基于脑电的磁刺激穴位复杂脑功能网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穴位是体表刺激到体内神经系统调控的切入点,磁刺激技术因具有诸多不可比拟的优势而有望成为一种穴位新疗法,但是目前磁刺激穴位的疗效缺乏统一且合理的评定方法,还需进行深入探究。脑连接组学研究的逐步深入和复杂网络理论的飞速发展为磁刺激穴位的研究开辟了新途径。
     本文利用复杂网络分析方法,以内关穴为例开展了基于高时间分辨率脑电的磁刺激穴位脑功能网络的构建与分析研究,旨在从整体性角度探索磁刺激穴位对大脑功能连接的影响,为穴位磁刺激的作用效应评价提供新手段,尤其为精神类等疾病的临床康复治疗效果评价提供新思路。本文主要研究内容如下:
     1、设计并开展了不同频率磁刺激穴位和非穴位不同阶段的脑电采集实验,采用互相关和互信息方法对不同状态下高分辨率的脑电信号进行了多通道关联特性分析,结果发现3Hz磁刺激内关穴时脑功能连接增强的趋势较为明显。
     2、基于磁刺激穴位的多通道脑电信号关联特性矩阵构建了无权和加权脑功能网络,并对网络特征量进行了深入分析,结果发现3Hz磁刺激内关穴时脑功能网络连接边、平均度、平均聚类系数和全局效率显著增加,平均路径长度显著降低。磁刺激非穴位时脑功能网络特征量的变化明显小于穴位刺激引起的变化。
     3、对磁刺激穴位的无权和加权脑功能网络进行了中心度和中心化程度分析,结果发现3Hz磁刺激内关穴时额叶、中央区以及顶叶大部分节点的度中心度和紧密中心度明显升高,顶叶和中央区部分节点的介数中心度明显减小。磁刺激非穴位时脑功能网络中心度的变化明显小于穴位刺激引起的变化。
     4、对磁刺激穴位的脑功能网络进行了“小世界”属性评价,结果发现所有被试不同刺激阶段的脑功能网络均具有“小世界”属性,3Hz磁刺激内关穴时脑功能网络的“小世界”属性显著增强。磁刺激非穴位时脑功能网络“小世界”属性的变化小于穴位刺激引起的变化。
Acupoint is the breakthrough point between body surface stimulation and internalnervous system regulation. Magnetic stimulation technique is expected to become a newacupoint therapy because of many incomparable advantages, but the curative effect ofmagnetic stimulation on acupoint is lack of unified and rational evaluation methods, whichneeds to be further explored. The rapid development of human connectome and complexnetwork theory provides a new way to the research of magnetic stimulation efficacy onacupuncture point.
     The brain functional network construction and analysis of magnetic stimulation onNeigaun (PC6) is carried out based on the high temporal resolution electroencephalogramusing complex network method. It aims at exploring the influence of magnetic stimulationon the brain functional connection from a holistic point of view, and providing new ideas tothe efficacy evaluation of acupoint magnetic stimulation especially in psychiatric diseasesrehabilitation treatment. The main contents were as follows:
     1. The EEG acquisition experiments of magnetic stimulation on acupoint andnon-acupoint with different frequencies were designed and carried out. The associatedfeatures of the acquired EEG data with high resolution were analyzed usingcross-correlation and mutual information method. The results found that brain functionalconnectivity obviously enhanced under high frequency magnetic stimulation on Neiguanacupoint.
     2. The unweighted and weighted brain fuctional networks were constructed based onthe multi-channel EEG associated features of magnetic stimulation on, acupoint and thenetwork characteristics were further analysed. The results found that the edges, averagedegree, average clustering coefficient and global efficiency of brain functional networksobservably increased, however, the average path length decreased under high frequencymagnetic stimulation on Neiguan acupoint. The characteristics change caused bynon-acupoint stimulation was significantly less than the acupoint stimulation.
     3. The centrality and centralized degree were analysed of the unweighted andweighted brain fuctional networks. The results found that the degree centrality and closecentrality obviously increased of nodes in frontal lobe, central region, and the parietal lobe,however, the betweenness centrality decreased in the parietal lobe and central region underhigh frequency magnetic stimulation on Neiguan acupoint. The centrality change caused by non-acupoint stimulation was significantly less than the acupoint stimulation.
     4. The small world properties of the brain functional networks were also evaluated inthis paper. The results found that all brain functional networks had small world propertiesin different magnetic stimulation stages of all subjects, and the small world propertiessignificantly enhanced under high frequency magnetic stimulation on Neiguan acupoint.The small world properties change caused by non-acupoint stimulation was less than theacupoint stimulation.
引文
[1]国家自然科学基金委员会,中国科学院.未来10年中国学科发展战略-脑与认知科学[M].北京:科学出版社,2011
    [2] Lehrer J. Neuroscience: Making connections [J]. Nature,2009,457(7229):524
    [3] Crick F, Jones E. Backwardness of human neuroanatomy [J]. Nature,1993,361(6408):109-110
    [4] Sporns O, Tononi G, K tter R. The human connectome: a structural description of the humanbrain [J]. PLoS computational biology,2005,1(4): e42
    [5] Lichtman J W, Sanes J R. Ome sweet ome: what can the genome tell us about the connectome?[J]. Current opinion in neurobiology,2008,18(3):346-353
    [6] Lichtman J W, Livet J, Sanes J R. A technicolour approach to the connectome [J]. NatureReviews Neuroscience,2008,9(6):417-422
    [7] Varela F, Lachaux J-P, Rodriguez E, et al. The brainweb: phase synchronization and large-scaleintegration [J]. Nature Reviews Neuroscience,2001,2(4):229-239
    [8] Sporns O. The human connectome: a complex network [J]. Annals of the New York Academy ofSciences,2011,1224(1):109-125
    [9] Van Den Heuvel M P, Sporns O. Rich-club organization of the human connectome [J]. TheJournal of Neuroscience,2011,31(44):15775-15786
    [10] Van Essen D, Ugurbil K, Auerbach E, et al. The human connectome project: a data acquisitionperspective [J]. Neuroimage,2012,62(4):2222-2231
    [11] Van Essen D, Ugurbil K. The future of the human connectome [J]. Neuroimage,2012,62(2):1299-1310
    [12] Toga A W, Clark K A, Thompson P M, et al. Mapping the human connectome [J]. Neurosurgery,2012,71(1):1-5
    [13] Bullmore E T, Bassett D S. Brain graphs: graphical models of the human brain connectome [J].Annual review of clinical psychology,2011,7:113-140
    [14]尧德中,罗程,雷旭,等.脑成像与脑连接[J].中国生物医学工程学报,2011,30(001):6-10
    [15] Barker A, Freeston I, Jalinous R, et al. Magnetic stimulation of the human brain [J]. J Physiol,1985,369(3):1106-1107
    [16] Barker A, Freeston I, Jalinous R, et al. Magnetic stimulation of the human brain and peripheralnervous system: an introduction and the results of an initial clinical evaluation [J]. Neurosurgery,1987,20(1):100-109
    [17] Barker A T. An introduction to the basic principles of magnetic nerve stimulation [J]. Journal ofClinical Neurophysiology,1991,8(1):26-37
    [18]张方风.大脑功能连接的复杂网络研究[M].北京:对外经济贸易大学出版社,2011
    [19]张方风,陈春辉,姜璐.基于复杂网络的大脑功能连接研究[J].复杂系统与复杂性科学,2011,8(2):18-23
    [20]张方风,郑志刚.复杂脑网络研究:现状与挑战[J].上海理工大学学报,2012,34(2):138-153
    [21]梁夏,王金辉,贺永.人脑连接组研究:脑结构网络和脑功能网络[J].科学通报,2010,55(16):1565-1583
    [22]蒋田仔,刘勇,李永辉.脑网络:从脑结构到脑功能[J].生命科学,2009,21(2):181-188
    [23]孙俊峰,洪祥飞,童善保.复杂脑网络研究进展——结构,功能,计算与应用[J].复杂系统与复杂性科学,2010,7(4):74-90
    [24] White J G, Southgate E, Thomson J, et al. The structure of the nervous system of the nematodeCaenorhabditis elegans. Philosophical Transactions of the Royal Society of London B, BiologicalSciences,1986,314(1165):1-340
    [25] Felleman D J, Van Essen D C. Distributed hierarchical processing in the primate cerebral cortex.Cereb Cortex,1991,1,1-47
    [26] Young M P. Objective analysis of the topological organization of the primate cortical visualsystem [J]. Nature,1992,358(6382):152-155
    [27] Young M P. The organization of neural systems in the primate cerebral cortex [J]. Proceedings ofthe Royal Society of London Series B: Biological Sciences,1993,252(1333):13-18
    [28] Modha D S, Singh R. Network architecture of the long-distance pathways in the macaque brain[J]. Proceedings of the National Academy of Sciences,2010,107(30):13485-13490
    [29] He Y, Chen Z J, Evans A C. Small-world anatomical networks in the human brain revealed bycortical thickness from MRI [J]. Cerebral cortex,2007,17(10):2407-2419
    [30] Chen Z J, He Y, Rosa-Neto P, et al. Revealing modular architecture of human brain structuralnetworks by using cortical thickness from MRI [J]. Cerebral cortex,2008,18(10):2374-2381
    [31] Schmitt J, Lenroot R, Wallace G, et al. Identification of genetically mediated cortical networks: amultivariate study of pediatric twins and siblings [J]. Cerebral cortex,2008,18(8):1737-1747
    [32] Lenroot R, Bassett D, Clasen L, et al. Developmental changes in topographic properties ofanatomical networks in children and adolescents [J]. Neuroimage,2009,47: S175
    [33] Hagmann P, Kurant M, Gigandet X, et al. Mapping human whole-brain structural networks withdiffusion MRI [J]. PloS one,2007,2(7): e597
    [34] Gong G, Rosa-Neto P, Carbonell F, et al. Age-and gender-related differences in the corticalanatomical network [J]. The Journal of Neuroscience,2009,29(50):15684-15693
    [35] Gong G, He Y, Concha L, et al. Mapping anatomical connectivity patterns of human cerebralcortex using in vivo diffusion tensor imaging tractography [J]. Cerebral cortex,2009,19(3):524-536
    [36] Iturria-Medina Y, Sotero R C, Canales-Rodríguez E J, et al. Studying the human brain anatomicalnetwork via diffusion-weighted MRI and Graph Theory [J]. Neuroimage,2008,40(3):1064-1076
    [37] Li Y, Liu Y, Li J, et al. Brain anatomical network and intelligence [J]. PLoS computationalbiology,2009,5(5): e1000395
    [38] Friston K J. Functional and effective connectivity in neuroimaging: a synthesis [J]. Human brainmapping,1994,2(1-2):56-78
    [39] Stephan K E, Hilgetag C C, Burns G A, et al. Computational analysis of functional connectivitybetween areas of primate cerebral cortex [J]. Philosophical Transactions of the Royal Society ofLondon Series B: Biological Sciences,2000,355(1393):111-126
    [40] Salvador R, Suckling J, Coleman M R, et al. Neurophysiological architecture of functionalmagnetic resonance images of human brain [J]. Cerebral cortex,2005,15(9):1332-134
    [41] Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency, small-world human brainfunctional network with highly connected association cortical hubs [J]. The Journal ofNeuroscience,2006,26(1):63-72
    [42] Achard S, Bullmore E. Efficiency and cost of economical brain functional networks [J]. PLoScomputational biology,2007,3(2): e17
    [43] Meunier D, Achard S, Morcom A, et al. Age-related changes in modular organization of humanbrain functional networks [J]. Neuroimage,2009,44(3):715-723
    [44] He Y, Wang J, Wang L, et al. Uncovering intrinsic modular organization of spontaneous brainactivity in humans [J]. PloS one,2009,4(4): e5226
    [45] Eguíluz V M, Chialvo D R, Cecchi G A, et al. Scale-Free Brain Functional Networks [J]. Physicalreview letters,2005,94(1):018102
    [46] Van Den Heuvel M P, Stam C J, Kahn R S, et al. Efficiency of functional brain networks andintellectual performance [J]. The Journal of Neuroscience,2009,29(23):7619-7624
    [47] Stam C J. Functional connectivity patterns of human magnetoencephalographic recordings: a‘small-world’ network?[J]. Neuroscience letters,2004,355(1-2):25-28
    [48] Bassett D S, Meyer-Lindenberg A, Achard S, et al. Adaptive reconfiguration of fractalsmall-world human brain functional networks [J]. Proceedings of the National Academy ofSciences,2006,103(51):19518-19523
    [49] Micheloyannis S, Pachou E, Stam C J, et al. Using graph theoretical analysis of multi channelEEG to evaluate the neural efficiency hypothesis [J]. Neuroscience letters,2006,402(3):273-277
    [50] Micheloyannis S, Vourkas M, Tsirka V, et al. The influence of ageing on complex brain networks:a graph theoretical analysis [J]. Human brain mapping,2009,30(1):200-208
    [51] Ferri R, Rundo F, Bruni O, et al. Small-world network organization of functional connectivity ofEEG slow-wave activity during sleep [J]. Clinical Neurophysiology,2007,118(2):449-456
    [52] Dimitriadis S I, Laskaris N A, Del Rio-Portilla Y, et al. Characterizing dynamic functionalconnectivity across sleep stages from EEG [J]. Brain topography,2009,22(2):119-133
    [53]柯铭,沈辉,胡德文.基于fMRI的静息状态脑功能复杂网络分析[J].国防科技大学学报,2010,32(1):147-151
    [54]陈旭辉,焦静静,柯铭,等.静息状态下脑网络建模及功能连接特性[J].兰州理工大学学报,2010,36(5):88-92
    [55]赵小虎,王湘彬,王培军,等.正常老年人大脑功能网络的小世界性[J].中国医学影像技术,2011,27(10):2118-2121
    [56]王艳群,李海芳,郭浩,等.静息态脑功能网络的社团结构研究[J].计算机应用,2012,32(7):2044-2048
    [57] Friston K J. The disconnection hypothesis [J]. Schizophrenia research,1998,30(2):115-125
    [58] Delbeuck X, Van Der Linden M, Collette F. Alzheimer'Disease as a Disconnection Syndrome?[J]. Neuropsychology review,2003,13(2):79-92
    [59]贺永.阿尔茨海默病的神经影像学研究进展[J].生物化学与生物物理进展,2012,39(008):811-815
    [60]李强,郑罡,徐敏,等.基于复杂网络的脑疾病功能网络研究进展[J].生物物理学报,2012,28(010):794-804
    [61] He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scalecortical networks in Alzheimer's disease [J]. The Journal of Neuroscience,2008,28(18):4756-4766
    [62] Stam C, Jones B, Nolte G, et al. Small-world networks and functional connectivity in Alzheimer'sdisease [J]. Cerebral cortex,2007,17(1):92-99
    [63] Stam C, De Haan W, Daffertshofer A, et al. Graph theoretical analysis ofmagnetoencephalographic functional connectivity in Alzheimer's disease [J]. Brain,2009,132(1):213-224
    [64] Supekar K, Menon V, Rubin D, et al. Network analysis of intrinsic functional brain connectivityin Alzheimer's disease [J]. PLoS computational biology,2008,4(6): e1000100
    [65] Wang J H, Zuo X N, Dai Z J, et al. Disrupted functional brain connectome in individuals at riskfor Alzheimer's disease [J]. Biological Psychiatry,2013,73:472-481
    [66] De Haan W, Van Der Flier W, Koene T, et al. Disrupted modular brain dynamics reflectcognitive dysfunction in Alzheimer's disease [J]. Neuroimage,2012,59(4):3085-3093
    [67]赵小虎,王湘彬,席芊,等.阿尔茨海默病患者的大脑功能网络小世界性[J].中华医学杂志,2012,92(009):579-582
    [68] Bassett D S, Bullmore E, Verchinski B A, et al. Hierarchical organization of human corticalnetworks in health and schizophrenia [J]. The Journal of Neuroscience,2008,28(37):9239-9248
    [69] Cammoun L, Gigandet X, Sporns O, et al. Connectome alterations in schizophrenia [J].Neuroimage,2009,47: S157
    [70] Micheloyannis S, Pachou E, Stam C J, et al. Small-world networks and disturbed functionalconnectivity in schizophrenia [J]. Schizophrenia research,2006,87(1):60-66
    [71] Rubinov M, Knock S A, Stam C J, et al. Small‐world properties of nonlinear brain activity inschizophrenia [J]. Human brain mapping,2009,30(2):403-416
    [72] Pachou E, Vourkas M, Simos P, et al. Working memory in schizophrenia: an EEG study usingpower spectrum and coherence analysis to estimate cortical activation and network behavior [J].Brain topography,2008,21(2):128-137
    [73] Liu Y, Liang M, Zhou Y, et al. Disrupted small-world networks in schizophrenia [J]. Brain,2008,131(4):945-961
    [74] Alexander-Bloch A, Lambiotte R, Roberts B, et al. The discovery of population differences innetwork community structure: New methods and applications to brain functional networks inschizophrenia [J]. Neuroimage,2012,59(4):3889-3900
    [75]柯铭,邹然,沈辉,等.阴性及阳性症状为主型精神分裂症患者脑功能网络分析[J].中国临床心理学杂志,2009,(5):575-578
    [76] Leistedt S J, Coumans N, Dumont M, et al. Altered sleep brain functional connectivity in acutelydepressed patients [J]. Human brain mapping,2009,30(7):2207-2219
    [77] Veer I M, Beckmann C, Van Tol M-J, et al. Frontiers: Whole Brain Resting-State AnalysisReveals Decreased Functional Connectivity in Major Depression [J]. Frontiers in systemsneuroscience,2010,4(1):41-50
    [78] Zhang J R, Wang J H, Wu Q Z, et al. Disrupted brain connectivity networks in drug-naive,first-episode major depressive disorder [J]. Biological Psychiatry,2011,70(4):334-342
    [79] Zeng L L, Shen H, Liu L, et al. Identifying major depression using whole-brain functionalconnectivity: a multivariate pattern analysis [J]. Brain,2012,135(5):1498-1507
    [80] Ponten S, Bartolomei F, Stam C. Small-world networks and epilepsy: graph theoretical analysisof intracerebrally recorded mesial temporal lobe seizures [J]. Clinical Neurophysiology,2007,118(4):918-927
    [81] Van Dellen E, Douw L, Baayen J C, et al. Long-term effects of temporal lobe epilepsy on localneural networks: a graph theoretical analysis of corticography recordings [J]. PloS one,2009,4(11): e8081
    [82] Mcgill M L, Devinsky O, Kelly C, et al. Default mode network abnormalities in idiopathicgeneralized epilepsy [J]. Epilepsy&Behavior,2012,23(3):353-359
    [83] Liao W, Zhang Z Q, Pan Z Y, et al. Altered functional connectivity and small-world in mesialtemporal lobe epilepsy [J]. PloS one,2010,5(1): e8525
    [84] Zhang Z, Liao W, Chen H, et al. Altered functional–structural coupling of large-scale brainnetworks in idiopathic generalized epilepsy [J]. Brain,2011,134(10):2912-2928
    [85] He Y, Dagher A, Chen Z, et al. Impaired small-world efficiency in structural cortical networks inmultiple sclerosis associated with white matter lesion load [J]. Brain,2009,132(12):3366-3379
    [86]方小玲,姜宗来.基于脑电图的大脑功能性网络分析[J].物理学报,2007,56(12):7330-7338
    [87] Wang L, Zhu C Z, He Y, et al. Altered small‐world brain functional networks in children withattention‐deficit/hyperactivity disorder [J]. Human brain mapping,2009,30(2):638-649
    [88] Zhang T J, Wang J H, Yang Y C, et al. Abnormal small-world architecture of top–down controlnetworks in obsessive–compulsive disorder [J]. J Psychiatry Neurosci,2011,36(1):23-31
    [89]李炜,李亚鹏,朱文珍,等.中风后大脑网络的改变[J].中国生物医学工程学报,2012,31(3):344-348
    [90]李诺,王江,邓斌,等.针刺对脑功能性网络连接的影响[J].针刺研究,2011,36(4):278-287
    [91]王海洋,王江,李红利,等.针刺过程中大脑功能性网络特性的演化[J].吉林大学学报(理学版),2012,20(1):81-88
    [92]赵凌.基于fMRI技术研究循经取穴针刺效应的脑功能连接网络响应特征[D].成都:成都中医药大学,2011
    [93]方继良,洪洋,王小玲,等.运用fMRI观察电针关元及中脘穴相对特异性的脑功能网络[J].针刺研究,2011,36(5):366-372
    [94]方继良,王小玲,王寅,等.电针正常人足三里和关元穴中枢效应的fMRI脑功能成像比较[J].针刺研究,2012,37(001):46-52
    [95] Xu G Z, Zhang X, Ho S, et al. Complexity Analysis of Magnetic Stimulation at the Acupoint ofZusanli (St36) on EEG [J]. IEEE transactions on magnetics,2009,45(10):4829-4832
    [96]张秀,徐桂芝,杨硕.磁刺激足三里脑电复杂度研究[J].中国生物医学工程学报,2009,28(4):620-623
    [97] Xu G Z, Zhang X, Yu H L, et al. Complexity Analysis of EEG Under Magnetic Stimulation atAcupoints [J]. Applied Superconductivity, IEEE Transactions on,2010,20(3):1029-1032
    [98] Yang Q X, Xu G Z, Ho S, et al. Analysis for Magnetic Stimulation Effects on Acupoint [J].Applied Superconductivity, IEEE Transactions on,2010,20(3):802-805
    [99] Yang S, Xu G Z, Wang L, et al. Circular coil array model for transcranial magnetic stimulation[J]. Applied Superconductivity, IEEE Transactions on,2010,20(3):829-833
    [100]徐桂芝,张秀,杨庆新,等.磁刺激穴位对人体神经功能调节作用[J].电工技术学报,2010,004):34-37
    [101]耿跃华,徐桂芝,于洪丽,等.磁刺激神门穴脑电信号的样本熵分析与诱发电位的研究[J].中国生物医学工程学报,2010,29(006):824-829
    [102]耿跃华.磁刺激神门穴诱发脑电信号分析[D].天津:河北工业大学,2010
    [103] Yu H L, Xu G Z, Yang S, et al. Activation of Cerebral Cortex Evoked by Magnetic Stimulation atAcupuncture Point [J]. Magnetics, IEEE Transactions on,2011,47(10):3052-3055
    [104]李文文,徐桂芝,陈小刚,等.磁刺激内关穴的脑电源定位分析[J].中国生物医学工程学报,2011,30(001):22-26
    [105]李文文.基于磁刺激内关穴的诱发脑电源定位分析[D].天津:河北工业大学,2011
    [106]于洪丽.磁刺激穴位脑电特征信号提取及分析[D].天津:河北工业大学,2011
    [107] Alexanderson G. About the cover: Euler and K nigsberg’s Bridges: A historical view [J]. Bulletinof the american mathematical society,2006,43(4):567-573
    [108]倪丽伟,王舒.内关穴功能及临床应用揽要[J].针灸临床杂志,2008,24(3):45-460
    [109]崔冬.多通道脑电信号建模及同步分析[D].秦皇岛:燕山大学,2011
    [110] Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J]. Physical review A,1986,33(2):1134-1140
    [111] Shannon C E. Communication theory of secrecy systems [J]. Bell system technical journal,1949,28(4):656-715
    [112] Schindler K A, Bialonski S, Horstmann M-T, et al. Evolving functional network properties andsynchronizability during human epileptic seizures [J]. Chaos: An Interdisciplinary Journal ofNonlinear Science,2008,18(3):033119
    [113] Albert R, Barabási A-L. Statistical mechanics of complex networks [J]. Reviews of modernphysics,2002,74(1):47-97
    [114]郭雷,许晓鸣.复杂网络[M].上海:上海科技教育出版社,2006
    [115] Barrat A, Barthelemy M, Pastor-Satorras R, et al. The architecture of complex weighted networks[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(11):3747-3752
    [116] Dijkstra E W. A note on two problems in connexion with graphs [J]. Numerische mathematik,1959,1(1):269-271
    [117] Newman M E. Scientific collaboration networks. II. Shortest paths, weighted networks, andcentrality [J]. Physical Review E,2001,64(1):016132
    [118] Brandes U. A faster algorithm for betweenness centrality [J]. Journal of Mathematical Sociology,2001,25(2):163-177
    [119] Latora V, Marchiori M. Efficient behavior of small-world networks [J]. Physical review letters,2001,87(19):198701
    [120] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage,2010,52(3):1059-1069
    [121]何大韧,刘宗华,汪秉宏.复杂系统与复杂网络[M].北京:高等教育出版社,2009
    [122] Wasserman S, Faust K. Social network analysis: Methods and applications [M]. Cambridge:Cambridge university press,1994
    [123] Friedkin N E. Theoretical foundations for centrality measures [J]. American journal of Sociology,1991,96(6):1478-1504
    [124] Freeman L C. A set of measures of centrality based on betweenness [J]. Sociometry,1977,40(1):35-41
    [125]张婧婧.复杂网络中心化的研究[D].西安:西安理工大学,2007
    [126]王林,张婧婧.复杂网络的中心化[J].复杂系统与复杂性科学,2006,3(1):13-20
    [127] Freeman L C. Centrality in social networks conceptual clarification [J]. Social networks,1979,1(3):215-239
    [128]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006
    [129] Wang X F. Complex networks: topology, dynamics and synchronization [J]. International Journalof Bifurcation and Chaos,2002,12(05):885-916
    [130] Erd s P, Rényi A. On random graphs [J]. Publicationes Mathematicae Debrecen,1959,6(3):290-297
    [131] Erd s P, Rényi A. On the evolution of random graphs [J]. Publications of the MathematicalInstitute of the Hungarian Academy of Sciences,1960,5(1):17-61
    [132] Erd s P, Renyi A. On the strength of connectedness of a random graph [J]. Acta MathematicaHungarica,1961,12(1):261-267
    [133] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks [J]. Nature,1998,393(6684):440-442
    [134] Barrat A, Weigt M. On the properties of small-world network models [J]. The European PhysicalJournal B-Condensed Matter and Complex Systems,2000,13(3):547-560
    [135] Newman M E, Watts D J. Renormalization group analysis of the small-world network model [J].Physics Letters A,1999,263(4):341-346
    [136] Newman M E, Moore C, Watts D J. Mean-field solution of the small-world network model [J].Physical review letters,2000,84(14):3201-3204
    [137] Humphries M D, Gurney K, Prescott T J. The brainstem reticular formation is a small-world, notscale-free, network [J]. Proceedings of the Royal Society B: Biological Sciences,2006,273(1585):503-511
    [138] Friston K. Beyond phrenology: what can neuroimaging tell us about distributed circuitry?[J].Annual review of neuroscience,2002,25(1):221-250
    [139] Friston K. Functional integration and inference in the brain [J]. Progress in neurobiology,2002,68(2):113-143
    [140]方锦清.大脑网络的探索进程(二)——进展、思考和挑战[J].自然杂志,2013,35(2):3-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700