不同类型弱视儿童立体视皮层的功能磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的应用血氧水平依赖的功能磁共振(Blood oxygen level dependent-function magnetic resonance imaging, BOLD-fMRI)技术,研究屈光性弱视患儿立体视皮层功能特点,对比比较屈光不正性弱视与屈光参差性弱视之间脑皮层的激活差异及特点。
     方法初诊弱视患儿11例,其中屈光不正性患儿5例(2男3女,平均8±1.5岁),屈光参差性患儿6例(4男2女,平均9±2岁)。所有被试均为远视性弱视,中心凹注视;均为右利手;所有被试无局部及全身特殊病史。试验前充分矫正屈光不正;规范化弱视训练后1周及4周时复查fMRI。
     通过E-Prime2.0软件编写视觉刺激任务程序,刺激模式为对比度接近80%的红蓝立体图像,以SIEMENS MAGNETOM Verio3.0T磁共振扫描系统,分别采集弱视儿童BOLD-fMRI数据。采用SPM8软件包对图像进行处理及分析。比较1.不同时期弱视儿童脑皮层激活差异;2.不同时期屈光不正性弱视组与屈光参差性弱视组间视皮层激活强度及范围的差异变化特点。
     结果1.当设定P值为0.001,激活范围阈值为10个体素时,屈光性弱视患儿双眼的兴奋区域为以枕叶为中心的视觉皮层,其中以BA18/19/17区皮层激活程度最显著;随训练时间延长,弱视组立体视皮层功能活动范围及活动强度均有所增强。2.当设定P值为0.05,激活范围阈值为10个体素时进行组间比较时,屈光不正性弱视相关视皮层神经元活动水平及激活范围均较屈光参差性弱视有所增加,主要集中在额叶(BA6/BA9/BA10区)、顶叶后部(BA40/BA7区)。
     结论
     1、立体视觉的形成涉及多个脑区,主要位于枕叶,尤以BA17区、BA18区、BA19区为著;
     2、随弱视时间的延长,弱视患者立体视皮层活动强度及范围增强;
     3、屈光参差性弱视与屈光不正性弱视立体视较易受到损害。
Purpose To evaluate the stereoscopic visual cortex functional changes in amblyopia children, and compare the visual cortex functional-differences between ametropic and anisometropic amblyopia with the aid of blood oxygenation level dependent-functional MRI.
     Methods11amblyopia children were enrolled in this study,include5ametropic(2M3F, average age:8±1.5year) and6anisometropic(4M2F, average age:9±2year). They were all hyperopic amblyopia, central vision type and right handedness. They didn't have any local and systemic disease except for amblyopia. Must be correct ametropia, and review fMRI inspection after regular amblyopia treatment one week and four week.
     The visual stimulation program was designed by E-Prime2.0software, the red-blue stereoscopic image with the contrast closed to80%as stimulus modality. A3.0-T SIEMENS MAGNETOM Verio scanner was employed to scan the activative visual cortex. and the image process was analyzed by SPM8package, to To evaluate the stereoscopic visual cortex functional changes in amblyopia children, and to compare the cortical activations differences between two groups. The analysis consisted:1.The spatial extent and intensity of the visual cortex activation difference different in the amblyopes groups along with the time.2. The differences of spatial extent and intensity of the visual cortex activation between the ametropic amblyopes groups and the anisometropic amblyopes groups along with the time.
     Results (1) The primary excited region of the visual cortex in refractive amblyopic children located at the occipital lobe, especially the BA18/19/17areas, along with the training time, the spatial extent and intensity of the visual cortex activation extend stranger and stranger, when set to P value was0.001and activated threshold for ten voxels.
     (2)The changes of spatial extent and intensity of the visual cortex activation in ametropic amblyopia groups are stranger than that in anisometropic amblyopes groups. mainly in frontal lobe (BA6/BA9/BA10areas), posterior parietal(BA40/BA7areas), when set to P value was0.05and activated threshold for ten voxels.
     Conclusions
     1) The function of Stereopsis visual consists of several encephalic region, mainly in occipital lobe, spaciously in BA17/18/19areas;
     2) Along with the training time, the spatial extent and intensity of the visual cortex activation become stranger;
     3) the anisometropic amblyopias'stere visual was incline to fragile than that of ametropic amblyopias.
引文
[1]中华眼科学会全国儿童弱视斜视防治组.弱视的定义、分类及疗效评价标准.Chinese Journal of Strabismus & Pediatric Ophthalmology,1996.4(3).
    [2]王利华,于秀敏,刘丽萍,等.山东省10317名学龄前儿童弱视现状调查及疗效评价Chinese Journal of Strabismus & Pediatric Ophthalmology,1996.3:119-124.
    [3]朱灵,饶小雄,林媚,等.江门市17201名学龄前儿童屈光不正性弱视普查.临床眼科杂志,2009.17(2).
    [4]赵堪兴.早期发现和早期干预努力提高弱视的防治水平Chinese Journal of Ophthalmology,2002.38(8):449.
    [5]Ikeda H. Visual acuity, its development and amblyopia. J R Soc Med,1980.73(8):546-555.
    [6]von Noorden G. Amblyopia:a multidisciplinary approach. Proctor lecture. Invest Ophthalmol Vis Sci,1985.26(12):1704-1716.
    [7]Hess RE Amblyopia:site unseen. Clin Exp Optom,2001.84(6):321-336.
    [8]刘虎,赵堪兴,史学锋,等.斜视性弱视猫视皮层17区神经元眼优势及空间特性的改变.眼科新进展,2004(6).
    [9]史学锋,赵堪兴,刘虎,等.斜视性弱视猫视皮层21a区神经元眼优势改变.眼科新进展,2005(1):17-20.
    [10]Abrahamsson M,Sjostrand J. Contrast sensitivity and acuity relationship in strabismic and anisometropic amblyopia. Br J Ophthalmol,1988.72(1):44-49.
    [11]Yang G,Liao M,Liu L. Contrast sensitivities of the fellow eyes in children with anisometropic and strabismic amblyopia. Sichuan Da Xue Xue Bao Yi Xue Ban,2010.41(4):652-655.
    [12]Erkelens CJ,Collewijn H. Motion perception during dichoptic viewing of moving random-dot stereograms. Vision Res,1985.25(4):583-588.
    [13]亢晓丽,许贺,郭秀荣,等.儿童屈光参差与弱视、立体视相关性的研究Chinese Journal of Practical Ophthalmology,2004.22(7):519-522.
    [14]朱娟,燕振国,张文文.屈光不正性弱视儿童皮层功能与弱视程度关系的功能磁共振研究Chinese Journal of Strabismus & Pediatric Ophthalmology,2011.19(1).
    [15]张举,付晶.不同类型及程度弱视儿童的立体视觉Ophthalmology in China,2008. 17(1):59-62.
    [16]牛兰俊.规范治疗方法是提高弱视疗效的关键Chinese Journal of Ophthalmology,2003.39(12):705-708.
    [17]Banks MS,Aslin RN,Letson RD. Sensitive period for the development of human binocular vision. Science,1975.190(4215):675-677.
    [18]Jia CH, Lu GM, Zhang ZO,et al. [Comparison of deficits in visual cortex between anisometropic and strabismic amblyopia by fMRI retinotopic mapping], Zhonghua Yi Xue Za Zhi,2010.90(21):1446-1452.
    [19]张丽红.屈光参差性弱视患者静息态fMRI功能连接研究.天津医科大学硕士学位论文,2010.
    [20]张志强,卢光明,梁平.屈光不正型弱视的功能磁共振成像研究.医学研究生学报,2004.17(5).
    [21]杜寒剑,王健,谢兵,等.屈光不正性弱视枕叶灰质容积的mri研究Chinese Journal of Medical Imaging Technology,2008.24(2).
    [22]杜寒剑,王健,谢兵,等.屈光不止性弱视儿童枕叶面积的磁共振成像研究.Ophthalmology in China,2007.16(5).
    [23]杜寒剑,王健,黎川,等.经MRI研究屈光不正性弱视患儿枕叶皮质厚度Chinese Journal of Radiology,2008.42(1).
    [24]Brouwer GJ,van Ee R,Schwarzbach J. Activation in visual cortex correlates with the awareness of stereoscopic depth. J Neurosci,2005.25(45):10403-10413.
    [25]Rombouts SA, Scheltens P, Kuijer JP,et al. Whole brain analysis of T2* weighted baseline FMRI signal in dementia. Hum Brain Mapp,2007.28(12):1313-1317.
    [26]Pineles SL,Demer JL. Bilateral abnormalities of optic nerve size and eye shape in unilateral amblyopia. Am J Ophthalmol,2009.148(4):551-557 e552.
    [27]Al-Haddad CE, Mollayess GM, Cherfan CG,et al. Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br J Ophthalmol,2011.95(12):1696-1699.
    [28]陈增爱,耿道颖,李克,等.DTI和fMRI在正常成人视觉系统的联合应用研究.中国医学计算机成像杂志,2006.12(6):371-375.
    [29]Conturo TE, Lori NF, Cull TS,et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA,1999.96(18):10422-10427.
    [30]寿天德,王双喜,刘陇黔.弱视猫外膝体背核细胞的形态学变化.基础医学与临床,1997.17(5).
    [31]李青吉,孙志华.斜视性弱视皮层功能损伤机制的BOLD-fMRI和DTT研究.2009.
    [32]Xie S, Gong GL, Xiao JX,et al. Underdevelopment of optic radiation in children with amblyopia:a tractography study. Am J Ophthalmol,2007.143(4):642-646.
    [33]Song HY, Qi S, Tang HH,et al. MR DTI and DTT study on the development of optic radiation in patients with anisometropia amblyopia. Sichuan Da Xue Xue Bao Yi Xue Ban,2010.41(4): 648-651.
    [34]谢晟,江界峰,叶锦棠,等.弱视儿童的mri全脑皮层厚度分析Chinese Journal of Medical Imaging Technology,2009(4).
    [35]Schoenfeld MA, Noesselt T, Poggel D,et al. Analysis of pathways mediating preserved vision after striate cortex lesions. Ann Neurol,2002.52(6):814-824.
    [36]邵立功,章应华,张东果.弱视猫视觉系统三级神经元及其突触的超微结构研究.Chinese Journal of Ophthalmology,1994.1(30):53-56.
    [37]阴正勤,余涛斜.视性弱视猫发育过程中视皮层神经元NMDA-R1表达的免疫组织化学电镜观察Chinese Journal of Ophthalmology,2002.38(8):472-475.
    [38]Yang Y, Jin J, Zhou Y,et al. GABA(A) and GABA(B) receptors mediated inhibition affect the pattern adaptation of relay cells in the dorsal lateral geniculate nucleus (LGNd) of cats. Brain Res,2003.959(2):295-303.
    [39]Yang Y,Zhou Y,Shou T. Activation of gamma-aminobutyric acid(B) receptors by baclofen improves visual temporal property of relay cells in the cat lateral geniculate nucleus. Neurosci Lett,2001.301(2):79-82.
    [40]阴正勤,孟晓红.斜视幼猫发育过程中视皮层神经元NMDA R1的表达Acta Academiae Medicinae Militaris Tertiae.2002.24(7):769-771.
    [41]李乐平,施明光,瞿佳.立体视觉研究及其临床意义.眼科新进展,1995.15(1):57-60.
    [42]程立海,王倩,张郑伟,等.立体视锐度的测量.Acta Biophysica Sinica.1994.10(4): 627-633.
    [43]侯川,方谦逊.立体视觉的发生机理与检测Chinese Journal of Strabismus & Pediatric Ophthalmology,1995.3(3):141-144.
    [44]苏毅华.立体视觉相关大脑皮质区的功能磁共振研究.中山大学硕士学位论文,2007.
    [45]张权,张云亭,郭明霞,等.屈光参差性弱视患者立体视觉相关皮层的fMRI评价.Chinese Journal of Medical Imaging Technology,2008.24(4).
    [46]Julesz B. Stereoscopic vision. Vision Res,1986.26(9):1601-1612.
    [47]Harris JM,Rushton SK. Poor visibility of motion in depth is due to early motion averaging. Vision Res,2003.43(4):385-392.
    [48]Cumming BG, Shapiro SE,Parker AJ. Disparity detection in anticorrelated stereograms. Perception,1998.27(11):1367-1377.
    [49]Westheimer G. Cooperative neural processes involved in stereoscopic acuity. Exp Brain Res, 1979.36(3):585-597.
    [50]Cumming BG, Parker AJ. Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. J Neurosci,1999.19(13):5602-5618.
    [51]Poggio GF,Gonzalez F,Krause F. Stereoscopic mechanisms in monkey visual cortex:binocular correlation and disparity selectivity. J Neurosci,1988.8(12):4531-4550.
    [52]Janssen P, Vogels R, Liu Y,et al. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron,2003.37(4):693-701.
    [53]Nishida Y, Hayashi O, Iwami T,et al. Stereopsis-processing regions in the human parieto-occipital cortex. Neuroreport,2001.12(10):2259-2263.
    [54]Fletcher PC, Happe F, Frith U,et al. Other minds in the brain:a functional imaging study of "theory of mind" in story comprehension. Cognition,1995.57(2):109-128.
    [55]Watanabe T,Nanez JE,Sasaki Y. Perceptual learning without perception. Nature,2001. 413(6858):844-848.
    [56]Buchel C, Josephs O, Rees G,et al. The functional anatomy of attention to visual motion. A functional MRI study. Brain,1998.121 (Pt 7):1281-1294.
    [57]Huttenlocher PR,de Courten C. The development of synapses in striate cortex of man. Hum Neurobiol,1987.6(1):1-9.
    [58]Held R,Birch E,Gwiazda J. Stereoacuity of human infants. Proc Nat1 Acad Sci U S A,1980. 77(9):5572-5574.
    [59]Fox R, Aslin RN, Shea SL.et al. Stereopsis in human infants. Science,1980.207(4428): 323-324.
    [60]Petrig B, Julesz B, Kropfl W,et al. Development of stereopsis and cortical binocularity in human infants:electrophysiological evidence. Science,1981.213(4514):1402-1405.
    [61]Yotsumoto Y,Watanabe T,Sasaki Y. Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron,2008.57(6):827-833.
    [62]Schwartz S,Maquet P,Frith C. Neural correlates of perceptual learning:a functional MRI study of visual texture discrimination. Proc Nat1 Acad Sci USA,2002.99(26):17137-17142.
    [63]涂娅莉.大鼠视皮层神经元电生理和形态学特性在发育中的变化.生理学报、2003.55(2):206-212.
    [64]Hooks BM,Chen C. Vision triggers an experience-dependent sensitive period at the retinogeniculate synapse. J Neurosci.2008.28(18):4807-4817.
    [65]Hess RF, Thompson B, Gole G,et al. Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur J Neurosci, 2009.29(5):1064-1070.
    [66]高鹏芬,刘应兵.大鼠视觉发育可塑性关键期视皮层LTP的研究.中国神经科学杂志,2002.18(4):699-703.
    [67]王仕军,范慧民,秦伟,等.大鼠视皮层神经元电学特性的发育变化Acta Academiae Medicinae Militaris Tertiae,2003.25(8):695-697.
    [68]华田苗,梅斌,王海涛,等.特定方位的光栅识别学习不改变猫外膝体背核神经元的方位敏感性.动物学报,2005.5(2):274-279.
    [69]郭静秋,臧英芬.儿童立体视的成熟期及几种检查法的比较.北京医科大学学报,1993.25(1):24-26.
    [70]Simons K. Stereoacuity norms in young children. Arch Ophthalmol,1981.99(3):439-445.
    [71]Romano PE,Romano JA,Puklin JE. Stereoacuity development in children with normal binocular single vision. Am J Ophthalmol,1975.79(6):966-971.
    [72]Yildirim C, Altinsoy HI,Yakut E. Distance stereoacuity norms for the mentor B-VAT II-SG video acuity tester in young children and young adults. J AAPOS,1998.2(1):26-32.
    [73]Garnham L,Sloper JJ. Effect of age on adult stereoacuity as measured by different types of stereotest. Br J Ophthalmol,2006.90(1):91-95.
    [74]Lee SY,Koo NK. Change of stereoacuity with aging in normal eyes. Korean J Ophthalmol, 2005.19(2):136-139.
    [75]王昆明,刘丽娟.弱视患儿视力正常后立体视觉的临床观察Chinese Journal of Practical Ophthalmology,2006.24(9):907-910.
    [76]Ding J,Levi DM. Recovery of stereopsis through perceptual learning in human adults with abnormal binocular vision. Proc Natl Acad Sci USA,2011.108(37):E733-741.
    [77]Li RW,Provost A,Levi DM. Extended perceptual learning results in substantial recovery of positional acuity and visual acuity in juvenile amblyopia. Invest Ophthalmol Vis Sci,2007. 48(11):5046-5051.
    [78]Goodyear B,DA N,RS M. High resolution fMRI of ocular dominance columns within the visual cortex of human amblyopes. Strabismus,2002.10(2):129-136.
    [79]Astle AT,Webb BS,McGraw PV. Can perceptual learning be used to treat amblyopia beyond the critical period of visual development? Ophthalmic Physiol Opt,2011.31(6):564-573.
    [80]刘伟民,赵武校,王英.视知觉学习治疗成人屈光参差性弱视1例.临床医学工程,2010.17(11):160.
    [81]Yao H, Shi L, Han F,et al. Rapid learning in cortical coding of visual scenes. Nat Neurosci, 2007.10(6):772-778.
    [82]Salazar RF,Kayser C,Konig P. Effects of training on neuronal activity and interactions in primary and higher visual cortices in the alert cat. J Neurosci,2004.24(7):1627-1636.
    [83]Abbott LF,Regehr WG. Synaptic computation. Nature,2004.431(7010):796-803.
    [84]Liu GT, Miki A, Francis E,et al. Eye dominance in visual cortex in amblyopia using functional magnetic resonance imaging. J AAPOS.2004.8(2):184-186.
    [85]Liu GT, Miki A, Goldsmith Z.et al. Eye dominance in the visual cortex using functional MRI at 1.5 T: an alternative method. J AAPOS.2002.6(1):40-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700