犬穿通性颅脑火器伤模型的建立及继发性脑损害机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文一犬穿通性颅脑火器伤模型的建立及其生理、病理改变的观察
     目的
     对现有犬穿通性颅脑火器伤模型进行改进,延长动物的存活时间,观察其生理、病理改变,为颅脑火器伤的病理、生理和分子生物学研究提供更加完善的平台。
     方法
     本地成年雄性杂种犬19只,体重20~25kg,随机分为三组:A组按照传统模型,直接致伤,n=5;B组为改进的模型,左侧额颞顶部骨瓣开颅,骨窗大小约6.0×8.0cm,暴露脑组织后致伤,n=9:C组为对照组,n=5,仅予开颅手术。致伤枪支为东风-SS03型小口径速射手枪,初速190~210米/秒,弹丸质量2.60±0.05g。实验前30min给予吗啡10mg、阿托品0.5mg肌肉注射,实验开始时给予硫贲妥钠25mg/kg腹腔注射,气管插管,以中间带孔的木制牙垫固定于张口位,枪击前静脉给予氯胺酮40~50mg。犬仰卧,头偏向右侧、固定,头下垫沙袋及厚木板,手枪固定于金属支架上,距离犬头20cm,激光指示器校准;入射点:A组为左侧额骨颧突后2.5~3.0cm,B组为左侧额叶冠状回中部,入射角度90°;射击后受伤脑组织不做电凝止血,仅以明胶海绵、棉片保护创伤区。惠普78354C型生理监测仪连续记录心率、血压、呼吸变化,致伤后30min动脉采血做血气分析,静脉采血检验血糖及肝、肾功能。B组伤后6h,从四个区域取皮层脑组织,分别距伤道<0.5cm、0.5~2.0cm、2.0~4.0 cm、>4.0cm,C组同一时间按照对应部位取标本。一部分以甲醛固定,常规石蜡包埋、切片、HE染色,光镜下观察;另一部分以戊二醛保存,锇酸固定,Epon812包埋,超薄切片,电镜观察。统计学处理采用t检验及方差分析。
     结果
     B组伤后呼吸暂停时间和存活时间均大于A组(P<0.01);A组MAP于伤后10min降至最低点,继之以小幅度的升高,后期逐渐降低至正常值水平以下;B组伤后出现快速而短暂的明显的血压升高,继而于伤后10min大幅度降低至波谷,后期逐渐回升至接近正常值水平;伤后两组心率均立即下降,伤后10min回升达峰值,之后再次缓慢下降,B组的变化幅度大于A组。伤后30min,A、B两组致伤犬除血糖高于C组(p<0.05)之外,其他指标差异不显著。光镜下,脑组织可出现空泡化、网格化,神经元胞体、胞核固缩、变形,胞质深染,可见核偏移;星形胶质细胞增大明显,小胶质细胞增多;脑组织间散在小片状出血,蛛网膜下腔出血,血管周围间隙明显增宽,部分血管破裂出血。电镜下,神经元胞核内异染色质凝聚、边集,核膜模糊,胞质部分溶解,胞膜破损,粗面内质网扩张、脱颗粒,线粒体嵴破坏、消失、甚至空泡化,核糖体减少,溶酶体增多;胶质细胞足突肿胀,胞膜破损,线粒体肿胀,嵴消失,呈空泡状;有髓神经纤维脱髓鞘多见,可见局部缺损、断裂,轴索区形成空腔;血脑屏障内皮细胞胞膜模糊、局部破损,胞核内异染色质边集,线粒体嵴缺失、空泡化,胞质内有较多的胞饮小泡,基膜大部分模糊,局部溶解。距离原发伤道越近,组织损害程度越重。
     结论
     经过改进的犬穿通性颅脑火器伤模型与现有的模型相比,动物伤后存活时间明显延长,弹着点更准确,伤道一致性更好,有利于进行更为深入的病理、生理和分子生物学研究。
     论文二犬穿通性颅脑火器伤脑组织继发损害机制的研究
     目的
     探讨TNF-α和NF-κB/Rel家族成员在犬穿通性颅脑火器伤脑组织继发损害机制中的作用,并比较它们在脑组织不同区域的表达差异,为更精确地划分受损伤脑组织的病理分区提供依据。
     方法
     本地成年雄性杂种犬14只,体重20~25kg,随机分为两组:B组(n=9)为改进的模型,暴露脑组织后致伤;C组为对照组(n=5),仅予开颅手术。B组于致伤后6h分别从三个区域取皮层脑组织,分别距伤道0.5~2.0cm、2.0~4.0 cm、>4.0cm,标志为B1组、B2组、B3组;C组于开颅手术后6h从皮层对应部位取材;一部分标本以10%甲醛溶液固定,24h后常规石蜡包埋、切片,采用免疫组化SABC法检测,一抗为兔抗大鼠TNF-α、兔抗山羊COX-2、Caspase-3,每张切片选取5个高倍视野,每高倍视野计数100个细胞,计算阳性细胞百分比。另一部分标本液氮保存,分别行western blot及RT-PCR检测。western blot采用兔抗大鼠TNF-α、兔抗山羊COX-2、兔抗山羊Caspase-3一抗,以β-actin为内参照,Bandleader软件分析各电泳条带与β-actin蛋白含量的比值,计算相对量。RT-PCR以gapdh为内参照,TNF-α(413bp)上游引物:5'CCC CAA GTG ACA AGC CAG TA 3',下游引物:5'CAA AGT CCA GAT TAG GCA GAT 3';NF-κB(P65)(490bp)上游引物:5'TAA TCG CCA TAG CCA TAG TCG 3',下游引物:5'GTT TTG CCT CCC AGT TCTGA 3';NF-κB(P52)(381bp)上游引物:5'CCT ATC CAC GAC AAC CTT GC 3',下游引物:5'CAT AGA TGC TGC TGA CCC AAC 3';COX-2(238bp)上游引物:5'ATCCCC TTC CTG CGA AAT AC 3',下游引物:5'GCA GAA GAA ACT TTT CCA CAA TC 3':Caspase-3(416bp)上游引物:5'ACC CGA AGG CTT GCA TAA GG 3',下游引物:5'ACC GAG GTG CCA TTC CAG TA 3';gapdh(419bp);上游引物:5'TCC CGC CAACAT CAAA 3',下游引物:5'TGACCTTGC CCA CAG C 3'。PCR反应产物于1.5%琼脂糖凝胶电泳,凝胶图像分析系统下观察并摄像,用Bandleader软件进行扫描分析,以目的基因条带与gapdh条带吸光度容积的比值作为目的基因mRNA的相对含量。以上数据应用SPSS10.0软件,多组之间比较采用方差分析。
     结果
     TNF-α和COX-2的阳性染色部位为胞浆,致伤后在不同区域的脑组织的表达率由B3至B2、B1逐步升高,差异显著,它们与正常脑组织之间也存在显著差异;Caspase-3在胞核、胞浆均有阳性染色,B2、B3以及C组之间的阳性表达率具有显著差异。Western blot显示:TNF-α、COX-2、Caspase-3蛋白在不同区域的脑组织的表达相对量均高于正常脑组织,其差异具有显著性(p<0.05);其中B1与B2组COX-2蛋白的表达相对量具有显著差异(p<0.01)。RT-PCR显示:TNF-α、P65、P52、COX-2、Caspase-3的mRNA在不同区域的脑组织的表达相对量与正常脑组织之间均有显著差异(p<0.01);其中P65、COX-2的表达相对量由B3至B2、B1组逐步增高,具有统计学意义。
     结论
     (1)TNF-α参与了犬脑火器伤后的继发性损害,但与损害的程度之间并不是简单的线性关系;(2)RNA水平的检测提示RelA(p65)和NF-κB(p52)都参与了犬脑火器伤后的继发性损害,但在因外源性刺激而激活的NF-κB蛋白中RelA(p65)可能比NF-κB(p52)具有更大的比重,主要是由RelA(p65)介导了颅脑火器伤的继发性脑损害。(3)通过免疫组化、western blot和RT-PCR的方法,观察到COX-2和Caspase-3的水平在火器伤犬脑组织中的表达均显著高于单纯手术犬,提示它们都参与了犬脑火器伤后的继发性损害,神经细胞的变性和调亡是同时存在的。在不同创伤分区之间表达的差异显示,因火器伤所致的神经细胞减少,可能更多地归因于COX-2介导的神经元变性;而Caspase-3在不同创伤分区之间的表达差异并不肯定,提示至少在脑火器伤的早期,神经细胞的调亡并不是主要事件。
     论文三实验性犬颅脑火器伤的皮层脑电监测
     目的
     通过对动物模型犬的颅脑火器伤后皮层脑电监测(ECoG),初步探讨颅脑火器伤与脑电特征的相关性。
     方法
     本地成年雄性杂种犬9只,体重20~25kg,左侧额颞顶部骨瓣开颅,骨窗大小约6.0×8.0cm,暴露脑组织;应用Oxford Medelec数字脑电图系统行ECoG监测,采用银针电极固定于额极、中央区、顶、枕区,另设头皮参考电极2个,以参考导联方式记录,灵敏度50uV/5mm,高频滤波30Hz,时间常数0.3S,走纸速度30mm/s,行ECoG监测>30min后,以东风-SS03型小口径速射手枪射击冠状回中部致伤并观察生理、生化指标,伤后30min再行ECoG监测,持续监测时间>30min,分析损伤早期不同区域的ECoG变化情况。
     结果
     通过连续观察实验犬火器伤后的ECoG,损伤早期基本节律普遍抑制,以脑组织直接破坏区最显著,波幅低平提示严重损害;脑破坏区周围的波幅波率有所增加,间断给氧可见波幅和频率变化,此反应性有良好预后趋向。
     结论
     ECoG监测在颅脑火器伤后的动态观察有利于早期诊断,对损伤程度的评估和判定预后也有一定价值。
Paper one Model establishment of penetrating craniocerebral gunshot wounds in dogs
     Objectives
     To establish a new model of penetrating craniocerebral gunshot wounds in dogs, increase the survival time for further research.
     Methods
     Nineteen local male adult dogs were randomly divided into 3 groups.Group A for classic model(n=5),shot directly without operation;group B for new model(n=9), which were operated by removing the frontal-temporal-parietal skull before shot at the frontal lobe directly in coronal gyrus;group C for control group(n=5),were operated only.The initial velocity and pellet quality of Dongfeng-SS03 pistol which was used in this experiment was 190~210m/s and 2.60±0.05g accordingly.Thiopentone(25mg/kg) was intraperitoneal injected in dogs as anesthesia before tracheal intubation.The dog head was fixed with left side upward,sandbag and 10-cm-thick board underlying. The pistol was fixed at a distance of 20cm to the dog head,and adjusted by laser indicator.Target point was 2.5~3.0cm backward to the zygomatic process in group A and central section of coronal gyrus in group B.Angle of incidence was 90 degree to the sagittal surface.Local brain tissue was protected with gelatin sponge after being shot.Heart rate(HR),mean artery pressure(MAP) and breath status was recorded by physiological detector.PaO2,PaCO2,HCO3-,serum glucose content,ALT,AST,BUN and Cr were investigated 30 minute after shooting.Six hours later,four parts of brain tissues were saved,which was less then 0.5 cm,0.5 to 2.0 cm,2.0 to 4.0 cm and more than 4.0 cm from the target point in group B and C(in corresponding section).All samples were kept in formalin for routine pathological study and in glutaraldehyde for transmission electronic microscope(TEM) study.
     Result
     The time of survival and breath pause in group B were longer than group A (p<0.01).Fluctuating extent of MAP and HR in group B were also bigger than group A. Vacuolization of brain tissue,pericaryon deformation,karyopycnosis,kytoplasm anachromasis,nucleus excursion,horizontal cell obviously enlarged,gitter cell increased,scattered hemorrhage in brain tissue,subarachnoid hemorrhage(SAH), perivascular space obviously enlarged and angiorrhexis could be observed by microscope detection.In TEM study,neuron showed chromatin agglutination in nucleus,nucleolemma ambiguity,kytoplasm dissolve,cell membrane breakage,rough endoplasmic reticulum(RER) distention and degranulation,mitochondrial cristae damage,disappear or vacuolization,ribosome(RI) decrease,lysosome increase.Foot process of gliocyte swelling,medullated nerve fibers demyelinate or collapse and blood brain barrier(BBB) destruction were also detected.The brain tissue near the original wound damaged much severely than that far from it.
     Conclusion
     Contrasted to the classic model,the new model had a longer survival time, obvious pathological,physiological and ultramicrostructure change,and better concordance of wound.
     Paper two Mechanism of secondary injury in penetrating craniocerebral gunshot wounds in dogs
     Objective
     To investigate the role of TNF-α、COX-2、Caspase-3 and NF-κB/ Rels in secondary injury in penetrating craniocerebral gunshot wounds.
     Methods
     Fourteen local male adult dogs were randomly divided into 2 groups.Group B for modified model(n=9),which were operated by removing the frontal-temporal-parietal skull before shot at the frontal lobe directly in coronal gyrus;group C for control group(n=5),were operated only.The initial velocity and pellet quality of Dongfeng-SS03 pistol which was used in this experiment was 190~210m/s and 2.60±0:05g accordingly.Thiopentone(25mg/kg) was intraperitoneal injected in dogs as anesthesia before tracheal intubation.The dog head was fixed with left side upward, sandbag and 10-cm-thick board underlying.The pistol was fixed at a distance of 20cm to the dog head,and adjusted by laser indicator.Target point was 2.5~3.0cm backward to the zygomatic process in group A and central section of coronal gyrus in group B.Angle of incidence was 90 degree to the sagittal surface.Local brain tissue was protected with gelatin sponge after being shot.Six hours after shooting,four parts of brain tissues were saved,which was 0.5 to 2.0 cm,2.0 to 4.0 cm and more than 4.0 cm from the target point in group B and C(in corresponding section),those of group B were marked as group B1,B2 and B3.All samples were kept in formalin for immunohistochemistry(IHC) study and in liquid nitrogen for western blotting and polymerase chain reaction(PCR) study.Gene gapdh was used as internal reference in PCR,and the primers were designed as follow:TNF-α(413bp) upstream primer: 5'CCC CAA GTG ACA AGC CAG TA 3',downstream primer:5'CAA AGT CCA GAT TAG GCA GAT 3';NF-κB(P65)(490bp) upstream primer:5'TAA TCG CCA TAG CCA TAG TCG 3',downstream primer:5'GTT TTG CCT CCC AGT TCT GA 3'; NF-κB(P52)(381bp) upstream primer:5'CCT ATC CAC GAC AAC CTT GC 3', downstream primer:5'CAT AGA TGC TGC TGA CCC AAC 3';COX-2(238bp) upstream primer:5'ATC CCC TTC CTG CGA AAT AC 3',downstream primer: 5'GCA GAA GAA ACT TTT CCA CAA TC 3',Caspase-3(416bp) upstream primer: 5'ACC CGA AGG CTT GCA TAA GG 3',downstream primer:5'ACC GAG GTG CCA TTC CAG TA 3';gapdh(419bp) upstream primer:5'TCC CGC CAA CAT CAA A 3',downstream primer:5' TGA CCT TGC CCA CAG C 3'
     Result
     IHC:TNF-αand COX-2 protein showed positive staining in cytoplasm,and the level of expression ascended gradually from B3 to B1.Both positive rates in group B were higher than that in group C(p<0.01).Caspase-3 positive staining was detected in cytoplasm and nucleus,group B2 and B3 showed deference from group C(p<0.01). Western blotting:The relative amounts of TNF-α,COX-2 and Caspase-3 protein in group B were higher than that in group C(p<0.05).Deference of COX-2 between group B1 and B2 could also be observed.PCR:The relative amounts of TNF-α,P65, P52,COX-2 and Caspase-3 mRNA in group B were higher than that in group C (p<0.01).And it also showed deference among B1,B2 and B3.Moreover,P65 and COX-2 level ascended gradually from B3 to B1.
     Conclusion
     TNF-α,P65,P52,COX-2 and Caspase-3 were all involved in the mechanism of secondary injury in penetrating craniocerebral gunshot wounds.The role of P65 in secondary injury of brain is more important than P52.Neuron degeneration induced by COX-2 may be dominating compared with neuron apoptosis induced by Caspase-3.
     Paper three Electrocorticography monitoring in penetrating craniocerebral gunshot wounds in dogs
     Objective
     To investigate the correlation between penetrating craniocerebral gunshot wounds and ECoG performance by ECoG monitoring in dogs.
     Methods
     Local male adult dogs were studied as modified model(n=9),which were operated by removing the frontal-temporal-parietal skull before ECoG monitoring,then shot at the frontal lobe directly in coronal gyrus and inspected by ECoG again.The model was established according to the modified method mentioned above.Oxford Medelec system was used in ECoG monitoring.The aciculiform electrodes were set in frontal pole,central region,parietal region and occipital region,with two reference electrodes in scalp.The signal was recorded in reference lead,the sensitivity was 50 uV/5mm,high-frequency filter was 30 Hz,time constant was 0.3 s,paper speed was 30 mm/s,monitored for more than 30 minutes.
     Result
     In early stage the basic rhythm was generally suppressed and the amplitude was in low level,especially in initial wound region.Both indexes were better in surrounding areas.Amplitude and frequency increased after discontinuously oxygen breathe in.
     Conclusion
     ECoG monitoring is advantageous in early diagnosis in craniocerebral gunshot wounds.It could be used in the evaluation of injury and the prediction of prognosis.
引文
1.Sertac Y,Mustafa K.High velocity gunshot wounds to the head and neck:A review of wound ballistics.Milit Med,1998,163(5):346
    2.Allen IV,Scott R,Tanner JA.Experimental high-velocity missile hesd injuty.Injury,1982,14(2):183
    3.West CGH.A short hiwtory of the management of penetrating missile injuries of the head.Surg Neurol,1981,16:145
    4.Webster JE,Gurdjian ES.Acute physiological effect of gunshot and other penetrating wounds f the brain.J Neurophsiol,1943,6:255
    5.Gerber AM,Moody R.Cranialcerebral missile injury in the monkey:An experimental physiological model.J Neurosurg,1972,36:43
    6.Crockard H,Brown F,Calica A.Physiological consequences of experimental cerebral missile injury and use of data analysis to predict survival.J Neurosurg,1977,46:784
    7.Maynard R,Cooper G,Evans VA,et al.Pathophysiological effects of experimental medium velocity penetrating head injury.CDE Technical,Note No:567,Porton Down,Salisbury,Wilts,England.Davorin D,Dinko L,Drago P,et al.War injuries to the head and neck.Milit Meal,1998,163(2):117
    8.Coben JH,Steiner CA.Hospitalization for firearm-related injuries in the United States 1997.Am J Prev Meal,2003,24(1):1-8
    9.Carey ME et al.J Neurosurg,1989,71:754
    10.雷鹏,朱诚,张光霁,等.7.62MM弹颅脑火器伤实验研究1脑贯通伤、脑切线伤和颅骨切线伤的比较.第二军医大学学报,1989,10(3):201
    11.马德选,徐如祥,朱红胜.湿热环境猫颅脑火器伤早期脑微循环及血脑屏障的变化.第一军医大学学报,2004,24(8):877-880
    12.钱畅,陈长才.颅脑火器伤早期脑微血管三维构型和超微结构实验研究.第一军医大学学报,2004,24(7):765-767
    13.章翔,封亚平,费舟,等.犬颅脑枪弹伤模型建立及其超微结构观察.中华创伤杂志,2003,19(9):557-558
    14.Naude GP,Bongard FS.From deadly weapon to toy and back again:the danger of air rifles.J Trauma,1996,41(6):1039-1043
    15.刘荫秋,王正国,马玉媛.创伤弹道学.北京:人民军医出版社,1991.27-84.
    16.Axelsson H,Hjelmqvist H,Medin A,et al.Physiological changes in pigs exposed to a blast wave from a detonating high-explosive change.Mil Med,2000,165:119-126.
    17.Crokard HA,Brown FD,Johns LM,et al.An experimental missile injury model in primates.J
    18.Neurosurg,1997,46:776-779.
    19.Hattori N,Huang SC,Wu HM,et al.Correlation of Regional Metabolic Rates of Glucose with Glasgow Coma Scale After traumatic Brain Injury.J Nucl Med,2003,44(11):1709-1716.
    20.Subke J,Haase S,Wehner HD,et al.Gunshot reconstructions based on individually parametrical 3-dimensional victim models.Arch Kriminol,2001,208(3-4):72-79.
    21.Bergsneider M,Hovda DA,Lee SM,et al.Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury.J Neurotrauma,2000,17(5):389-401.
    22.刘鲁岳,李兵仓.颅脑火器伤的实验研究现状.创伤外科杂志,1999,1(3):148-150.
    23.Lobato R,Sarabia R,Cordobes F,et al Post-traumatic cerebral hemispheric swelling.J Neurosurg,1988,68:417
    24.Bouma DJ,Muizelar JP,Stringer WA.Ultraearly evaluation of regional cerebral blood llow in severely head-injured patients using xenon-enhanced computerized tomography.J Neurosurg,1992,77:360
    25.Kinoshita K,Chatzipanteli K,Alonso OF,et al.The effect of brain temperature on hemoglobin
    26.extravasation after traumatic brain injury.J Neurosurg,2002,97(4):945-953
    27.Boisver D,Schreiber C.Interrelationship of excitotoxic and free radical mechanisms.In KrieglsteinJ,Oberpichler H.Pharmacology of cerebral ischemia.Stuttgart:Wissenshaftlich Verlaggesellschaft,1992.1~10
    28.Rohn TT,Hinds TR,Vincdnzi FF.Ion transport ATPase as targets for free radical damage:protection by an aminosteroid of the Ca~(2+)pump ATPase and Na~+/K~+ pump ATPase of human red blood cell membranes.Biochem Pharmacol,1993,46,525
    29.Larner SF,Hayes RL,McKinsey DM,et al.Increased expression and processing of caspase-12 after traumatic brain injury in rats.J Neurochem,2004,88(1):78-90
    30.Christian M,Catherine V,Monique A,et al.Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors.J Neurotrauma,1996,13(1):11
    31.Shalaby MR,Pennica D,Palladino MA.An overview of the history and biological properties of tumor necrosis factors.Springe Semin Immun,1986,9(1):33-37.
    32.Bazzoni E,Beutler B.How do tumor necrosis factor receptors work? J Immfla,1995,45: 221-238.
    33.查纪坤,舒红兵.肿瘤坏死因子信号传导的分子机理.中国科学(C辑),2002,32(1):1-12.
    34.Balwin AS.The NF-κB and IκB proteins:new discoveries and insights.Annu Rev Immunol,1996,14:649-683.
    35.Bohrer H,Qiu F,Zimmermann T,et al.Role of NF-κB in the mortality of sepsis.J Clin nvest,1997,100:972-985.
    36.Iwai K,Lee BR,Hashiguchi M,et al.IkB-alpha-specific transcript regulation by the C-terminal end of c-Rel.FEBS Lett,2005,579(1):141-144.
    37.Liou HC.Regulation of the immune system by NF-kappaB and IkappaB.J Biochem Mol Biol,2002,35(6):537-546.
    38.Li X,Massa PE,Hanidu A,et al.IKKalpha,IKKbeta,and NEMO/IKKgamma are each required for the NF-kappa B-mediated inflammatory response program.J Biol Chem,2002,277(47):45129-45140.
    39.Berti R,W illiams AJ,Moffett JR,et al.Quantitative real-time RT-PCR analysis of inflmmatory gene expression associated with ischemia-reperfusion brain injury.J Cereb Blood Flow Metab,2002,22(9):1068-1079.
    40.Zou JY,Crews FT.TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultres:neuroprotection by NF - kappa B inhibition.Brain Res,2005,1034(1-2):11-24.
    41.Sullivan PG,Bruce-Keller AJ,Rabchevsky AG,et al.Exacerbation of damage and altered NF-kappa B activation in mice lacking tumor necrosis factor receptors after traumatic brain injury.J Neurosci,1999,19(15):6248-6256.
    42.Hang CH,Shi JX,Li JS,et al.Concom itant upregulation of nuclear factor-kB activity,proinflammatory cytokines and ICAM-1 in the injured brain after cortical contusion trauma in a rat model.Neurol India,2005,53(3):312-317.
    43.Kaufmann WE,Andreasson KI,Isakson PC,et al Cyclooxygenases and the central nervous system.Prostaglandins,1997,54:601-624.
    44.Heather C,Salzberg B,Chen EY et al Inhibitors of cyclooxygenase-2,but not cyclooxygenase-1 provide structural and functional protection against quinolinic acid Induced neurodegeneration.J Phamacol Exp,2003,306:2128-2228
    45.Suzuki A,Iwasaki M,Wagai N.Involvement of cytoplasmic serene proteinase and CPP32subfamily in the molecular machinery of caspase 3 activation during Fas mediated apoptosis.Exp Cell Res,1997,233(1):48-55.
    46.Edgren E,Hedstrand U,Nordin M.Prediction of outcome after cardiac arrest.Crit Care Med,1987,15(9):820-825.
    47.Prasad K,Menon GR.Comparison of the three strategies of verbal scoring of the Glasgow coma scale in patients with stroke.Cerebrovase Dis,1998,8(2):79-85.
    48.Wallace BE,Wagner AK,Wagner EP,et al.A history and review of quantitative electroencephalography in traumatic brain injury.J Head Trauma Rehabil,2001,16(2):165-90.
    49.Matz PG,Pitts L.Monitoring in traumatic brain injury.Clin Neurosurg.1997;44:267-94.
    50.Kane NM,Moss TH,Curry S,et al.Quantitative electroencephalographic evaluation of non-fatal and fatal traumatic coma.Electroencephalogr-Clin-Neurophysiol.1998,106(3):244-250.
    51.Dean B,Andropoulos MD,Stephen A.neurological monitoring for congenital heart surgery.Anesthesia,2004,99:1365-1375.
    52.Saif SM,Razvi,Ian Bone.Neurological consultation in the medical intensive care unit.Neurology Neurosurgery and Psychiatry,2003,74:16.
    53.Mushiroi T,Shibahara R,UkaiY,et al.Lactitol suppresses the disturbance of consciousness caused by experimentally induced hepatic encephalopathy in rats an EEG study.Nippon Yakuigaku Zasshi,1995,105(2):111-119.
    54.Ukai Y,Ogasawara T,Yoshikuni Y,et al Montirelin hydrate(NS-3),a TRH analog improved disturbance of consciousness in cats electroence-phalographical studies.Nippon Yakuigaku Zasshi,1996,107(6):273-284.
    55.Heiss WD.Flow thresholds of functional and morphological damage of brain tissue.Stroke,1983,14:329-331.
    56.Melgar MA,Rafols J,Gloss D,et al Postischemic reperfusion:ultrastructural blood-brain barrierand hemodynamic correlative changes in an awake model of transient forebrain ischemia.Neurosurgery,2005,56:571-581.
    57.Vespa PM,Boscardin WJ,Hovda DA,et al.Early and persistent impaired percent alpha variability on continuous electroencephalography monitoring as predictive of poor outcome after traumatic brain injury.J Neurosurg,2002,97(1):84-92.
    58.Krugel U,Kittner H,Franke H,et al.Purinergic modulation of neuronal activity in the mesolimbic dopaminergic systcm in vivo.Synapse,2003,47(2):134-142.
    59.谢延风,张涛,孙小川等.定量脑电图对奥拉西坦治疗轻中型脑损伤疗效评价.中华神经外科疾病研究杂志,2005,4(6):540-542.
    60.Fresta M,Puglisi G.Reduction of maturation phenomenon in cerebral ischemia with CDP-choline-loaded liposomes.Pharm Res,1999,16(12):1843-1849.
    61.Shklovskii VM,Shipkova KM,Lukashevich IP.Prognostic criteria of speech rehabilitation in patients wilh sequelae after ischemic stroke.ZhNevro Psikhjatr Im S S Korsakova,1999,99(1):13-16.
    62.Toung,TJ,Bhardwaj A,Wang M,et al Antioxidant LY231617 enhances electrophysiologic recovery after global cerebral ischemia in dogs.Crit Care Med,2000,28(1):196-202.
    63.Sirin BH,coskun E,Yilik L,et al Neuroprotective effects of preischemia subcutaneous magnesium sulfate in transient cerebral ischemia.Eur J Cardiothorac Surg,1998,14(1):82-88
    1.Sertac Y,Mustafa K.High velocity gunshot wounds to the head and neck:A review of wound ballistics.Milit Med,1998,163(5):346
    2.Davorin D,Dinko L,Drago P,et al.War injuries to the head and neck.Milit Med,1998,163(2):117
    3.Coben JH,Steiner CA.Hospitalization for firearm-related injuries in the United States 1997.m J Prev Med,2003,24(1):1-8
    4.Allen IV,Scott R,Tanner JA.Experimental high-velocity missile hesd injury.Injury,1982,14(2):183
    5.West CGH.A short hiwtory of the management of penetrating missile injuries of the head.Surg Neurol,1981,16:145
    6.Webster JE,Gurdjian ES.Acute physiological effect of gunshot and other penetrating wounds of the brain.J Neurophsiol,1943,6:255
    7.Gerber AM,Moody R.Cranialcerebral missile injury in the monkey:An experimental physiological model.J Neurosurg,1972,36:43
    8.Crockard H,Brown F,Calica A.Physiological consequences of experimental cerebral missile injury and use of data analysis to predict survival.J Neurosurg,1977,46:784
    9.Maynard R,Cooper G,Evans VA,et al.Pathophysiological effects of experimental medium velocity penetrating head injury.CDE Technical,Note No:567,Porton Down,Salisbury,Wilts,England
    10.雷鹏,朱诚,张光霁,等.7.62MM弹颅脑火器伤实验研究1脑贯通伤、脑切线伤和颅骨切线伤的比较.第二军医大学学报,1989,10(3):201
    11.Carey ME et al.J Neurosurg,1989,71:754
    12.Mazzini L,Campini R,Angelino E,et al.Posttraumatic hydrocephalus:a clinical,neuroradiologic assessment of long-term outcome.Arch Phys Med Rehabil,2003,84(11):1637-1641
    13.Mendelson JA et al.J Trauma,1991,31(9):1181
    14.章翔,封亚平,费舟,等.犬颅脑枪弹伤模型建立及其超微结构观察.中华创伤杂志,2003,19(9):557-558
    15.Naude GP,Bongard FS.From deadly weapon to toy and back again:the danger of air rifles.J Trauma,1996,41(6):1039-1043
    16.Nguyen MH,Annest JL,Mercy JA,et al.Trends in BB/pellet gun injuries in children and teenagers in the United States,1985-1999.Inj Prev,2002,8:185-191
    17.Giese A,Koops E,Lohmann F,et al Hesd injury by gunshots from blank cartridges.Surg Neurol,2002,57(4):268-277
    18.Sehyma P,Sehyma C.Dangers of black firearms-risk of injury and expert assessment.Versicherungsmedizin,2000,52(3):141-146
    19.刘伟国,段国升,罗毅,等.不同能量弹丸致颅脑伤后病理生理研究.中华神经外科杂志,1998,14(1):19
    20.Lobato R,Sarabia R,Cordobes F,et al.Post-traumatic cerebral hemispheric swelling.J eurosurg,1988,68:417
    21.Kinoshita K,Chatzipanteli K,Alonso OF,et al.The effect of brain temperature on hemoglobin extravasation after traumatic brain injury.J Neurosurg,2002,97(4):945-953
    22.Boisver D,Schreiber C.Interrelationship of excitotoxic and free radical mechanisms.In Krieglstein J,Oberpichler H.Pharmacology of cerebral ischemia.Stuttgart:Wissenshaftlich Verlaggesellschaft,1992.1-10
    23.Rohn TT,Hinds TR,Vincdnzi FF.Ion transport ATPase as targets for free radical damage:protection by an aminosteroid of the Ca~(2+) pump ATPase and Na~+/K~+ pump ATPase of human red blood cell membranes.Biochem Pharmacol,1993,46,525
    24.Larner SF,Hayes RL,McKinsey DM,et al Increased expression and processing of caspase-12aftertraumatic brain injury in rats.J Neurochem,2004,88(1):78-90
    25.Christian M,Catherine V,Monique A,et al.Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors.J Neurotrauma,1996,13(1):11
    26.马德选,徐如祥,朱红胜.湿热环境猫颅脑火器伤早期脑微循环及血脑屏障的变化.第一军医大学学报,2004,24(8):877-880
    27.钱畅,陈长才.颅脑火器伤早期脑微血管三维构型和超微结构实验研究.第一军医大学学报,2004,24(7):765-767
    28.Povlishock JT,Hayes RL,Michel ME,et al 1.Workshop on animal models of traumatic brain injury.J Neurotrauma,1994,11:723
    29.Chan KH,Miller JD,Dearden NM,et al.Effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe head injury.J Neurosurg,1992,77:55
    30.邱仞之.环境高热与热损伤.北京:军医医学科学出版社,2000.1-8
    31.程天民.军事预防医学概论.北京:人民军医出版社,1999.145-147
    32.Dinkel K,Dhabhar FS,Sapolsky RM.Neurotoxic effects of polymorphonuclear granulocytes on hippocampal primary cultures.Proc Natl Acad Sci U S A,2003,18
    33.33 Currie RW,Ellison JA,White RF,et al 1.Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27.Brain Res,2000,863(1-2):169~181
    34.Wang H,Cassidy L,Peitzman A,et al.Association of out-of-hospital endotracheal intubation with adverse outcome after traumatic brain injury.Prehosp Emerg Care,2004,8(1):84~85
    35.Fritz HG,Bauer R.Secondary injuries in brain trauma:effects of hypothermia.J Neurosurg Anesthesiol,2004,16(1):43~52
    36.Zygun DA,Doig CJ,Auer RN,et al.Progress in clinical neurosciences:therapeutic hypothermia in severe traumatic brain injury.Can J Neurol Sci,2003,30(4):307~313
    37.Borgaro SR,Prigatano GP,Kwasnica C,et al 1.Disturbances in affective communication following brain injury.Brain Inj,2004,18(1):33~39
    38.Salzano A,Nocera V,De Rosa A,et al.Craniocerebral trauma from bullets:the correlation between computed tomography,the clinical picture,neurosurgical treatment and the long-term sequelae.Radiol Med,2000,99(3):156~160
    39.Nohra G,Maarrawi J,Samaha E,et al.Infections after missile head injury.Experience during the Lebanese civilian war.Neurochirurgie,2002,48(4):339~344
    40.Hecimovic I,Dmitrovic B,Kurbel S,et al.Intracranial infection after missile brain wound:15 warcases.Zentralbl-Neurochir.2000,61(2):95~102
    41.Yoshiya K,Tanaka H,Kasai K,et al.Profile of gene expression in the subventricular zone after traumatic brain injury.J Neurotrauma,2003,20(11):1147~1162
    42.Hattori N,Huang SC,Wu HM,et al.Correlation of regional metabolic rates of glucose with Glasgow coma scale after traumatic brain injury.J Nucl Med,2003,44(11):1709~1716
    43.Shepherd TM,Thewall PE,Blackband SJ.Diffusion Magnetic Resonance Imaging study of a rat hippocampal slice model for acute brain injury.J Cereb B lood Flow Metab,2003,23(12):1461~1470

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700