerebrovasc Dts,1998,8:172-181
    15The Enlimomab Acute Stroke Trial Investigators. The Enlunomab AcuteStroke Trial: Final Results. Cerebrovasc Dts,1997,7(Suppl4):18
    16Heiss WD. The ischemic penumbra: how does tissue injury evolve? AnnN Y Acad Sci,2012,1268:26-34
    17Heiss W-D, Graf R. The ischemic penumbra. Curr Opin Neurol,1994,7:11-19
    18Janjua N. Use of neuroimaging to guide the treatment of patients beyondthe8-hour time window. Neurology,2012,79(13): S95
    19Heiss WD, Thiel A, Grond M, et al. Which targets are relevant fortherapy of acute ischemic stroke? Stroke,1999,30(7):1486-1489
    20Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute andchronic cerebrovascular disease. Stroke,2011,42(11):3323-3328
    21Graeber MB, Li W, Rodriguez ML. Role of microglia in CNSinflammation. FEBS Lett,2011,585:3798-3805
    22Jacobs AH, Tavitian B, INMiND consortium. Noninvasive molecularimaging of neuroinflammation. J Cereb Blood Flow Metab,2012,32(7):1393-1415
    23Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. JNeuroimmunol,2007,184(1-2):53-68
    24Ishikawa M, Cooper D, Arumugam TV, et al.Platelet-leukocyte-endothelial cell interactions after middle cerebralartery occlusion and reperfusion. J Cereb Blood Flow Metab,2004,24(8):907-915
    25Ritter LS, Orozco JA, Coull BM, et al. Leukocyte accumulation andhemodynamic changes in the cerebral microcirculation during earlyreperfusion after stroke. Stroke,2000,31(5):1153-1161
    26Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: roleof inflammatory cells. J Leukoc Biol,201,87(5):779-789
    27Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke.Neurol Res,2008,30:783-793
    28Morrison H, McKee D, Ritter L. Systemic Neutrophil Activation in aMouse Model of Ischemic Stroke and Reperfusion. Biol Res Nurs,2011,13(2):154-163
    29Stevens SL, Bao J, Hollis J, et al. The use of flow cytometry to evaluatetemporal changes in inflammatory cells following focal cerebral ischemiainmice. Brain Res,2002,932(1-2):110-119
    30Weston RM, Jones NM, Jarrott B, et al. Inflammatory cell infiltrationafter endothelin-1-induced cerebral ischemia: histochemical andmyeloperoxidase correlation with temporal changes in brain injury. JCereb Blood Flow Metab,2007,27(1):100-114
    31Jander S, Kraemer M, Schroeter M, et al. Lymphocytic infiltration andexpression of intercellular adhesion molecule-1in photochemicallyinduced ischemia of the rat cortex. J Cereb Blood Flow Metab,1995,15(1):42-51
    32Yilmaz G, Arumugam TV, Stokes KY, et al. Role of T lymphocytes andinterferon-gamma in ischemic stroke. Circulation,2006,113(17):2105-2112
    33Dunn SM, Hillam AJ, Stomski F, et al. Leukocyte adhesion moleculesinvolved in inflammation. Transplant Proc,1989,21(1Pt1):31-34
    34Frijns CJ, Kappelle LJ. Inflammatory cell adhesion molecules inischemic cerebrovascular disease. Stroke.2002,33(8):2115-2122
    35Becker K, Kindrick D, Relton J, et al. Antibody to the alpha4integrindecreases infarct size in transient focal cerebral ischemia in rats. Stroke,2001,32(1):206-211
    36Ikegame Y, Yamashita K, Hayashi S, et al. Neutrophil elastase inhibitorprevents ischemic brain damage via reduction of vasogenic edema.Hypertens Res,2010,33(7):703-707
    37Chopp M, Zhang RL, Chen H, et al. Postischemic administration of ananti-Mac-1antibody reduces ischemic cell damage after transient middlecerebral artery occlusion in rats. Stroke,1994,25(4):869-875; discussion875-876
    38Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglialresponse to local brain injury in vivo. Nat Neurosci,2005,8(6):752-758
    39Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells arehighly dynamic surveillants of brain parenchyma in vivo. Science,2005,308(5726):1314-1318
    40Morrison HW, Filosa JA. A quantitative spatiotemporal analysis ofmicroglia morphology during is33,chemic stroke and reperfusion. JNeuroinflammation,2013,10:4
    41Rupalla K, Allegrini PR, Sauer D, et al. Time course of microgliaactivation and apoptosis in various brain regions after permanent focalcerebralischemia in mice. Acta Neuropathol,1998,96(2):172-178
    42Weinstein JR, Koerner IP, M ller T. Microglia in ischemic brain injury.Future Neurol,2010,5(2):227-246
    43Gelderblom M, Leypoldt F, Steinbach K, et al. Temporal and spatialdynamics of cerebral immune cell accumulation in stroke. Stroke,2009,40(5):1849-1857
    44Schilling M, Besselmann M, Müller M, et al. Predominant phagocyticactivity of resident microglia over hematogenous macrophages followingtransient focalcerebral ischemia: an investigation using green fluorescentprotein transgenic bone marrow chimeric mice. Exp Neurol,2005,196(2):290-297
    45Banati RB, Gehrmann J, Schubert P, et al. Cytotoxicity of microglia. Glia,1993,7(1):111-118
    46Streit WJ. Microglia as neuroprotective, immunocompetent cells of theCNS. Glia,2002,40(2):133-139
    47Nakajima K, Kohsaka S. Microglia: neuroprotective and neurotrophiccells in the central nervous system. Curr Drug Targets CardiovascHaematol Disord,2004,4(1):65-84
    48Neumann J, Gunzer M, Gutzeit HO, et al. Microglia provideneuroprotection after ischemia. FASEB J,2006,20(6):714-716
    49Yrj nheikki J, Kein nen R, Pellikka M, et al. Tetracyclines inhibitmicroglial activation and are neuroprotective in global brain ischemia.Proc Natl Acad Sci U S A,1998,95(26):15769-15774
    50Zhang N, Komine-Kobayashi M, Tanaka R, et al. Edaravone reducesearly accumulation of oxidative products and sequential inflammatoryresponses after transient focal ischemia in mice brain. Stroke,2005,36(10):2220-2225
    51Günther A, Küppers-Tiedt L, Schneider PM, et al. Reduced infarctvolume and differential effects on glial cell activation after hyperbaricoxygen treatment in rat permanent focal cerebral ischaemia. Eur JNeurosci,2005,21(11):3189-3194
    52Lehnardt S, Massillon L, Follett P, et al. Activation of innate immunity inthe CNS triggers neurodegeneration through a Toll-like receptor4-dependentpathway. Proc Natl Acad Sci U S A,2003,100(14):8514-8519
    53Faustino JV, Wang X, Johnson CE, et al. Microglial cells contribute toendogenous brain defenses after acute neonatal focal stroke. J Neurosci,2011,31(36):12992-13001
    54Zhang R, Chopp M, Zhang Z, et al. The expression of P-and E-selectinsin three models of middle cerebral artery occlusion. Brain Res,1998,785(2):207-214
    55Suzuki H, Hayashi T, Tojo SJ, et al. Anti-P-selectin antibody attenuatesrat brain ischemic injury. Neurosci Lett,1999,265(3):163-166
    56Bitsch A, Klene W, Murtada L, et al. A longitudinal prospective study ofsoluble adhesion molecules in acute stroke. Stroke,1998,29(10):2129-2135
    57Wang X, Feuerstein GZ. Induced expression of adhesion moleculesfollowing focal brain ischemia. J Neurotrauma,1995,12:825-832
    58Vemuganti R, Dempsey RJ, Bowen KK. Inhibition of intercellularadhesion molecule1protein expression by antisense oligonucleotidesisneuroprotective after transient middle cerebral artery occlusion in rat.Stroke,2004,35(1):179-184
    59Kanemoto Y, Nakase H, Akita N, et al. Effects of anti-intercellularadhesion molecule-1antibody on reperfusion injury induced by latereperfusion in the rat middle cerebral artery occlusion model.Neurosurgery,2002,51:1034-1041; discussion1041-1032
    60Zhang RL, Zhang ZG, Chopp M. Increased therapeutic efficacy withrtPA and anti-CD18antibody treatment of stroke in the rat. Neurology,1999,52(2):273-279
    61Zhang RL, Zhang ZG, Chopp M, et al. Thrombolysis with tissueplasminogen activator alters adhesion molecule expression in theischemic rat brain. Stroke,1999,30(3):624-629
    62Brough D, Tyrrell PJ, Allan SM. Regulation of interleukin-1in acutebrain injury. Trends Pharmacol Sci,2011,32:617-622
    63Luheshi NM, Kovács KJ, Lopez-Castejon G, et al. Interleukin-1αexpression precedes IL-1β after ischemic brain injury and is localised toareas of focal neuronal loss and penumbral tissues. J Neuroinflammation,2011,8:186
    64Yamashita T, Sawamoto K, Suzuki S, et al. Blockade of interleukin-6signaling aggravates ischemic cerebral damage in mice: possibleinvolvement of Stat3activation in the protection of neurons. JNeurochem,2005,94(2):459-468
    65Buttini M, Sauter A, Boddeke HW. Induction of interleukin-1betamRNA after focal cerebral ischaemia in the rat. Brain Res Mol Brain Res,1994,23(1-2):126-134
    66Davies CA, Loddick SA, Toulmond S, et al. The progression andtopographic distribution of interleukin-1beta expression after permanentmiddle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab,1999,19(1):87-98
    67Caso JR, Moro MA, Lorenzo P, et al. Involvement of IL-1beta in acutestress-induced worsening of cerebral ischaemia in rats. EurNeuropsychopharmacol,2007,17(9):600-607
    68Chiba T, Itoh T, Tabuchi M, et al. Interleukin-1β accelerates the onset ofstroke in stroke-prone spontaneously hypertensive rats. MediatorsInflamm,2012,2012:701976
    69Vila N, Castillo J, Dávalos A, Chamorro A. Proinflammatory cytokinesand early neurological worsening in ischemic stroke. Stroke,200,31(10):2325-2329
    70Clark WM, Rinker LG, Lessov NS, et al. Lack of interleukin-6expression is not protective against focal central nervous system ischemia.Stroke,2000,31(7):1715-1720
    71Matsuda S, Wen TC, Morita F, et al. Interleukin-6preventsischemia-induced learning disability and neuronal and synaptic loss ingerbils. Neurosci Lett,1996,204(1-2):109-112
    72Ali C, Nicole O, Docagne F, et al. Ischemia-induced interleukin-6as apotential endogenous neuroprotective cytokine against NMDAreceptor-mediated excitotoxicity in the brain. J Cereb Blood Flow Metab,2000,20(6):956-966
    73Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: newopportunities for novel therapeutics. J Cereb Blood Flow Metab,1999,19(8):819-834
    74Barone FC, Arvin B, White RF, et al. Tumor necrosis factor-alpha. Amediator of focal ischemic brain injury. Stroke,1997,28(6):1233-1244
    75Ginis I, Jaiswal R, Klimanis D, et al. TNF-alpha induced tolerance toischemic injury involves differential control of NF-kappaBtransactivation: the role of NF-kappaB association with p300adaptor. JCereb Blood Flow Metab,2002,22(2):142-152
    76Strle K, Zhou JH, Shen WH, et al. Interleukin-10in the brain. Crit RevImmunol,2001,21(5):427-449
    77Flanders KC, Ren RF, Lippa CF. Transforming growth factor-betas inneurodegenerative disease. Prog Neurobiol,1998,54(1):71-85
    78Tarkowski E, Rosengren L, Blomstrand C, et al. Intrathecal release ofpro-and anti-inflammatory cytokines during stroke. Clin Exp Immunol,1997,110(3):492-499
    79Pál G, Vincze C, Renner é, et al. Time course, distribution and cell typesof induction of transforming growth factor betas following middlecerebral artery occlusion in the rat brain. PLoS One,2012,7(10):e46731
    80Spera PA, Ellison JA, Feuerstein GZ, et al. IL-10reduces rat brain injuryfollowing focal stroke. Neurosci Lett,1998,251(3):189-192
    81van Exel E, Gussekloo J, de Craen AJ, et al. Inflammation and stroke: theLeiden85-Plus Study. Stroke,2002,33(4):1135-1138
    82Perini F, Morra M, Alecci M, et al. Temporal profile of serumanti-inflammatory and pro-inflammatory interleukins in acute ischemicstroke patients. Neurol Sci,2001,22(4):289-296
    83Benveniste EN. Cytokine actions in the central nervous system. CytokineGrowth Factor Rev,1998,9:259-275
    84Che X, Ye W, Panga L, et al. Monocyte chemoattractant protein-1expressed in neurons and astrocytes during focal ischemia in mice. BrainRes,2001,902(2):171-177
    85Zaremba J, Ilkowski J, Losy J. Serial measurements of levels of thechemokines CCL2, CCL3and CCL5in serum of patients with acuteischaemic stroke. Folia Neuropathol,2006,44(4):282-289
    86Zaremba J, Skrobański P, Losy J.The level of chemokine CXCL5in thecerebrospinal fluid is increased during the first24hours ofischaemic strokeand correlates with the size of early brain damage. FoliaMorphol (Warsz),2006,65(1):1-5
    87Chen Y, Hallenbeck JM, Ruetzler C, et al. Overexpression of monocytechemoattractant protein1in the brain exacerbates ischemic brain injuryand isassociated with recruitment of inflammatory cells. J Cereb BloodFlow Metab,2003,23(6):748-755
    88Minami M, Satoh M. Chemokines and their receptors in the brain:pathophysiological roles in ischemic brain injury. Life Sci,2003,74(2-3):321-327
    89Yilmaz G, Granger DN. Leukocyte recruitment and ischemic brain injury.Neuromolecular Med,2010,12(2):193-204
    90Terao S, Yilmaz G, Stokes KY, et al. Blood cell-derived RANTESmediates cerebral microvascular dysfunction, inflammation, and tissueinjury afterfocal ischemia-reperfusion. Stroke,2008,39(9):2560-2570
    91Garau A, Bertini R, Colotta F, et al. Neuroprotection with the CXCL8inhibitor repertaxin in transient brain ischemia. Cytokine,2005,30(3):125-131
    92Hughes PM, Allegrini PR, Rudin M, et al. Monocyte chemoattractantprotein-1deficiency is protective in a murine stroke model. J CerebBlood Flow Metab,2002,22(3):308-317
    93Stamatovic SM, Shakui P, Keep RF, Moore BB et al. Monocytechemoattractant protein-1regulation of blood-brain barrier permeability.J Cereb Blood Flow Metab,2005,25(5):593-606
    94Dimitrijevic OB, Stamatovic SM, Keep RF, et al. Effects of thechemokine CCL2on blood-brain barrier permeability duringischemia-reperfusion injury. J Cereb Blood Flow Metab,2006,26(6):797-810
    95Chang DI, Hosomi N, Lucero J, et al. Activation systems for latentmatrix metalloproteinase-2are upregulated immediately after focalcerebral ischemia. J Cereb Blood Flow Metab,2003,23(12):1408-1419
    96Yang Y, Estrada EY, Thompson JF, et al. Matrixmetalloproteinase-mediated disruption of tight junction proteins incerebral vessels is reversed bysynthetic matrix metalloproteinaseinhibitor in focal ischemia in rat. J Cereb Blood Flow Metab,2007,27(4):697-709
    97Li M, Zhang X, Cui L, et al.The neuroprotection of oxymatrine incerebral ischemia/reperfusion is related to nuclear factor erythroid2-relatedfactor2(nrf2)-mediated antioxidant response: role of nrf2andhemeoxygenase-1expression. Biol Pharm Bull,2011,34(5):595-601
    98Fan H, Li L, Zhang X, et al. Oxymatrine downregulates TLR4, TLR2,MyD88, and NF-kappaB and protects rat brains against focal ischemia.Mediators Inflamm,2009,2009:704-706
    99Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9gene knock-out on the proteolysis of blood-brain barrier and whitemattercomponents after cerebral ischemia. J Neurosci,2001,21(19):7724-7732
    100Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, et al.Post-ischaemic treatment with the cyclooxygenase-2inhibitor nimesulidereduces blood-brain barrier disruption and leukocyte infiltrationfollowing transient focal cerebral ischaemia in rats. J Neurochem,2007,100:1108-1120
    101Lapchak PA, Chapman DF, Zivin JA. Metalloproteinase inhibitionreduces thrombolytic (tissue plasminogen activator)-induced hemorrhageafter thromboembolic stroke. Stroke,2000,31:3034-3040
    102Sood RR, Taheri S, Candelario-Jalil E, et al. Early beneficial effect ofmatrix metalloproteinase inhibition on blood-brain barrier permeabilityas measured by magnetic resonance imaging countered by impairedlong-term recovery after stroke in rat brain. J Cereb Blood Flow Metab,2008,28:431-438
    103Jin G, Arai K, Murata Y, et al. Protecting against cerebrovascular injury:contributions of12/15-lipoxygenase to edema formation aftertransientfocal ischemia. Stroke,2008,39(9):2538-2543
    104Hu M, Zhang X, Liu W, et al. Longitudinal changes of defensive andoffensive factors in focal cerebral ischemia-reperfusion in rats. Brain ResBull,2009,79(6):371-375
    105Wang L, Zhang X, Liu L, et al. Atorvastatin protects rat brains againstpermanent focal ischemia and downregulates HMGB1, HMGB1receptors(RAGE and TLR4), NF-kappaB expression. Neurosci Lett,2010,471(3):152-156
    106Schneider A, Martin-Villalba A, Weih F, et al. NF-kappaB is activatedand promotes cell death in focal cerebral ischemia. Nat Med,1999,5(5):554-559
    107Khan M, Sekhon B, Giri S, et al. SNitrosoglutathione reducesinflammation and protects brain against focal cerebral ischemia in a ratmodel of experimental stroke. J Cereb Blood Flow Metab,2005,25:177-192
    108Herrmann O, Baumann B, de Lorenzi R, et al. IKK mediatesischemia-induced neuronal death. Nat Med,2005,11:1322-1329
    109Chen L, Wang L, Zhang X, et al. The protection by Octreotide againstexperimental ischemic stroke: up-regulated transcription factor Nrf2,HO-1and down-regulated NF-κB expression. Brain Res,2012,1475:80-87
    110Wang C, Wang Z, Zhang X, et al. Protection by silibinin againstexperimental ischemic stroke: up-regulated pAkt, pmTOR, HIF-1α andBcl-2, down-regulated Bax, NF-κB expression. Neurosci Lett,2012,529(1):45-50
    111Zhang X, Zhang X, Wang C, et al. Neuroprotection of early andshort-time applying berberine in the acute phase of cerebral ischemia:up-regulatedpAkt, pGSK and pCREB, down-regulated NF-κB expression,ameliorated BBB permeability. Brain Res,2012,1459:61-70
    112Li Y, He D, Zhang X, et al. Protective effect of celastrol in rat cerebralischemia model: down-regulating p-JNK, p-c-Jun and NF-κB. Brain Res,2012,1464:8-13
    113Wang L, Zhang X, Liu L, et al. Tanshinone II A down-regulates HMGB1,RAGE, TLR4, NF-kappaB expression, ameliorates BBB permeabilityandendothelial cell function, and protects rat brains against focalischemia. Brain Res,2010,1321:143-151
    114Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinasesignal transduction pathways activated by stress and inflammation.Physiol Rev,2001,81:807-869
    115Sugino T, Nozaki K, Takagi Y, et al. Activation of mitogen activatedprotein kinases after transient forebrain ischemia in gerbil hippocampus.J Neurosci,2000,20:4506-4514
    116Walton KM, DiRocco R, Bartlett BA, et al. Activation of p38MAPK inmicroglia after ischemia. J Neurochem,1998,70:1764-1767
    117Cui L, Zhang X, Yang R, et al. Neuroprotection of early and short-timeapplying atorvastatin in the acute phase of cerebral ischemia:down-regulated12/15LOX, p38MAPK and cPLA2expression,ameliorated BBB permeability. Brain Res,2010,1325:164-173
    118Liu Z, He D, Zhang X, et al. Neuroprotective effect of early andshort-time applying sophoridine in pMCAO rat brain: down-regulatedTRAF6and up-regulated p-ERK1/2expression, ameliorated braininfaction and edema. Brain Res Bull,2012,88(4):379-384
    119Cui L, Zhang X, Yang R, et al. Baicalein is neuroprotective in rat MCAOmodel: role of12/15-lipoxygenase, mitogen-activated protein kinaseandcytosolic phospholipase A2. Pharmacol Biochem Behav,2010,96(4):469-475
    120Sarina, Yagi Y, Nakano O, et al. Induction of neurite outgrowth in PC12cells by artemisinin through activation of ERK and p38MAPK signalingpathways. Brain Res,2013,1490:61-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700