阿司匹林对大鼠脑缺血再灌注后线粒体UCP4和ATPase6表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景目的:脑缺血再灌注损伤(CI/RP)后,神经元细胞的损伤包括坏死和凋亡两种形式,线粒体作为细胞的“能源中心”,在这两种过程中都起着重要的作用。解偶联蛋白4(UCP4)和ATPase6都是存在于线粒体内膜上的离子转运蛋白。UCP4激活后可以使氧化磷酸化与呼吸链解偶联,通过维持线粒体膜电位、调节细胞内Ca2+稳态、减少氧自由基(ROS)生成、影响ATP含量、调节神经元能量等机制起到神经保护作用。ATPase6属于ATP合成酶F0复合体,是ATP生成的必要环节,其变化直接影响ATP的合成。阿司匹林(ASA)是经典的抗甾体药物,近年来发现,ASA具有神经保护作用:包括增加ATP产量,抑制谷氨酸释放,改善脑组织的能量代谢,抑制iNOS表达和促进nNOS表达,抑制NF-κB的激活,清除自由基,增强cdk5/P53活性,抑制离子通道,阻止Zn2+内流等。我们以前的研究证明,ASA抑制凋亡途径中的Fasl和caspase-3,上调Bcl-2/bax,抑制炎症反应以及增加脑组织内源性神经营养因子如BDNF、NGF、bFGF、neurgulin等的表达。本实验目的是,观察大鼠脑缺血/再灌注(CI/RP)损伤后线粒体UCP4和ATPase6的表达规律及其ASA对其表达的影响,探讨ASA神经保护作用的线粒体机制。
     方法:采用改良Zea Longa线栓法建立大鼠大脑中动脉(MCA)的CI/RP动物模型。CI/RP后6h,Bederson神经功能缺损评分在1~3分的大鼠为阳性入选标准,其他大鼠排除在外。部分大鼠脑切片行TTC染色,证实模型成功。依照再灌注时间分为A(0h)、B(6h)、C(24h)、D(48h)、E(72h)5个ASA组及相应的对照组(A'~B')。ASA组于CI/RP术后立即腹腔注射ASA 80mg/kg.d作为干预因素,直至预定的处死时间;对照组腹腔注射等量的赖氨酸溶液。各时间点对实验动物进行神经功能缺损评分,HE染色后光镜下观察缺血后不同时间点梗死侧病理改变,利用免疫组化及免疫荧光法观察UCP4和ATPase6的表达情况。
     结果:CI/RP后ASA组及对照组术后6h开始,大鼠肢体功能均有不同程度的恢复,ASA组肢体功能恢复情况优于对照组,但是只在72h点有显著差异(P<0.05)。UCP4和ATPase6在大脑皮质及海马神经元内广泛表达,定位到线粒体,主要位于神经元胞浆内,在梗死灶周边区可见强阳性细胞及大量阳性细胞聚集。对照组,UCP4于CI/RP后6h在梗死中心区表达最强(P<0.05),阳性(+~++)细胞数或强阳性(+++~++++)细胞数最多,随后呈下降趋势,24h后表达开始低于正常侧;ASA组,UCP4于CI/RP后48h还可见到第二个表达高峰。对照组,ATPase6自缺血2h后就低于正常侧,在各时间点呈明显的下降趋势,CI/RP后24h下降最显著;ASA组,ATPase6的变化趋势与对照组相似,但是,各时间点的阳性细胞数均高于相应对照组,24h时最明显,强阳性细胞数最多(P<0.01)。ASA对非缺血侧脑组织中的UCP4及ATPase6的含量未见明显影响。
     结论:1. ASA能够明显改善脑缺血后大鼠的神经功能缺损。2.脑缺血后,线粒体UCP4的表达增加,ATPase6的表达呈下降趋势。3. ASA可以增加缺血侧脑组织线粒体内UCP4和ATPase6的表达,对非缺血侧脑组织线粒体内UCP4和ATPase6表达未见明显影响。4.增加缺血脑组织线粒体UCP4和ATPase6的表达可能是ASA神经保护机制之一。
Background and purpose: After Ischemia/Reperfusion, damnification of the neuronal cell has two forms necrosis and apoptotic. As the“energy center”of the cell, the mitochondrial play the important role in the two forms. Recently, we distinguish that UCP4 is a kinds of transporters located in the inner membrane of mitochondrion. Actived UCP4 can dissociate oxidative phosphorylation from respiration. UCP4 can protect the neuronal cell by regulating the mitochondrion membrane potential, maintaining the Ca2+ homeostasis, reducing oxidative stress,influencing the ATP production, regulating the energy of cell. ATPase6 is also a transporters presented in the inner membrane of mitochondrion. It is a important part of F0-F1-ATP synthase and the progress of ATP production. In addition, as a hydronium pump, ATPase6 can keep the hydronium balance of the two sides of memdrane, maintain the memdrane′s function, benefit the energy metabolize. The change of ATPase6 must influence the produce, and than relate the survival or death of the cell. So the expression of the ATPase6 can reflect the ATP level. Aspirin (ASA) is a classical non-steroidal anti- inflammatory drug. Recently researches discovered that ASA also had the direct neuroprotective effects, such as increase of the ATP output; suppression of the glutamic acid release, reform of the energy metabolize of cerebra; decrease of Inos expression, and increase of the nNOS expression; inhibition of NF-κB activation; elimination of the ROS; activation of cdk5/P53; inhibition hydronium pore, prevention of Zn2+ inflow; inhibition of Fasl and caspase-3 in apoptotic, enhancement the expression of Bcl-2/bax; increase the BDNF, NGF, bFGF; decrease inflammation. So the main intention of this study is to clearing the expression rule of UCP4 and ATPase6 after CI/RP in rats, and the neuroprotective mechanism of ASA, how ASA effect the expression of UCP4 and ATPase6.
     Methods: The rat model of MCA-CI/RP were established with suture occlusion technique according to modified Zea Longa method and the rats of 1-3 score(Bederson measuring scale) was selected into the 10 groups at 6 hours after CI/RP. Some cerebral slices were taken for TTC staining. The rats were divided into five groups according to the time of reperfusion in control groups: A(0h), B(6h), C(24h), D(48h) and E(72h), so did the experimental groups (A'~E'). ASA were given to the experimental groups with the dose of 80mg/kg via an i.p. route, while the same dose of diaminocaproic acid were given to the control groups after the CI/RP and the next three days till killed at assigned time. The neurologic detect scale were used by Bederson scores. The UCP4 and ATPase6 expression were detected by immunohistochemistry and immunofluorescence technique.
     Results: Comparing with the control groups, the Bederson measuring scale of experiment groups were conspicuously reduced, but only at 72 hours after CI/RP had statistical significance(P<0.05). The positive UCP4 and ATPase6 could be seen in the cytoplasm in cortex broadly. In the control groups, the expression of UCP4 reached to peak at 6 hours after CI/RP, and descended gradually later; but had two peaks at 6 hours and 48 hours in experiment groups. ATPase6 declined evidently in both control and experiment groups and significance at 24 hours (P<0.01). It is no evidence that ASA can effect on UCP4 and ATPase6 in no-ischemia cerebra.
     Conclusion: 1. Ischemia can induce UCP4 expression in neurons overlying in the infarct region after CI/RP and the expression has a peak at 6 hours. 2. ATPase6 expresses descendant and significance at 24 hours after CI/RP. 3. ASA can enhance the expression of UCP4 and ATPase6 in ischemia cerebra and have no influence in no- ischemia cerebra. The expression of UCP4 has 6 hours and 48 hours two peaks. 4. ASA may attenuate the neurologic impairment after CI/RP. The mechanism of neuroprotective effect of ASA maybe due to enhance the expression of UCP4 and ATPase6, decrease the produce of ROS, maintaining the Ca2+ homeostasis and advance the ATP level relatively.
引文
1. Paul SL, Srikanth VK, Thrift AG. The large and growing burden of stroke. Curr Drug Targets, 2007, 8(7):786-793
    2. Yu XX, Mao W, Zhong A, et al. Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J, 2000, 14(11):1611-1618
    3. Chan SL, Liu D, Kyriazis GA, et al. Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem, 2006, 281(49):37391-37403
    4. Gasiora M, Rogawskia MA, Hartmana AL. Neuroprotective and disease- modifying effects of the ketogenic diet. Behav Pharmacol, 2006, 17(5-6):431-439
    5.李朝阳,秦炯,韩颖.大鼠海马线粒体解耦联蛋白-4在热性惊厥后的表达.中国当代儿科杂志,2004, 6(4):261-264
    6. Lee SH, Lee S, Jun HS, et al. Expression of the Mitochondrial ATPase6 Gene and Tfam in Down Syndrome. Mol Cells, 2003, 15(2):181-185
    7.徐涛,曲方,周中和,宋福林.阿司匹林对脑缺血-再灌注损伤大鼠神经保护作用的机制.中国脑血管病杂志, 2006, 3(6):267-272
    8.刘兴,曲方.大鼠脑缺血/再灌注后Fasl在脑内表达的变化和阿司匹林的干预作用.中国临床神经科学, 2006, 14(6):594-599
    9.车锋,曲方,魏秀英,冯钰清.阿司匹林诱导大鼠缺血/再灌注脑损伤后神经生长因子的表达.中西医结合心脑血管病杂志, 2007, 5(11): 1091-1093
    10.何凡.阿司匹林诱导大鼠脑缺血/再灌注损伤后Neuregulin-1和Survivin的表达[2003级硕士学位论文]大连医科大学2006.05
    11.陈团芝.阿司匹林与脂多糖对大鼠局灶性脑缺血/再灌注损伤的作用[2003级硕士学位论文]大连医科大学2006.05
    12. Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20 (1):84-91
    13.中华人民共和国卫生部药典委员会。药品标准[S].二部,1995.105
    14. Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 1986, 17(3):472-476
    15.张均田。现代药理实验方法。北京:北京大学医学部:中国协和医科大学出版联社,1998,1241
    16. Li LX, Skorpen F, Egenberg K, et al. Uncoupling protein 2 participates in cellular defense against oxidative stress in clonal beta-cells. Biochem Biophys Res Commun, 2001, 282(1):273-277
    17. Ho PW, Chan DY, Kwok KH, et al. Methyl-4-phenylpyridinium ion modulates expression of mitochondrial uncoupling proteins 2, 4, and 5 in catecholaminergic (SK-N-SH) cells. J Neurosci Res, 2005, 81(2):261-268
    18. Kagawa Y, Cha SH, Hasegawa K, et al. Regulation of energy metabolism in human cells in aging and diabetes: FoF(1), mtDNA, UCP, and ROS. Biochem Biophys Res Commun, 1999, 266(3): 662-676
    19. Mattson MP. Liu D. Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Commun, 2003, 304(3):539-549
    20. Chan SL, Liu D, Kyriazis GA, et al. Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem, 2006, 281(49):37391-37403
    21.杨恬.细胞生物学[M ].北京:人民卫生出版社, 2005: 8
    22. Houstek J, Klement P, Hermanska J, et al. Altered properties of mitochondrial ATP-synthase in patients with a T→G mutation in the ATPase6 gene at position 8993 of mtDNA. Biochim Biophys Acta, 1995, 1271(2-3):349-357
    23.柏干荣,陆松敏,武凡。急性缺血缺氧大鼠肠上皮细胞线粒体ATPase6基因的表达研究.中国病理生理杂志, 2001,17(11):1113
    24.李玮,周中和大鼠脑出血后血肿周围组织线粒体ATPase-6基因表达及TUNEL阳性细胞动态变化研究中风与神经疾病杂志2003;20(4):292-294
    25. Liu D, Chan SL, de Souza-Pinto NC, et al. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Med, 2006, 8(3):389-414.
    26.李朝阳,秦炯,韩颖.大鼠海马线粒体解耦联蛋白-4在热性惊厥后的表达.中国当代儿科杂志,2004, 6(4):261-264
    27. Diano S, Matthews RT, Patrylo P, et al. Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology, 2003, 144(11):5014-5021
    28. The Dutch TIA Trial Study Group. A comparison of two doses of aspirin (30 mg vs. 283 mg a day) in patients after a transient ischemic attack or minor ischemic stroke. N Engl J Med, 1991, 325 (18):1261– 1266
    29. Berger C, Xia F, Schabitz WR, Schwab S, et al. High-dose aspirin is neuroprotective in a rat focal ischemia model. Brain Res, 2004, 998(2):237-242
    30. Teismann P, Ferger B. Inhibition of the cycooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease. Synapse, 2001, 39(2):167-174
    31. Zheng Z, Schwabc S, Graub A, Bergera C. Neuroprotection by early and delayed treatment of acute stroke with high dose Aspirin. Briain Res, 2007, 1186: 275-280
    32. Moro MA, De Alba J, Cardenas A, et al. Mechanisms of the neuroprotective effect of aspirin after oxygen and glucose deprivation in rat forebrain slices. Neuropharmacology, 2000, 39 (7):1309– 1318
    33. De Cristóbal J, Cárdenas A, Lizasoain I, et al. Inhibition of glutamate release via recovery of ATP levels accounts for a neuroprotective effect of aspirin in rat cortical neurons exposed to oxygen-glucose deprivation. Stroke, 2002, 33 (1) : 261-267
    34. Grilli M, Pizzi M, Memo M, et al. Neuroprotection by Aspirin and Sodium Salicylate through blockade of NF -κB activation. Science, 1996, 274(5291) : 1383-1385
    35. Oberle S, Polte T, Abate A, et al. Aspirin increase Ferritin synthesis in Endothelial cells: A Novel antioxidant Pathway. Circ Res, 1998, 82(9): 1016-1020
    36. Legos JJ, Mangoni AA, Read SJ, et al. Programmable microchip monitoring of post-stroke pyrexia: effects of aspirin and paracetamol on temperature and infarct size in the rat. J Neurosci Methods, 2002, 113(2):159-166
    37. Fredduzzi S, Mariucci G, Tantucci M, et al. Nitro-aspirin(NCX4016) reduces brain damage induced by focal cerebral ischemia in the rat. Neurosci Lett, 2001, 302(2-3):121-124
    38. Chen H, Zhang SM, Hernan MA, et al. Nosteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol, 2003, 60(8):1059-1064
    39. Casper D, Yaparpalvi U, Rempel N, et al. Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci Lett, 2000, 289(3):201-204
    40. Broe GA, Grayson DA, Creasey HM, et al. Anti-inflammatory drugs protect against Alzheimer disease at low doses. Arch Neurol, 2000, 57(11):1586-1591
    41. Landi F, Cesari M, Onder G, et al. Non-steroidal anti-inflammatory drugs(NSAID)use and Alzheimer disease in community-dwelling elderly patients. Am J Geriatr Psychiatry, 2003, 11(2):179-185
    42. McGee-Russell SM, Brown AW, Brierley JB. A combined light and electron microscope study of early anoxic-ischemic cell change in rat brain. Brain Res, 1970, 20(2):193-200
    43. Nakagawa I, Nakase H, Aketa S. ATP-dependent potassium channel mediates neuroprotection by chemical preconditioning with 3-nitropropionic in gerbil hippocampus. Neurosci Lett, 2002, 320(1-2):33-36
    44. Shake JG, Peck EA, et al. Pharmacological induced preconditioning with diazoxide: a novel approach to brain protection. Ann Thorac Surg, 2001, 72(6):1849-1854
    45. Cao G, Minnami M, Pei W. Intracellular bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab, 2001, 21(4):321-333
    46. Riepe MW, Kasischke K, Raupach A. Acetylsalicylic acid increases tolerance against hypoxic and chemical hypoxia. Stroke, 1997, 28(10):2006-2011
    47. Garcia JH,Wagner S,Liu KF,et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke, 1995, 26(4):627-635
    1. Pawade T, Ho PW, Kwok kh, et al. Uncoupling proteins: Targets of endocrine disruptors? Mol Cell Endocrinol, 2005, 244(1-2):79-86
    2. Lengacher S, Magistretti PJ, Pellerin L. Quantitative rt-PCR analysis of uncoupling protein isoforms in mouse brain cortex: methodological optimization and comparison of expression with brown adipose tissue and skeletal muscle. J Cereb Blood Flow Metab, 2004, 24(7):780-788
    3. Yu XX, Mao W, Zhong A, et al. Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation.. FASEB J, 2000, 14(11):1611-1618
    4. Sokolova IM, Sokolov EP. Evolution of mitochondrial uncoupling proteins: novel invertebrate UCP homologues suggest early evolutionary divergence of the UCP family. FEBS Lett, 2005, 579(2):313-317
    5. Ledesma A, de Lacoba MG, Rial E, et al. The mitochondrial uncoupling proteins. Genome Biol, 2002, 3(12):reviews3015.1-3015.9
    6. Mao W, Yu XX, Zhong A, et al. UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett, 1999, 443(3):326-330
    7. Argiles JM, Busquets S, Lopez-Soriano FJ. The role of uncoupling proteins in pathophysiological states. Biochem Biophys Res Commun, 2002,293(4): 1145-1152
    8. Rousset S, Alves Guerra MC, Mozo J, et al. The biology of mitochondrial uncoupling proteins. Diabetes, 2004, 53(Suppl 1):130–135
    9. Chan SL, Liu D, Kyriazis GA, et al. Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem, 2006, 281(49):37391-37403
    10. Diano S, Matthew RT, Patrylo P, et al. Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology. Endocrinology, 2003, 144(11):5014-5021
    11. Kagawa Y, Cha SH, Hasegawa K, et al. Regulation of energy metabolism in human cells in aging and diabetes: FoF1, mtDNA, UCP, and ROS. Biochem Biophys Res Commun, 1999, 266(3): 662-676
    12. Ho PW, Chan DY, Kwok KH, et al. Methyl-4-phenylpyridinium ion modulates expression of mitochondrial uncoupling proteins 2, 4, and 5 in catecholaminergic (SK-N-SH) cells. J Neurosci Res, 2005, 81(2):261-268
    13. Gasiora M, Rogawskia MA, Hartmana AL. Neuroprotective and disease- modifying effects of the ketogenic diet. Behav Pharmacol, 2006, 17(5-6): 431-439
    14. Liu D, Chan SL, de Souza-Pinto NC, et al. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Med,2006,8(3): 389-414
    15. Andrews ZB, Diano S, Horvath TL. Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat Rev Neurosci, 2005, 6(11): 829-840
    16. NaudíA, Caro P, JovéM,et al. Methionine Restriction Decreases Endogenous Oxidative Molecular Damage and Increases Mitochondrial Biogenesis and Uncoupling Protein 4 in Rat Brain. Rejuvenation Res, 2007, [Epub ahead of print]
    17. Echtay KS. Mitochondrial uncoupling proteins–what is their physiological role? Free Radic Biol Med, 2007, 43(10):1351-1371
    18. Vincent AM, Olzmann JA, Brownlee M, et al. Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes, 2004, 53(3):726–734
    19. Zhang M, Wang B, Ni YH, et al. Overexpression of uncoupling protein 4 promotes proliferation and inhibits apoptosis and differentiation of preadipocytes. Life Sci, 2006, 79(15):1428-1435
    20. Yasuno K, Ando S, Misumi S, et al. Synergistic association of mitochondrial uncoupling protein (UCP) genes with schizophrenia. Am J Med Genet B Neuropsychiatr Genet, 2007, 144(2):250-253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700