早期盲人静息状态下局部脑活动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的早期盲作为单一模态的感觉缺失模型,基于任务的功能磁共振学已经做了大量的研究。近期有两篇静息态功能磁共振研究发现早期盲人视觉皮层与其它脑区之间功能连接发生改变,但是并不能确定是那个脑区改变引起的。低频振幅(Amplitude of low-frequence fluctuation, ALFF)和局部一致性(Regional homogeneity, ReHo)是由臧玉峰等提出的,它能够反映静息状态下脑自发性神经元活动,是研究静息状态下局部脑活动变化的指标。目前这两个指标已经用于生理状态及临床多种疾病的研究,且研究发现的异常与其疾病的病生理改变是一致的,这说明ALFF和ReHo能够反映病理状态下得脑活动改变。目前尚无研究早期盲人静息状态下局部脑活动改变的报道。本实验利用ALFF和ReHo研究早期盲人静息状态下局部脑活动的变化。
     资料和方法本研究收集了16例早期盲人和32例性别、年龄相匹配的正常志愿者,利用3.0T磁共振仪器进行静息态及解剖像数据采集。采用SPM8 (http://www.fil.ion.ucl.ac.uk/spin)对数据进行预处理,预处理过程包括:时间校正、头动校正、空间标准化、重采样到3mm×3mm×3mm的立方体素、带通滤波(带宽:0.01-0.08Hz,以去掉高频噪声和低频漂移)和空间平滑(高斯核为6mm×6mm×6mm)。通过一定的算法计算出两组人的ALFF值(未标准化)和标准化的ALFF值,利用双样本t检验,得出两组之间存在差异的脑区。为了研究ALFF值与BOLD信号的关系,我们计算了早期盲人和正常对照组全脑及标准化状态下存在差异的5个脑区的活动幅度(activity amplitude, AM)值。利用REST软件(http://restfmri.net/forum/index.php)软件计算每个体素的ReHo值,通过逐个体素的分析得到每个人的ReHo图。为了消除个体差异的影响,我们计算出标准化的ReHo值,通过基于体素的分析,获得两组之间ReHo值存在显著差异的脑区。对两种指标均采用假阳性率(FDR)的多重比较校正方法(q<0.05,体素数>30)。
     结果在严格控制被试头动、行为学表现及机械噪声等因素影响后,最终符合实验要求的早期盲人16例。与正常志愿者相比,早期盲人ALFF值(未标准化)呈显著性增高的脑区,主要位于双侧枕中回、忱下回、舌回、梭状回、距状沟皮质及颞下回;标准化ALFF值呈显著性增高的脑区与未标准化ALFF值呈显著性增高的脑区基本一致。与正常志愿者相比,标准化ReHo值呈显著性增高的脑区,主要包括:双侧枕下回、舌回、梭状回、距状沟皮质及濒下回、左侧枕中回。与正常志愿者相比,本研究未发现早期盲人ALFF及ReHo值呈显著性减低的脑区。这些结果与之前的PET研究发现静息状态下早期盲人视觉皮层脑血流量及糖代谢增高和脑皮层厚度增加是一致的。
     结论第一,我们发现视觉皮层ALFF值增加与局部BOLD信号的均值及标准差增高是一致的,为证实ALFF能够反映静息状态下局部脑自发性活动提供了直接的证据;第二,早期盲人静息状态下视觉皮层局部脑活动增强,可能是在皮层发育阶段由于视觉缺失引起皮层-皮层连接、皮层-丘脑连接及皮层内部连接增多引起,这体现了经验依赖性可塑性变化。
Purpose Early blindness as a unimodal sensory deprivation model has been extensively studied by task-based functional magnetic resonance imaging. Recently two resting-state fMRI studies have reported altered functional connectivity between visual and other brain areas in early blind, however, they cannot answer which brain areas'local activities are changed. Amplitude of low-frequence fluctuation(ALFF) and Regional homogeneity (ReHo) are all proposed by Zang et al, which can reflect spontaneous neural activity, have become main indexes to study local brain activity in resting-state. So far, they have been used to investigate physical state and a variety of brain diseases, which are partly consistent with the pathophysiological changes in these disorders. There is no study on regional brain activity changes of early blind in resting-state. In our study, we use ALFF and ReHo to analyze changes of local brain activity in resting-state.
     Materals and Methods All together sixteen early blind and thirty-two age- and gender-matched sighted subjects enrolled in our study. Resting-state fMRI scan and sagittal structural images were all collected using a 3.0-T scanner. All preprocessing steps were carried out using the statistical parametric mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm), including time slicing, reducing head movement, normalized to the MNI, resampling to to 3×3×3 mm cubic voxels, a band-pass frequency filter (0.01-0.08Hz, to reduce low-frequency drift and high-frequency noise), smoothed with a 6 mm full width at half maximum. The unnormalized and normalized ALFF and ReHo values were calculated using specific algorithms, brain areas with significant changes in ALFF or ReHo values between groups were acquired by a two-sample t test. To study the relationship of between ALFF and the underlying blood oxygen level-dependent (BOLD) signals, we measured the activity amplitude (AM) of the whole brain and five regions of interest (ROI) with significantly increased ALFF values in the early blind under a normalized method. After we got the ReHo value of every voxel, an individual ReHo map was obtained on a voxel by voxel basis using REST software. To reduce the effect of individual variance, we normalized the Reho value of each voxel by dividing the mean Reho of the whole brain for each subject. Brain areas with significant changes in ReHo values between the two groups were acquired by voxel-based analysis. Multiple comparisons were statistically corrected by false discovery rate (FDR) with thresholds of q<0.05 and cluster size>30 voxels.
     Results Sixteen blind subjects were recruited in the final statistics. Compared to sighted subjects, the early blind showed significantly increased ALFF (unnormalized) in visual areas including the bilateral middle and inferior occipital gyri, lingual and fusiform gyri, calcarine cortices and inferior temporal gyri; the significantly increased ALFF was present in the similar brain areas in normalized analysis as in the unnormalized analysis; the early blind showed increased ReHo in visual areas including the bilateral inferior occipital gyri, lingual and fusiform gyri, calcarine cortices, and inferior temporal gyri, left middle occipital gyri. However, we did not find significantly decreased ALFF and ReHo in any brain area in the early blind comparing to that in the sighted controls. These findings are consistent with prior positron emission tomography studies which showed increased resting-state cerebral blood flow and glucose metabolism in the visual areas of early blind and thicker visual cortex.
     Concusion Firstly, we found increased ALFF in visual areas in early blind corresponding to the increased mean and standard deviation of regional BOLD signals, which provides direct evidence to the hypothesis that ALFF reflects the level of the resting-state brain activity. Secondly, we suggest that high resting-state brain activity in the visual areas of the early blind could be partially ascribed to the increased corticocortical, thalamocortical and intracortical connections due to lack of visual experience during critical cortex developmental period.
引文
[1]Bridge H, Cowey A, Ragge N, et al. Imaging studies in congenital anophthalmia reveal preservation of brain architecture in'visual'cortex[J]. Brain,2009,132(12):3467-3480.
    [2]Jiang J, Zhu W, Shi F, et al. Thick visual cortex in the early blind[J]. J Neurosci,2009,29(7):2205-2211.
    [3]Park HJ, Lee JD, Kim EY, et al. Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area[J]. Neuroimage,2009,47(1):98-106.
    [4]Lepore N, Voss P, Lepore F, et al. Brain structure changes visualized in early-and late-onset blind subjects [J]. Neuroimage,2010,49(1):134-140.
    [5]Noppeney U, Friston KJ, Ashburner J, et al. Early visual deprivation induces structural plasticity in gray and white matter[J]. Curr Biol,2005,15(13): 488-490.
    [6]Pan WJ, Wu G, Li CX, et al. Progressive atrophy in the optic pathway and visual cortex of early blind Chinese adults:A voxel-based morphometry magnetic resonance imaging study[J]. Neuroimage,2007,37(1):212-220.
    [7]Ptito M, Schneider FC, Paulson OB, et al. Alterations of the visual pathways in congenital blindness[J]. Exp Brain Res,2008,187(1):41-49.
    [8]Yu C, Shu N, Li J, et al. Plasticity of the corticospinal tract in early blindness revealed by quantitative analysis of fractional anisotropy based on diffusion tensor tractography[J]. Neuroimage,2007,36(2):411-417.
    [9]Shimony JS, Burton H, Epstein AA, et al. Diffusion tensor imaging reveals white matter reorganization in early blind humans[J]. Cereb Cortex,2006, 16(11):1653-1661.
    [10]Shu N, Li J, Li K, et al. Abnormal diffusion of cerebral white matter in early blindness[J]. Hum Brain Mapp,2009,30 (1):220-227.
    [11]Bavelier D, Neville HJ. Cross-modal plasticity:where and how? [J]. Nat Rev Neurosci,2002,3(6):443-452.
    [12]Collignon O, Voss P, Lassonde M, et al. Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects[J]. Exp Brain Res vol, 2009,192(3):343-358.
    [13]Fiehler K, Rosler F, Plasticity of multisensory dorsal stream functions: evidence from congenitally blind and sighted adults[J]. Restor Neurol Neurosci,2010,28(2):193-205.
    [14]Sadato N. Cross-modal plasticity in the blind revealed by functional neuroimaging[J]. Suppl Clin Neurophysiol,2006,59:75-79.
    [15]Sathian K, Stilla R. Cross-modal plasticity of tactile perception in blindness[J]. Restor Neurol Neurosci,2010,28(2):271-281.
    [16]Liu Y, Yu C, Liang M, et al. Whole brain functional connectivity in the early blind[J]. Brain,2007,130 (Pt 8):2085-2096.
    [17]Yu C, Liu Y, Li J, et al. Altered functional connectivity of primary visual cortex in early blindness[J]. Hum Brain Mapp,2008,29(5):533-543.
    [18]Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev,2007,29(2): 83-91.
    [19]Zuo XN, Di Martino A, Kelly C, et al. The oscillating brain:complex and reliable[J]. Neuroimage.2010,49(2):1432-1445.
    [20]Raichle ME, Snyder AZ. A default mode of brain function:a brief history of an evolving idea[J]. Neuroimage,2007,37(4):1083-1090,1097-1099.
    [21]Biswal BB, Yetkin FZ, Haughton VM,et al. Functional connectivity in the motor cortex of resting human brain using echo planar MRI[J]. Magn Reson Med,1995,34(4):537-541.
    [22]Cordes D, Haughton VM, Arfanakis K, et al. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data[J]. AJNR Am J Neuroradiol,2001,22(7):1326-1333.
    [23]Yang H, Long XY, Yang Y, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI[J]. Neuroimage,2007,36(1):144-152.
    [24]Hoptman MJ, Zuo XN, Butler PD, et al. Amplitude of low-frequency oscillations in schizophrenia:a resting state fMRI study[J]. Schizophr Res, 2010,117(1):13-20.
    [26]Huang XQ, Lui S, Deng W, et al. Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI[J]. Neuroimage,2010,49(4):2901-2906
    [27]Yang H, Li OQ, Zhang MM, et al. Spontaneous brain activity in medication-naive ADHD boys revealed by ALFF analysis[J]. Brain Dev, 2010.
    [28]Zhang Z, Lu G, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis[J]. Hum Brain Mapp, 2010,31(12):1851-1861.
    [29]Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage,2004,22(1):394-400.
    [30]Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function[J]. Proc Natl Acad Sci USA,2001,98(2):676-682.
    [31]Liu H, Liu Z, Liang M, et al. Decreased regional homogeneity in schizophrenia:a resting state functional magnetic resonance imaging study[J]. Neuroreport,2006,17(1):19-22.
    [32]He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages of Alzheimer's disease:a combined structural and resting-state functional MRI study[J]. Neuroimage,2007,35(2):488-500.
    [33]Wu T, Long X, Zang Y, et al. Regional homogeneity changes in patients with Parkinson's disease[J]. Hum Brain Mapp,2009,30(5):1502-1510.
    [34]Zhu CZ, Zang YF, Cao QJ, et al. Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder[J]. Neuroimage,2008,40(1):110-120.
    [35]Paakki JJ, Rahko J, Long X, et al. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders[J]. Brain Res,2010, 1321:169-179.
    [36]Yao Z, Wang L, Lu Q, et al. Regional homogeneity in depression and its relationship with separate depressive symptom clusters:a resting-state fMRI study[J], J Affect Disord,2009,115(3):430-438.
    [37]De Volder AG, Bol A, Blin J, et al. Brain energy metabolism in early blind subjects:neural activity in the visual cortex[J]. Brain Res,1997,750(1-2): 235-244.
    [38]Mishina M, Senda M, Kiyosawa M, et al. Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness[J]. Neuroimage,2003,19(1):125-131.
    [39]Veraart C, De Volder AG, Wanet-Defalque MC, et al. Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset[J]. Brain Res,1990,510(1):115-121.
    [40]Oldfield RC. The assessment and analysis of handedness:The Edinburgh inventory[J]. Neuropsychologia,1997,9(1):97-113.
    [41]Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rar[J]. Proc Natl Acad Sci,1985,82(17):6010-6013.
    [42]Johnson M. Developmental cognitive neuroscience. Cambridge, MA: Blackwell.1977.
    [43]Bourgeois JP, Jastreboff PJ, Rakic P. Synaptogenesis in visual cortex of normal and pretermmonkeys:evidence for intrinsic regulation of synaptic overproduction[J]. Proc Natl Acad Sci USA,1989,86(11):4297-4301.
    [44]Innocenti GM, Price DJ. Exuberance in the development of cortical networks[J]. Nat Rev Neurosci,2005,6(12):955-965.
    [45]Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits[J]. Science,1996.274(5290):1133-1138.
    [46]Karlen SJ, Kahn DM. Krubitzer L. Early blindness results in abnormal corticocortical and thalamocortical connections[J]. Neuroscience,2006, 142(3):843-858.
    [47]Kingsbury MA, Lettman NA, Finlay BL. Reduction of early thalamic input alters adult corticocortical connectivity[J]. Brain Res Dev Brain Res,2002, 138(1):35-43.
    [48]Olavarria JF. The effect of visual deprivation on the number of callosal cells in the cat is less pronounced in extrastriate cortex than in the 17/18 border region[J]. Neurosci Lett,1995,195(3):147-150.
    [49]Callaway EM, Katz LC. Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex[J]. Proc Natl Acad Sci USA,1991,88(3):745-749.
    [50]Sur M, Leamey CA. Development and plasticity of cortical areas and networks[J]. Nat Rev Neurosci,2001,2(24):251-262.
    [51]Berman NE. Alterations of visual cortical connections in cats following early removal of retinal input[J]. Brain Res Dev Brain Res,1991,63(1-2): 163-180.
    [52]Buchel C, Price C, Frackowiak RSJ, et al. Different activation patterns in the visual cortex of late and congenitally blind subjects[J]. Brain,1998,121 (Pt 3):409-419.
    [53]Burton H, McLaren DG, Sinclair RJ. Reading embossed capital letters:an fMRI study in blind and sighted individuals[J]. Hum Brain Mapp,2006, 27(4):325-339.
    [54]Burton H, Sinclair RJ, McLaren DG. Cortical activity to vibrotactile stimulation:A fMRI study in blind and sighted individuals[J]. Hum Brain Mapp,2004,23(4):210-228.
    [55]Burton H, Snyder AZ, Conturo TE, et al. Adaptive changes in early and late blind: a fMRI study of Braille reading[J]. J Neurophysiol,2002,87(1): 589-607.
    [56]Burton H, Snyder AZ, Diamond JB, et al. Adaptive changes in early and late blind:a fMRI study of verb generation to heard nouns[J]. J Neurophysiol, 2002,88(6):3359-3371.
    [57]De Volder AG, Toyama H, Kimura Y, et al. Auditory triggered mental imagery of shape involves visual association areas in early blind humans[J]. Neurolmage,2001,14(1):129-139.
    [58]Gizewski ER, Gasser T, Greiff A, et al. Cross-modal plasticity for sensory and motor activation patterns in blind subjects[J]. NeuroImage,2003,19(3): 968-975.
    [59]Kujala T, Huotilainen M, Sinkkonen J, et al. Visual cortex activation in blind humans during sound discrimination[J]. Neurosci Lett,1995,183(1-2): 143-146.
    [60]Lewis LB, Saenz M, Fine I. Mechanisms of Cross-Modal Plasticity in Early Blind Subjects[J]. J Neurophysiol,2010,104(6):2995-3008.
    [61]Ofan RH, Zohary E. Visual cortex activation in bilingual blind individuals during use of native and second language. Cereb Cortex,2007,17(6): 1249-1259.
    [62]Poirier C, Collignon O, Scheiber C, et al. Auditory motion perception activates visual motion areas in early blind subjects[J]. Neuroimage,2006, 31(1):279-285.
    [63]Raz N, Amedi A, Zohary E. V1 activation in congenitally blind humans is associated with episodic retrieval[J]. Cereb Cortex,2005,15(9):1459-1468.
    [64]Roder B, Stock O, Bien S, et al. Speech processing activates visual cortex in congenitally blind humans[J]. Eur J Neurosci,2002,16(5):930-936
    [65]Sadato N, Pascual-Leone A, Grafman J, et al. Neural networks for Braille reading by the blind[J]. Brain,1998,121(Pt 7):1213-1229.
    [66]Sadato N, Pascual-Leone A. Grafman J. et al. Activation of the primary visual cortex by Braille reading in blind subjects [J]. Nature,1996, 380(6574):526-528.
    [67]Vanlierde A, De Volder AG, Wanet-Defalque MC, et al. Occipito-parietal cortex activation during visuo-spatial imagery in early blind humans[J]. Neuroimage,2003,19(3):698-709.
    [68]Zangaladze A, Epstein CM, Grafton ST, et al. Involvement of visual cortex in tactile discrimination of orientation[J]. Nature,1999,401(6753):587-590.
    [69]Klinge C, Eippert F, Roder B, et al. Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind[J]. J Neurosci,2010,30(38):12798-12805.
    [70]Hamilton R, Keenan JP, Catala M, et al. Alexia for Braille following bilateral occipital stroke in an early blind woman[J]. Neuroreport,2000,11(2): 237-240.
    [71]Heumann D, Rabinowicz T. Postnatal-Development of the Visual-Cortex of the Mouse after Enucleation at Birth[J]. Exp Brain Res,1982,46(1):99-106.
    [1]Ogawa S, Lee T M, Kay A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxy-genation[J]. Proc Nati Acad Sci USA,1990,87: 9868-9872.
    [2]Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI[J]. Magn Reson Med,1995, 34(4):537-541.
    [3]Raichle ME, Macleod AM, Snyder AZ, et al. A default mode of brain function[J]. PNAS,2001,98(2):676-682.
    [4]Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain:a network analysis of the default mode hypothesis[J]. Proc Natl Acad Sci U S A,2003,100(1):253-258.
    [5]张洪英,王世杰,杨明,等.正常老年人静息状态脑功能磁共振的默认网络研究[J].中国医学影像技术,2008,24(8):1189-1191.
    [6]王亮,于春水.静息状态脑功能连接磁共振成像的分析方法及应用[J].中国医学影像技术,2008,24(8):1277-1280.
    [7]Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load[J]. PLoS One,2009,4(5):e5743.
    [8]Gochin PM, Miller EK, Gross CG, et al. Functional interactions among neurons in inferior temporal cortex of the awake macaque[J]. Experimental Brain Research, 1991,84(3):505-516.
    [9]Friston KJ, Frith CD, Liddle PF, et al. Functional connectivity:the principal-pomponent analysis of large (PET) data sets[J]. J Cereb Blood Flow Metab,1993, 13(1):5-14.
    [10]Friston KJ, Frith CD, Frackowiak RSJ, et al. Time-dependent changes in effective connectivity measured with PET[J]. Hum Brain Mapp,1993,1(1): 69-79.
    [11]Sporns O, Chialvo DR, Kaiser M, et al. Organization, development and function of complex brain networks[J]. Trends Cogn Sci,2004,8(9):418-425.
    [12]Liang M, Zhou Y, Jiang T, et al. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging[J]. Neuroreport,2006,17:209-213.
    [13]Greicius MD, Srivastava G, Reiss AL. et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging:Evidence from functional MRI[J]. Proc Natl Acad Sci USA,2004,101:4637-4642.
    [14]Waites AB, Briellmann RS, Saling MM, et al. Functional connectivity networks are disrupted in left temporal lobe epilepsy[J]. Ann Neurol,2006,59:335-343.
    [15]Lowe MJ, Phillips MD, Lurito JT, et al. Multiple sclerosis:Low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results[J]. Radiology,2002,224:184-192.
    [16]Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev,2007,29:83-91.
    [17]Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage,2004,22(1):394-400.
    [18]Goldreich D, Kanics IM. Tactile acuity is enhanced in blindness[J]. Neurosci, 2003,23(8):3439-3445.
    [19]Van Boven RW, Hamilton RH, Kauffman T. et al. Tactile spatial resolution in blind braille readers[J]. Neurology,2000,54(12):2230-2236.
    [20]Goldreich D, Kanics IM. Tactile acuity is enhanced in blindness[J]. J Neurosci, 2003,23(8):3439-3445.
    [21]D'Angiulli A,Waraich P. Enhanced tactile encoding and memory recognition in congenital blindness[J]. Int J Rehabil Res,2002,25(2):143-145.
    [22]Sadato N, Pascual-Leone A, Grafman J, et al. Activation of the primary visual cortex by Braille reading in blind subjects[J]. Nature,1996,380:526-528.
    [23]Hamilton R, Keenan JP, Catala M, et al. Alexia for Braille following bilateral occipital stroke in an early blind woman[J]. Neuroreport,2000,11:237-240.
    [24]Cohen LG, Celnik P, Pascual-Leone A, et al. Functional relevance of cross-modal plasticity in blind humans[J]. Nature,1997,389:180-183.
    [25]Fujii T, Tanabe HC, Kochiyama T, et al. An investigation of cross-modal plasticity of effective connectivity in the blind by dynamic causal modeling of functional MRI[J]. Neurosci Res,2009,65(2):175-186.
    [26]Wittenberg GF, Werhahn KJ, Wassermann EM,et al. Functional connectivity between somatosensory and visual cortex in early blind humans[J]. Eur J Neurosci, 2004,20(7):1923-1927.
    [27]Ptito M, Fumal A, de Noordhout AM, et al. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers[J]. Exp Brain Res.2008, 184(2):193-200.
    [28]Gizewski ER, Timmann D, Forsting M. Specific cerebellar activation during Braille reading in blind subjects[J]. Hum Brain Mapp,2004,22(3):229-235.
    [29]Lewald J. More accurate sound localization induced by short-term light deprivation[J]. Neuropsychologia,2007,45(6):1215-1222
    [30]Gibby RG, Jr Gibby, RG Sr, et al. Short-term visual restriction in visual and auditory discrimination[J]. Perceptual and Motor Skills,1970,30(1):15-21.
    [31]Renier LA, Anurova I, De Volder AG, et al. Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind[J]. Neuron, 2010,68(1):138-148.
    [32]Gougoux F, Zatorre RJ, Lassonde M, et al. A functional neuroimaging study of sound localization:visual cortex activity predicts performance in early-blind individuals[J]. PLoS Biol,2005,3(2):e27.
    [33]Voss P, Gougoux F, Zatorre RJ, et al. Differential occipital responses in early-and late-blind individuals during a sound-source discrimination task[J]. Neuroimagc,2008,40(2),746-758.
    [34]Gougoux F, Lepore F, Lassonde M, et al. Neuropsychology:pitch discrimination in the early blind[J]. Nature,2004,430(6997):309.
    [35]Wan CY, Wood AG, Reutens DC, Wilson SJ. Early but not late-blindness leads to enhanced auditory perception[J]. Neuropsychologia,2010,48(1):344-348.
    [36]Roder B, Rosler F. Memory for environmental sounds in sighted, congenitally blind and late blind adults:Evidence for cross-modal compensation[J]. International Journal of Psychophysiology,2003,50(1-2):27-39.
    [37]Gougoux F, Belin P, Voss P, et al. Voice perception in blind persons:a functional magnetic resonance imaging study[J]. Neuropsychologia,2009,47(13): 2967-2974.
    [38]Collignon O, Davare M, Olivier E, et al. Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans:A transcranial magnetic stimulation study[J]. Brain Topogr,2009,21(3-4): 232-240.
    [39]Hummel T, Nordin S. Olfactory disorders and their consequences for quality of life[J].Acta Oto-Laryngologica,2005,125,116-121.
    [40]Ferdenzi C, Holley A, Schaal B. Impacts de la deficience visuelle sur le traitement des odeurs[J]. Voir,2004,28-29,126-143.
    [41]Schwenn O, Hundorf I. Moll B, et al. Do blind persons have a better sense of smell than normal sighted people?[J]. Klinische Monatsblatter fur Augenheilkunde,2002,219(9):649-654.
    [42]Isabel Cuevasa, Paula Plazaa, Philippe Rombaux, et al. Odour discrimination and identification are improved in early blindness[J]. Neuropsychologia,2009, 47(14):3079-3083.
    [43]Wakefield CE, Homewood J, Taylor AJ. Cognitive compensations for blindness in children:an investigation using odour naming[J]. Perception,2004,33(4): 429-442.
    [44]Rombaux P, Huart C, De Volder AG, et al. Increased olfactory bulb volume and olfactory function in early blind subjects[J]. Neuroreport, 2010,21(17):1069-73.
    [45]Amedi A, Raz N, Pianka P, et al. Early 'visual' cortex activation correlates with superior verbal memory performance in the blind[J]. Nature Neuroscience,2003, 6(7):758-766.
    [46]Raz N. Amedi A, Zohary E. V1 activation in congenitally blind humans is associated with episodic retrieval[J]. Cereb Cortex,2005,15(9):1459-1468.
    [47]Chebat DR, Chen JK, Schneider F, et al. Alterations in right posterior hippocampus in early blind individuals[J]. Neuroreport,2007,18(4):329-333.
    [48]Park HJ, Chun JW, Park B, et al. Activation of the Occipital Cortex and Deactivation of the Default Mode Network During Working Memory in the Early Blind[J]. J Int Neuropsychol Soc,2011,22:1-16.
    [49]De Volder AG, Bol A, Blin J, et al. Brain energy metabolism in early blind subjects:neural activity in the visual cortex[J]. Brain Res,1997,750(1-2): 235-244.
    [50]Mishina M, Senda M, Kiyosawa M, et al. Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness[J]. Neuroimage,2003,19(1):125-131.
    [51]Liu Y, Yu C, Liang M, et al. Whole brain functional connectivity in the early blind[J]. Brain,2007,130 (Pt 8):2085-2096.
    [52]Yu C, Liu Y, Li J, et al. Altered functional connectivity of primary visual cortex in early blindncss[J]. Hum Brain Mapp,2008,29(5):533-543.
    [53]Zwiers MP, Van Opstal AJ, Cruysberg JR. A spatial hearing deficit in early-blind humans[J]. J Neurosci,2001,21(9):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700