3.0T MR fast cine-PC法对胸椎管脑脊液流体动力学定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分3.0T MRI快速电影相位对比法流体定量测量的实验研究
     目的:利用流体模型评价磁共振快速电影相位对比法对流体测量的准确性及可行性,作为进一步临床研究的实验基础。
     方法:流体模型主要包括高压注射器一台,内径4.75mm的塑胶管一根,以及0.9%生理盐水。在塑料管的一端注入0.9%生理盐水,开始使用3.0T磁共振机行快速电影相位对比法扫描。分别改变注入流量(0.1ml/s、0.2ml/s、0.3ml/s、0.4ml/s、0.5ml/s、0.6ml/s、0.7ml/s、0.8ml/s、0.9ml/s)、流速编码(5cm/s、10cm/s、15cm/s、20cm/s、25cm/s、30cm/s、35cm/s、40cm/s)、方向(头-尾、尾-头)、垂直角度(垂直200、300、450)、水平角度(水平200、300、450)。通过后处理测量得到流速值并与实际值比较,对所有结果进行统计学分析。
     结果:注入流量分别为0.1ml/s、0.2ml/s、0.3ml/s、0.4ml/s、0.5ml/s、0.6ml/s、0.7ml/s、0.8ml/s、0.9ml/s时,其对应的测量值分别与相应的真实值比较没有差异(t=1.072,p=0.315);设置流速编码分别为5cm/s、10cm/s、15cm/s、20cm/s、25cm/s、30cm/s、35cm/s、40cm/s,注入流量为0.9ml/s时分别对管腔内流速进行测定,发现流速编码为5cm/s时,图像出现混淆伪影,其余的图像未发现伪影。其他的流速编码测量值与真实值比较没有差异(t=0.351,p=0.739);垂直及水平方向不同的角度(200、300、450),其流速测量值与真实流速(t=1.814,p=0.121)及0角度(t=0.456,p=0.673)比较没有差异。
     结论:3.0T MRI快速电影相位对比法是一种准确的流体定量测量技术,可以为各种流体的定量研究提供可靠的实验依据。
     第二部分3.0T MR fast cine-PC法对胸椎管脑脊液流动扫描参数的
     优化
     目的:对3.0T MR fast cine-PC法胸椎管脑脊液流动扫描参数进行优化,以得到高质量的胸椎管脑脊液流动图像,使进一步的临床研究具有可行性。
     方法:正常志愿者30名,年龄21—55岁,平均年龄36.16±13.42岁。其中男性12例,女性18例。采用3.0T MR仪进行检查获得常规矢状位FSE T2WI后,于T6-7层面定位行胸椎管脑脊液fast cine-PC法扫描。在其他参数不变的情况下,分别改变流速编码(设置为5cm/s、10cm/s、15cm/s、20cm/s)、频率编码方向[右/左(R/L)、前/后(A/P)]、FOV(18cm、26cm、34cm)、矩阵(384×256、256×192)、NEX(1次、2次)等参数,观察成像效果。
     结果:流速编码采用5、10、15、20cm/s时,图像质量为优、良、差者分别为0、16、14名,19、11、0名,28、2、0名,30、0、0名,差异有统计学意义(χ2=8.65,p=0.02);频率编码方向分别为A/P、R/L时,图像质量为优、差者分别为27、3名,10、20名,差异有统计学意义(Z=-4.12,p<0.001);FOV分别为18cm、26cm、34cm时,图像质量为优、良、差者分别为0、12、18名,11、18、1名,29、1、0名,差异有统计学意义(χ2=8.77,p=0.01);矩阵分别为384×256、256×192时,优、良图像分别为29、1名,3、27名,差异有统计学意义(Z=-4.81,p<0.001);NEX分别为1次及2次时,优、良图像分别为6、24名,30、0名,差异有统计学意义(Z=-4.89,p<0.001)。
     结论:通过优化3.0T MR fast cine-PC扫描序列的参数,可以得到高质量的胸椎管脑脊液流动图像,并且能进行准确定量评价。
     第三部分正常胸椎管脑脊液流动定量研究
     目的:使用MR fast cine PC方法定量分析正常成年人胸椎管脑脊液流动方式与规律,探讨影响其流动的相关解剖因素,提供正常成年人的胸椎管脑脊液流动信息,为临床疾病的诊断及预后判断提供依据。
     方法:选择没有任何椎体及脊髓病变的志愿者92例,年龄21-72岁,平均年龄45.09±14.79岁。本研究男性40例,女性52例.每个志愿者都进行fast cine-PC序列的扫描,扫描层面定位于胸2-3、胸4-5、胸6-7、胸8-9、胸10-11。将志愿者按年龄分为5组,其中20-29岁18例、30-39岁18例、40-49岁17例、50-59岁19例、≥60岁20例。比较各年龄组之间胸椎管脑脊液尾向峰值流速、头向峰值流速、尾向峰值流量、头向峰值流量、尾向平均流速、头向平均流速、尾向平均流量、头向平均流量各变量有无差异;将志愿者按性别分为男、女两组,两组间比较胸椎管脑脊液的流速及流量;比较胸2-3、胸4-5、胸6-7、胸8-9、胸10-11各椎间盘层面的胸椎管脑脊液流动有无差异;比较胸椎管脑脊液尾向流动的流速、流量和头向流动有无差异;观察胸椎管脑脊液峰值流速、流量及平均流速、流量与相应层面脊髓面积、脊髓前后径、蛛网膜下腔面积、蛛网膜下腔前后径之间有无相关性。把胸椎管近环形的蛛网膜下腔人为的分为腹侧、背侧、左、右四部分,分别测量每个椎间盘层面在一个心动周期中四部分脑脊液尾向、头向的峰值流速、平均流速,比较腹侧、背侧、左、右四部分流速在一个心动周期中是否有差异;观察胸椎管脑脊液腹侧、背侧、左、右四部分流速与相应椎管蛛网膜下腔前后径及脊髓前后径之间的关系。
     结果:≥60岁年龄组的尾向峰值流速与20-29岁、30-39岁、40-49岁比较减小(p=0.029,p=0.022,p=0.020);≥60岁头向峰值流速与20-29岁、30-39岁、40-49岁、50-59岁间比较小于以上四组,且具有统计学差异;其p值分别为0.009、0.016、0.014、0.012。其余四组间比较无差异;尾向峰值流量、头向峰值流量、尾向平均流速、头向平均流速其测量结果≥60岁组虽然流速或流量小于其余四组,但无统计学差异(p>0.05);尾向平均流量、头向平均流量五组间比较无明显差异(p>0.05)。男、女两组各变量间比较均无统计学差异(p>0.05)。T10-11椎间盘层面尾向峰值流速、尾向峰值流量、尾向平均流速、尾向平均流量小于T2-3、T4-5、T6-7三个层面,其p值分别为0.007、0.008、0.049;0.004、0.006、0.025;0.003、0.004、0.026;0.001、0.005、0.041。头向峰值流速、头向峰值流量、头向平均流速、头向平均流量的五个椎间盘层面间流动无差异(p>0.05)。胸椎管脑脊液尾向的流速、流量均大于头向的流速及流量,其比较具有明显的统计学差异(p<0.05)。胸椎管脑脊液尾向平均流量、头向平均流量都与蛛网膜下腔面积具有正相关关系。胸椎管脑脊液流速及流量与脊髓面积、蛛网膜下腔前径及后径间没有相关性。头向峰值流速、头向峰值流量与脊髓前后径呈正相关性。而尾向峰值流量、尾向平均流量与脊髓前后径呈负相关。胸椎管蛛网膜下腔腹侧、背侧、左、右比较发现腹侧的头向及尾向的平均流速是最大的(p<0.05)。背侧的头向及尾向的平均流速及峰值流速是最小的,但统计学分析发现背侧尾向及头向的峰值流速只与右侧有差异。左右两侧脑脊液流速及流量较稳定没有差异(p>0.05)。腹侧尾向峰值流速、平均流速与前径呈正相关,与后径呈负相关;背侧尾向峰值流速、平均流速与前径呈负相关,与后径呈正相关;胸椎管内左右两侧的脑脊液流动与这些解剖结构没有任何相关性。
     结论:MRI可以定量评价正常成年人胸椎管脑脊液流动,并且该流动与年龄具有相关性:≥60岁老年人其胸椎管脑脊液流动减慢;胸椎管脑脊液流动不受性别的影响;胸椎管脑脊液流动头-尾的流动呈减慢趋势;呈双向波动的脑脊液其尾向的流动大于头向的;胸椎管腹侧、背侧、左、右四部分流动速度存在差异,腹侧流动较快,背侧流动较慢,左右两部分流动较稳定;胸椎管脑脊液流动受椎管蛛网膜下腔面积及前后径大小的影响。
     第四部分呼吸对胸椎管脑脊液流动的影响
     目的:定量评价不同呼吸状态下胸椎管脑脊液的流速、流量及总入颅血流量的变化,观察胸椎管脑脊液流速及流量变化与总入颅血流量变化的相关性。最终得到呼吸变化与入颅总血流量及胸椎管脑脊液流动的相关关系。
     方法:选择没有任何椎体及脊髓病变的志愿者32例,年龄23—65岁,平均年龄41.38±12.74岁。其中男性15例,女性17例。首先行胸椎管矢状位T2WI FSE及颈部矢状位T2WI FSE序列扫描,采用fast cine-PC序列于颈2-3水平在不同呼吸状态下(平静、吸气后屏气、呼气后屏气)对双侧颈内动脉及椎动脉进行扫描。分别比较每根血管在三种不同呼吸状态下的流速值及流量值有无差异;比较双侧颈内动脉之间、双侧椎动脉之间的平均流量有无差异;计算不同呼吸状态下总的入颅血流量;测量T6-7水平不同呼吸状态下(平静、吸气后屏气、呼气后屏气)胸椎管脑脊液的流动,得到每个心动周期的尾向平均流速、头向平均流速、尾向平均流量、头向平均流量、尾向峰值流速、头向峰值流速、尾向峰值流量、头向峰值流量。分别比较平静、吸气、呼气三种状态下脑脊液流速及流量有无差异;比较双侧颈内动脉、椎动脉的吸气后屏气与平静状态,呼气后屏气与平静状态的平均流量的差与胸椎管脑脊液平均流量的差之间有无相关性。
     结果:双侧颈内动脉及椎动脉在呼气后屏气和吸气后屏气状态下的流速及血流量明显高于平静状态(p<0.05)。双侧颈内动脉之间的平均流量、双侧椎动脉之间平均血流量在平静、吸气及呼气状态下均没有差异(p>0.05);平静状态、吸气后屏气、呼气后屏气平均总入颅血流量分别为797.89ml/min,972.15ml/min,985.96ml/min。吸气与呼气后屏气状态较平静状态下的平均总入颅血流量明显增加(p<0.05)。胸椎管脑脊液的流速及流量吸气后屏气及呼气后屏气两种状态均较平静状态为高,但头向峰值流速及头向峰值流量没有统计学意义(p>0.05)。在不同呼吸状态下胸椎管脑脊液的流量变化与双侧颈内动脉及椎动脉的变化具有相关性,吸气与平静状态下动脉平均流量的差与脑脊液在此两种状态的差的相关性比较:r=0.504,p=0.039;呼气与平静状态下动脉平均流量的差与脑脊液在此两种状态的差的相关性比较:r=0.389,p=0.042。
     结论:1)在吸气后屏气及呼气后屏气时双侧颈内动脉及椎动脉流速及流量较平静状态下增大,表明总入颅血流量增大;2)在吸气后屏气及呼气后屏气时胸椎管脑脊液头向及尾向的流速及流量较平静状态下增大;3)上述两种呼吸状态时胸椎管脑脊液平均流量变化与脑总血流量的增加相关。第五部分体位对胸椎管脑脊液流动的影响
     目的:使用fast cine-PC法探讨不同体位对胸椎管脑脊液流动的影响,以及腹压改变与胸椎管脑脊液流动的关系。
     方法:选择没有任何椎体及脊髓病变的志愿者31例,年龄21-65岁,平均年龄39.5±12.6岁。其中男性13例,女性18例。志愿者在仰卧位首先进行矢状位T2WI FSE序列扫描,于胸6-7椎间盘水平定位行fast cine-PC法图像采集。仰卧位扫描完毕后,在保持位置不变的情况下,使用医用腹带对志愿者的腹部进行加压。再次于胸6-7椎间盘水平定位行fast cine-PC法扫描。志愿者在仰卧位扫描完毕后,休息5分钟进行俯卧位扫描。首先进行俯卧位矢状T2WI FSE序列扫描,于胸6-7椎间盘水平定位行fast cine-PC法图像采集。上述扫描图像经后处理得到胸椎管脑脊液仰卧位、腹带加压及俯卧位向下峰值流速、向上峰值流速、向下峰值流量、向上峰值流量、向下平均流速、向上平均流速、向下平均流量、向上平均流量。比较仰卧位与俯卧位之间,仰卧位与腹带加压之间各参数有无差异。
     结果:向下峰值流速、向下峰值流量、向下平均流速、向下平均流量这四个参数仰卧位大于俯卧位,而具有统计学意义的只有前两个参数(p<0.05)。这也表明在俯卧位时向下的流动减慢。向上峰值流速、向上峰值流量、向上平均流速、向上平均流量四个参数均没有统计学的差异(p>0.05)。仰卧位与腹带加压胸椎管脑脊液流动的向下峰值流速、向上峰值流速、向下峰值流量、向上峰值流量、向下平均流速、向上平均流速、向下平均流量、向上平均流量参数的比较中发现腹带加压后脑脊液的流速及流量较仰卧位增大,但没有统计学差异(p>0.05)。
     结论:体位对胸椎管脑脊液流动动力的影响可以应用MRI进行定量研究;结果发现胸椎管内脑脊液向下的流速、流量仰卧位高于俯卧位,该变化与腹压增高无关。第六部分颈椎病病人胸椎管脑脊液流动特点
     目的:定量评价颈椎病病人胸椎管脑脊液流速及流量的变化,观察颈椎病严重程度与胸椎管脑脊液流动的相关关系,为颈椎病临床诊断及预后判断提供影像学的依据。
     方法:颈椎病病人91例,年龄28岁-72岁,平均年龄45.21±14.58岁。其中男40例,女51例。于胸6-7水平行胸椎管脑脊液fast cine-PC法扫描。将颈椎病分为3级:轻度、中度、重度。轻度指椎管内硬膜囊受压,但矢状位T2观察蛛网膜下腔存在;中度指矢状位T2图像蛛网膜下腔消失,但并没有脊髓受压;重度指矢状位T2图像蛛网膜下腔消失合并脊髓受压。其中轻度23例,中度30例,重度38例。比较上述各级颈椎病患者其胸椎管脑脊液流速及流量值与正常志愿者T6-7水平脑脊液流动之间有无差异。临床评分系统选用常规颈椎病的Japan OrthopedicAssociation (JOA)进行评价。对每个患者进行JOA评分,比较该评分与各级脑脊液流速之间有无相关性。对重度颈椎病患者,按照脊髓有无MRI矢状位T2高信号分为变性组及非变性组,变性组15例,非变性组23例。比较其胸椎管流速及流量有无差异。
     结果:轻度颈椎病的胸椎管脑脊液流速及流量与正常志愿者之间并没有差异(p>0.05);中度颈椎病胸椎管脑脊液的流速及流量低于正常志愿者,并且具有统计学差异(p<0.05);重度颈椎病胸椎管脑脊液的流速及流量低于正常志愿者,并且具有统计学差异(p<0.05)。颈椎病三者之间比较其向下平均流速、向上平均流速、向下平均流量、向上平均流量、向下峰值流速、向上峰值流速、向下峰值流量、向上峰值流量,发现轻度与中度之间p<0.05,中度与重度之间p<0.05,轻度与重度之间p<0.05。轻、中、重度颈椎病其JOA评分分别为13.35±1.36、12.41±1.65、10.14±1.95。JOA评分与轻度、中度、重度颈椎病的脑脊液流速及流量呈明显相关关系。重度颈椎病的患者其脊髓出现T2高信号者即变性与未变性者胸椎管脑脊液流速及流量比较没有统计学差异,但是出现脊髓变性的患者的胸椎管脑脊液流速及流量较无脊髓变性者稍增大。
     结论:1)颈椎病病人根据矢状位T2图像蛛网膜下腔存在与否及脊髓受压与否来分级具有简单易辨的特点,对于临床迅速判断病情提供影像学帮助;2)颈椎病病人其胸椎管脑脊液流动与疾病的严重程度相关,该程度包括MRI表现及临床JOA评分;3)颈椎病病人脊髓受压出现T2高信号变性时,其胸椎管脑脊液流动与非脊髓变性者之间不存在统计学差异。
PartⅠ The experimental study of fluid quantitative measurement using3.0TMRI fast cine phase contrast sequence
     Objective:To evaluate the feasibility and accuracy of MR fast cinephase-contrast technique in fluid flow quantification by establishing flowphantom.
     Methods:The phantom consisted of a plastic tube with diameter of4.75mm,a high pressure injector,0.9%physiological saline.0.9%physiological saline was injected into the plastic tube, and fast cine phasecontrast sequence was performed by using3.0T MRI.The scanning at differentflow rates(0.1ml/s,0.2ml/s,0.3ml/s,0.4ml/s,0.5ml/s,0.6ml/s,0.7ml/s,0.8ml/s,0.9ml/s), different velocity encoding(5cm/s,10cm/s,15cm/s,20cm/s,25cm/s,30cm/s,35cm/s,40cm/s),different directions of flow(caudal–cranial, cranial-caudal), different vertical angles(200,300,450), horizontalangles(200,300,450)was measured.After postprocessing, measured values werecompared with actual values by satistical analysis.
     Results:There was no statistical difference between measured values andactual values at different flow rate(0.1ml/s,0.2ml/s,0.3ml/s,0.4ml/s,0.5ml/s,0.6ml/s,0.7ml/s,0.8ml/s,0.9ml/s)(t=1.072,p=0.315); The aliasingartifacts appeared at the velocity encoding of5cm/s.In other velocityencoding aliasing artifacts did not appear. There was no statistical differencebetween measured values and actual values at different velocity encoding(t=0.351,p=0.739);No statistical difference between Measured values andactual values(t=1.814,p=0.121)at different angle, measured values and0angle(t=0.456, p=0.673).
     Conclusions:3.0T MRI fast cine phase contrast sequence allows accuratemeasurement of flow velocity with fluid flow phantom, and provides reliable experimental evidence for the quantitative study of anybfluid flow.
     PartⅡ Optimal Parameters for Imaging Cerebrospine Fluid Flow in thoracicspine with3.0T MR Fast Cine phase contrast sequence
     Objective: To optimize imaging parameters of cerebrospine fluid flow inthoracic spine with3.0T MR fast cine phase contrast.
     Methods:30healthy individuals (12men,18women) aged between21and55years(mean36.16±13.42years) were enrolled for the MRImeasurement of spine cerebrospine fluid flow. Fast cine phase contrastsequence was performed located at T6-7Level. The imaging effect wasexplored with different parameters, including velocity encoding(5cm/s,10cm/s,15cm/s,20cm/s),frequency encoding direction(R/L, A/P), FOV(18cm,26cm,34cm), matrix(384×256,256×192)and NEX(1,2),respectively.
     Results: The number of excellent, good and poor imaging in the velocitycodes of5cm/s,10cm/s,15cm/s,20cm/s were0,14,16;19,11,0;28,2,0;30,0,0; respectively(χ2=8.65,p=0.02). The number of excellent, good andpoor imaging with different FOV(18cm,26cm,34cm) were0,18,12;11,18,1and29,1,0(χ2=8.77,p=0.01). The number of excellent and poorimaging with different frequency encoding direction(R/L, A/P) were27,3and10,20, respectively(Z=-4.12,p<0.001). The number of excellent andgood imaging with different matrix(384×256,256×192)were29,1and3,27(Z=-4.81,p<0.001); with different NEX(1time,2times)were6,24and30,0, respectively(Z=-4.89,p<0.001). The optimal parameters wereobtained and they were velocity encoding10cm/s, frequency encodingdirection A/P, FOV26cm, matrix256×192and NEX2times,respectively.
     Conclusions: The better images and accurate quantitative assessment ofthoracic spine cerebrospine fluid flow are performed by optimizing theparameters of3.0T MR fast cine phase contrast sequence.
     PartⅢ Quantitatively evaluate cerebrospine fluid flow in the thoracic spine
     Objectives: The aim of this study was to quantitatively evaluatecerebrospine fluid flow in the thoracic spine by using fast cine phase-contrast magnetic resonance imaging (MRI) technique,and to explore the influencefactor, flow characteristics of cerebrospine fluid.
     Methods:92healthy individuals (40men,52women) aged between21and72years(mean45.09±14.79years) were enrolled for the MRImeasurement of thoracic spine cerebrospine fluid flow. Fast cinephase-contrast sequences were acquired at the level of T2-3, T4-5, T6-7, T8-9,T10-11. At these levels, caudal peak flow velocity,cranial peak flow velocity,caudal peak volume flow,cranial peak volume flow,caudal mean flowvelocity,cranial mean flow velocity,caudal mean volume flow,cranial meanvolume flow were studied.Subjects were divided into five age groups:20-29years(18cases),30-39years(18cases),40-49years(17cases),50-59years(19cases), and≥60years(20cases).The volunteers were dividedinto male and female groups. The values of cerebrospine fluid flow among allage groups, between male group and female group, among the level of T2-3,T4-5, T6-7, T8-9, T10-11, between cranial and caudal directions werecompared,respectively.We observed the correlation between the thoracicspine cerebrospine fluid flow and the corresponding level of the spine cordarea, spine anteroposterior diameter, subarachnoid anteroposteriordiameter.The thoracic spine subarachnoid space was artificially divided intofour parts: Ventral, dorsal,left, right and they were compared. The revelanceof cerebrospine fluid flow in four parts and subarachnoid space,spineanteroposterior diameter were studied.
     Results: There was a statistical significance in cerebrospine fluid caudalpeak flow velocity between the age group of≥60years and the other threeage group(sp=0.029,p=0.022,p=0.020). Cranial peak flow velocity of≥60years was lower than that of the other agegroups(p=0.009,p=0.016,p=0.014,p=0.012). In≥60years group caudal peakvolume flow,cranial peak volume flow,caudal mean flow velocity,cranialmean flow velocity of cerebrospine fluid were lower than in the other agegroups,but there was no statistical significance(p>0.05). Statistical differenceswas not detected in flow parameters between male and female(p>0.05). There was a statistical difference in cerebrospine fluid caudal peak flow velocity,caudal peak volume flow, caudal mean flow velocity, caudal mean volumeflow between the level of T10-11and T2-3,T4-5,T6-7,p volues were0.007,0.008,0.049;0.004,0.006,0.025;0.003,0.004,0.026;0.001,0.005,0.041,respectively. There was no statistical difference in cerebrospine fluidcranial peak flow velocity, cranial peak volume flow, cranial mean flowvelocity, cranial mean volume flow between the level of T10-11andT2-3,T4-5,T6-7(p>0.05).Cerebrospine fluid caudal flow was higher thancranial flow in all individuals. Caudal and cranial mean volume flow showed apositive correlation with subarachnoid space area. There was a positivecorrelation between cranial peak flow velocity,cranial peak volume flow andspine cord anteroposterior diameter, a negative correlation between caudalpeak volume flow and spine cord anteroposterior diameter.In segmentmeasurement, caudal and cranial mean flow velocity of ventral was the largest,dorsal was the lowest.No statistical difference was detected between left andright(p>0.05). There was a positive correlation between caudal peak flowvelocity,volume flow of ventral and subarachnoid space anterior diameter, anegative correlation with posterior diameter, but dorsal was reverse.
     Conclusions: Thoracic spine cerebrospine fluid flow of normal adultcan be quantitatively evaluated by MRI,and age is a effective factor:cerebrospine fluid flow in≥60years is lower than the other aged groups.Thoracic spine CSF flow is not affected by gender. Thoracic spinecerebrospine fluid flow in below level of intervertebral disc is lower. Caudalcerebrospine fluid flow is higher than cranial.There is a difference betweenfour segments of thoracic spine canal; ventral is the largest, dorsal is thelowest,left and right sides are stable. Thoracic spine cerebrospine fluid flow isaffected by the spine subarachnoid space area and the anteroposteriordiameter.
     PartⅣ The influence of respiration on cerebrospine fluid flow in thoracicspine
     Objectives:To quantitatively evaluate the changes of cerebrospine fluid flow velocity and volume flow of thoracic spine and the total cerebral bloodflow in breath-holding after inspiration or expiration.To observe thecorrelation of cerebrospine fluid flow velocity and volume flow of thoracicspine and the total cerebral blood flow.
     Methods:32healthy individuals (15men,17women) aged between23and65years(mean41.38±12.74years) were enrolled for the MRImeasurement of spine CSF flow. Sagittal T2-weighted FSE images in thoracicspine and cervical spine were acquired first. To quantify bilateral internalcarotid artery and vertebral artery flow,fast cine-phase contrast sequence wasacquired located in C2-3level under free breathing, breath-holding afterinspiration, breath-holding after expiration. Flow velocity and volume flow ofeach artery among three states of respiration status werecompared,respectively.We evaluated the agreement between bilateral internalcarotid artery flow, bilateral vertebral artery flow,and calculated the totalcerebral blood flow,respectively.We measured the cerebrospine fluid flowlocated in T6-7level under free breathing, breath-holding after inspiration,breath-holding after expiration and obtained the caudal peak flow velocity,cranial peak flow velocity,caudal peak volume flow,cranial peak volumeflow,caudal mean flow velocity,cranial mean flow velocity,caudal meanvolume flow,cranial mean volume flow in a cardiac cycle. The relevance offlow velocity and volume flow of cerebrospine fluid and each artery werestudied.
     Results: In bilateral internal carotid artery and vertebral artery flowvelocity and volume flow under breath-holding after inspiration, breath-holding after expiration were significantly higher than that under freebreathing(p<0.05).There was no difference among three respiration states ofbilateral internal carotid artery mean volume flow and bilateral vertebral arterymean volume flow(p>0.05). The total cerebral blood flow under freebreathing, breath-holding after inspiration, breath-holding after expiration was797.89ml/min,972.15ml/min,985.96ml/min,respectively. The total cerebralblood flow under breath-holding after inspiration, breath-holding after expiration was significant higher than free breathing(p<0.05). Flow velocityand volume flow of cerebrospine fluid under breath-holding after inspiration,breath-holding after expiration were significantly higher than that under freebreathing(p<0.05),but no statistical significance in cranial peak flowvelocity, cranial peak volume flow(p>0.05). There was the correlationbetween total cerebral blood flow and cerebrospine fluid in the mean volumeflow of breath-holding after inspiration and free breathing (r=0.504,p=0.039),breath-holding after expiration and free breathing(r=0.389,p=0.042).
     Conclusions:1) Flow velocity and volume flow in bilateral internalcarotid artery and vertebral artery under breath-holding after inspiration,breath-holding after expiration are significantly higher than that under freebreathing, which demonstrates that the total cerebral blood flow increases;2)Flow velocity and volume flow of cerebrospine fluid under breath-holdingafter inspiration, breath-holding after expiration are significantly higher thanthat under free breathing;3) There is correlation between total cerebral bloodflow and cerebrospine fluid in the mean volume flow.
     PartⅤ The effect of posture on cerebrospine fluid flow in thoracic spine
     Objective: To investigate the influence of posture on cerebrospine fluidflow in thoracic spine by using fast cine phase contrast MRI.
     Methods:31healthy individuals (13men,18women) aged between21and65years(mean39.5±12.6years) were enrolled for the MRI measurementof spine CSF flow. Sagittal T2-weighted FSE images of Supine position inthoracic spine were acquired first. Fast cine-phase contrast sequence wasscanned located in T6-7level. After supine scanning, rescanning wasperformed with cummerbund.After five minutes, the prone position imagingwere acquired located in T6-7level. We obtained the values of cerebrospinefluid flow with different posture: caudal peak flow velocity, cranial peak flowvelocity, caudal peak volume flow,cranial peak volume flow,caudal meanflow velocity,cranial mean flow velocity,caudal mean volume flow,cranialmean volume flow. Cerebrospine fluid flow velocity and volume flowbetween supine position and prone position, supine position and cummerbund were compared.
     Results: Caudal peak flow velocity, caudal peak volume flow, caudalmean flow velocity, caudal mean volume flow in supine position were largerthan in prone position,and there was statistical significance between twoformers(p<0.05). There were no statistical significance between supineposition and prone position in cranial peak flow velocity, cranial peak volumeflow, cranial mean flow velocity, cranial mean volume flow.(p>0.05). Thedifference was not detected between cummerbund and supine position incaudal peak flow velocity, cranial peak flow velocity, caudal peak volumeflow,cranial peak volume flow,caudal mean flow velocity,cranial mean flowvelocity,caudal mean volume flow,cranial mean volume flow.(p>0.05).
     Conclusion: The effect of posture on cerebrospine fluid flow in thoracicspine can be quantified by MRI. Caudal cerebrospine fluid flow velocity andvolume flow in supine position are larger than in prone position. Howeverthere is no relation with cummerbund.PartⅥ Characteristics of cerebrospine fluid flow of thoracic spine in patients
     with cervical spondylosis
     Objective: To quantitatively evaluate cerebrospine fluid flow velocityand flow volume of thoracic spine in patients with cervical spondylosis and toobserve the correlation between the severity of cervical spondylosis andcerebrospine fluid flow velocity and flow volume of thoracic spine.
     Methods: A total of91patients with cervical spondylosis were studied,40men and51women, and the mean age was45.21±14.58years (range,28–72years). All patients underwent fast cine phase contrast MRI at T6-7level. The degree of cervical spondylosis was rated as low-, intermediate-, orhigh-grade. Low-grade was defined as involving no effacement of thesubarachnoid space, intermediate-grade as involving effacement of this space,and high-grade as involving effacement of this space, together withcompressive myelopathy.23cases of Low grade, intermediate-grade30cases,high-grade38cases.Flow velocity and flow volume were compared betweenpatient of cervical spondylosis and normal volunteers. Clinical scoring system used the Japanese Orthopedic Association (JOA) score.The correction of JOAscore and The severity of cervical spondylosis were evaluated. According tothe increased signal intensity (ISI) on T2WI, the patients of high-grade weredivided into the group with or without ISI and correlated them in cerebrospinefluid flow velocity and flow volume of thoracic spine.
     Results: There was no difference between low-grade patients and normalvolunteers(p>0.05); Significant difference not only betweenintermediate-grade patients and normal volunteers (p<0.05),but also betweenwas high-grade patients and normal volunteers. There was significantdifference in caudal peak flow velocity,cranial peak flow velocity,caudalpeak volume flow,cranial peak volume flow,caudal mean flow velocity,cranial mean flow velocity,caudal mean volume flow,cranial mean volumeflow among the three groups, high-Grade patients had a lower cerebrospinefluid flow velocity and flow volume of thoracic spine(p<0.05).The mean JOAscore in patients of low-, intermediate-, and high-grade were13.35±1.36,12.41±1.65,10.14±1.95, respectively. A high correlation between theJapanese Orthopedic Association score and the cerebrospine fluid flowvelocity and flow volume in different degree patients was demonstrated.Cerebrospine fluid flow velocity and flow volume of high-grade patients withISI were greater,but there was no statistical significance.
     Conclusions:1)According to presence or absence of subarachnoid andspine cord compression or not on the sagittal T2images, the degree of cervicalspondylosis is rated,which is helpful for clinicians.2)The relevance of theseverity degree in cervical spondylosis and the Japanese OrthopedicAssociation score, cerebrospine fluid flow velocity and flow volume ofthoracic spine are showed.3) There is no statistical difference betweenhigh-grade patients with and without ISI.
引文
1Enzmann DR, Pelc NJ. Normal flow patterns of intracranial and spinecerebrospine fluid defined with phase-contrast cine MR imaging.Radiology,1991,178:467-474
    2Feinberg DA,Mark AS.Human brainmotion and cerebrospine fluidcirculation demonstrated with MR velocity imaging. Radiology,1987,163:793-799
    3Dumoulin CL, Yucel EK, Vock P, et al. Two and three-dimensional phasecontrast MR angiography of the abdomen. Comput Assist Tomogr,1990,14:779-784
    4Wentland AL, Wieben O, Korosec FR,Accuracy and reproducibility ofphase-contrast MR measurements imaging for CSF flow. AJNR, Am,Neuroradiol,2010,31(7):1331-1336
    5Lew CD, Alley MT, Bammer R, et al. Peak velocity and flowquantification validation for sensitivity-encoded phase-contrast MRimaging. Acad Radiol.,2007,14(3):258-269
    6Tsuruda JS, Shimakawa A, Pelc NJ, et al. Dural sinus occlusion: evaluationwith phase-sensitive gradient-echo MR imaging. Am J Neuroradiol,1991,12:481-488
    7Bradley WG, Daroff RB, Fenichel GM, et al. Neurology in clinical practice:Principles of diagnosis and management.4th edn. Philadelphia: Elsevier2006, pp306-309
    8Nitz WR, Bradley WG Jr, Watanabe AS, et al. Flow dynamics ofcerebrospine fluid: assessment with phase-contrast velocity MR imagingperformed with retrospective cardiac gating. Radiology,1992,183:395-405
    9Wentland AL, Korosec FR, Vigen KK, et al. Cine flow measurements usingphase contrast with undersampled projections: in vitro validation andpreliminary results in vivo. J Magn Reson Imaging,2006,24:945-951
    10Gatehouse PD, Rolf MP, Graves MJ, et al. Evidence across CMR sites andsystems of phase-contrast background velocity offsets requiring correctionfor accurate regurgitant or shunt flow. In: Proceedings of the17thInternational Society for Magnetic Resonance in Medicine, Honolulu,Hawaii,2009,4:18-24
    11Saloner D. The AAPM/RSNA physics tutorial for residents. Anintroduction to MR angiography. Radiographics,1995,15:453-465
    12Lotz J, Meier C, Leppert A, et al. Cardiovascular flow measurement withphase-contrast MR imaging: basic facts and implementation. RadioGraph-ics,2002,22:651-671
    13Marchi SF, Bodenmuller M, Lai DL, etal. Venous flow velocity patterns in
    404individuals without cardiovascular disease. Heart,2001,85:23-29
    14Ghio S, Recusani F, Sebastiani R, et al. Doppler velocimetry in superiorvena cava provides useful information on the right circulatory function inpatients with congestive heart failure. Echocardiography,2001,18:469-477
    15Mohiaddin RH, Wann SL, Underwood R, et al. Vena caval flow:assessment with cine MR velocity mapping. Radiology,2001,18:469-477
    16Naidich TP, Altman NR, Gonzales-Arias SM, et al. Phase contrast CINEmagnetic resonance imaging: normal cerebrospine fluid oscillation andapplications to hydrocephalus. Neurosurg Clin N Am,1993,4:677-706
    17Bhadelia RA, Bogdan AR, Wolpert SM, et al. Analysis of cerebrospinefluid flow waveforms with gated phase-contrast MR velocitymeasurements.AJNR Am J Neuroradiol,1995,16(2):389-400
    18Spilt A, Box FM, van der Geest RJ, et al. Reproducibility of total cerebralblood flow measurements using phase contrast magnetic resonanceimaging. Magn Reson Imaging,2002,16:1-5
    19Yano T, Kodama T, Suzuki Y, et al.Gadolinium-enhanced3D time-of-flightMR angiography. Experimental and clinical evaluation.Acta Radiol.1997,38(1):47-54
    20Fahrig R, Nikolov H, Fox AJ, et al. A three-dimensional cerebrovascularflow phantom.Med Phys,1999,26(8):1589-1599
    21Whedon JM, Glassey D.Cerebrospine fluid stasis and its clinicalsignificance.Altern Ther Health Med,2009,15(3):54-60
    22姚晓群,杨广夫,何斌,等.MR流量测定的实验研究.实用放射学杂志,2007,23(8):1121-1124
    23Vivian S, Charles E, Barbara A, et al. Flow Quantification Using Fast CinePhase-Contrast MR Imaging Conventional Cine Phase-Contrast MRImaging, and Doppler Sonography:In Vitro and In Vivo Validation.AJR,1997,169:1125-1130
    1Powell AJ, Maier SE, Chung T, et al. Phase-velocity cine magneticresonance imaging measurement of pulsatile blood flow in children andyoung adults: in vitro and in vivo validation. Pediatr Cardiol,2000,21:104-110
    2Evans AJ, Iwai F, Grist TA, et al. Magnetic resonance imaging of bloodflow with a phase subtraction technique. In vitro and in vivo validation.Invest Radiol,1993,28:109-115
    3Frayne R, Steinman DA, Ethier CR, et al. Accuracy of MR phase contrastvelocity measurements for unsteady flow. Magn Reson Imaging,1995,5:428-431
    4Greil G, Geva T, Maier SE, et al. Effect of acquisition parameters on theaccuracy of velocity encoded cine magnetic resonance imaging blood flowmeasurements. Magn Reson Imaging,2002,15(1):47-54
    5Bakker CJ, Hoogeveen RM, Viergever MA, et al. Construction of aprotocol for measuring blood flow by two-dimensional phase-contrastMRA. Magn Reson Imaging,1999,9:119-127
    6Buonocore MH, Bogren H. Factors influencing the accuracy and precisionof velocity–encoded phase imaging. Magn Reson Med,1992,26:141-154
    7Handa H, Aihara H, Kinoshita K, et al.Suitable image parameters andanalytical method for quantitatively measuring cerebral blood flow volumewith phase-contrast magnetic resonance imaging. Acta Med Okayama,1999,53:45-53
    8eita Y, Hiroto T, Masaki S, et al. Phase-contrast MR Studies of CSF FlowRate in the Cerebral Aqueduct and Cervical Subarachnoid Space withCorrelation-based Segmentation. Magn Reson Med Sci,2009,3(8):91-100
    9新龙,韩鸿宾,刘彬,等. Chiari Ⅰ畸形合并脊髓空洞病人脑脊液动力学MRI定量研究.中国医学影像技术,2004,7(20):985-988
    10Baledent, C.Gondry-jouet, S.Stoquart-elsankari, et al. Value of PhaseContrast Magnetic Resonance Imaging for Investigation of CerebralHydrodynamics. Neuroradiol,2006,33:292-303
    11Hofmann E, Warmuth-Metz M, Bendszus M, et al. Phase-contrast MRimaging of the cervical CSF and spine cord: volumetric motion analysis inpatients with Chiari I malformation. AJNR Am J Neuroradiol,2000,21(1):151-58
    12李茗,张冰,周正扬,等.脊髓病变病人的脑脊液流动MRI研究.中国医学计算机成像杂志,2007,13:153-157
    13Enzmann DR,Pelc NJ. Normal flow patterns of intracranial and spinecerebrospine fluid defined with phase contrast cine MR imaging.Radiology,1991,178:467-474
    14朱晓黎,沈天真,陈星荣,等.正常中脑导水管脑脊液流动磁共振定量研究.医学影像学杂志,2004,11(14):875-878
    15Kenan K,Yonca A,Hsan A, et al. Chiar1Malformation with Syringomyelia:Correlation of Phase-Contrast Cine MR Imaging and Outcome. TurkishNeurosurgery,2007,3(17):183-192
    16Fredrickson JO, Pelc NJ. Time resolved MR imaging by automatic datasegmentation. Magn Reson Imaging,1994,3:34-49
    17Vivian S, Charles E, Barbara A, et al. Flow Quantification Using Fast CinePhase-Contrast MR Imaging Conventional Cine Phase-Contrast MRImaging, and Doppler Sonography:In Vitro and In Vivo Validation.AJR,1997,169:1125-1130
    18Baledent O, Henry-Feugeas MC, Idy-Peretti I, et al. Cerebrospine fluiddynamics and relation with blood flow: a magnetic resonance study withsemiautomated cerebrospine fluid segmentation. Invest Radiol,2001,36(7):368-377
    19Frayne R, Rutt BK. Frequency response to retrospectively gatedphase-contrast MR imaging: effect of interpolation. Magn Reson Imaging,1993,3:907-917
    20Nishimura DG, Jackson JI, Pauly JM, et al. On the nature and reduction ofthe displacement artifact in flow images. Magn Reson Med,1991,22:481-492
    21Maier SE, Scheidegger MB, Liu K, et al. Accurate velocity mapping withFAcE. Magn Reson Imaging,1996,14:163-171
    22Wagshul ME, Chen JJ, Egnor MR, et al. Amplitude and phase ofcerebrospine fluid pulsations: experimental studies and review of theliterature. Neurosurg,2006,104(5):810-819
    23Greil G, Geva T, Maier SE. Effect of acquisition parameters on theaccuracy of velocity encoded cine magnetic resonance imaging blood flowmeasurements.J Magn Reson Imaging,2002,15(1):47-54
    24Bernstein MA, Zhou XJ, Polzin JA, et al. Concomitant gradient terms inphase contrast MR: analysis and correction. Magn Reson Med,1998,39:300-308
    25Mohiaddin RH, Underwood R, Romeira L, et al. Comparison between cinemagnetic resonance velocity mapping and first-pass radionuclideangiocardiography for quantitating intracardiac shunts. Am J Cardiol,1995,75:529-532
    26Tang C, Blatter DD, Parker DL, et al.Correction of partial-volume effectsin phase-contrast flow measurements. Magn Reson Imaging,1995,5:175-180
    27杨正汉,冯逢,王霄英,等.磁共振成像技术指南.人民军医出版社,394-395
    28Odeen H, Uppman M, Markl M, et al.Assessing cerebrospine fluid flowconnectivity using3D gradient echo phase contrast velocity encoded MRI.Physiol Meas,2011,32(4):407-421
    1AL-Zain FT, Rademacher G, Meier U, et al. The role of cerebrospine fluidflow study using phase contrast MR imaging in diagnosing idiopathicnormal pressure hydrocephalus. Acta Neurochir Suppl,2008,102:119-123
    2AL-Zain FT, Rademacher G, Lemcke J, et al. Idiopathic normal-pressurehydrocephalus flow measurement of cerebrospine fluid using phasecontrast MR and its diagnostics importance.Nervenarzt,2007,78(2):181-187
    3Algin O, Hakyemez B, Parlak M, et al. The efficiency of PC-MRI indiagnosis of normal pressure hydrocephalus and prediction of shuntresponse. Acad Radiol,2010,17(2):181-187
    4Kim DS, Choi JU, Huh R, et al. Quantitative assessment of cerebrospinefluid hydrodynamics using a phase-contrast cine MR image inhydrocephalus.Childs Nerv Syst,1999,15(9):461-467
    5Luetmer PH, Huston J, Friedman JA, et al.Measurement of cerebrospinefluid flow at the cerebral aqueduct by use of phase-contrast magneticresonance imaging: technique validation and utility in diagnosingidiopathic normal pressure hydrocephalus. Neurosurgery,2002,50(3):534-543
    6Stoquart-El Sankari S, Lehmann P, Gondry-Jouet C, et al. Phase-contrastMR imaging support for the diagnosis of aqueductal stenosis.AJNR Am JNeuroradiol,2009,30(1):209-214
    7Penn RD, Basati S, Sweetman B, et al. Ventricle wall movements andcerebrospine fluid flow in hydrocephalus. Neurosurg,2011,115(1):159-164
    8Dixon GR, Friedman JA, Luetmer PH, et al. Use of cerebrospine fluid flowrates measured by phase-contrast MR to predict outcome ofventriculoperitoneal shunting for idiopathic normal-pressure hydrocephalus.Mayo Clin Proc,2002,77(6):509-514
    9Di X, Ragab M, Luciano MG. Cine phase-contrast MR images failed topredict clinical outcome following ETV.Can J Neurol Sci,2009,36(5):643-647
    10Chugh A, Husain M, Gupta RK, et al. Surgical outcome of tuberculousmeningitis hydrocephalus treated by endoscopic third ventriculostomy:prognostic factors and postoperative neuroimaging for functionalassessment of ventriculostomy. Neurosurg Pediatr,2009,3(5):371-377
    11McGirt MJ, Nimjee SM, Fuchs HE, et al. Relationship of cinephase-contrast magnetic resonance imaging with outcome afterdecompression for Chiari I malformations. Neurosurgery,2006,59(1):140-146
    12McGirt MJ, Atiba A, Attenello FJ, et al. Correlation of hindbrain CSF flowand outcome after surgical decompression for Chiari I malformation.ChildsNerv Syst,2008,24(7):833-840
    13Ko K, Anik Y, Anik I, et al. Chiari1malformation with syringomyelia:correlation of phase-contrast cine MR imaging and outcome.TurkNeurosurg,2007,17(3):183-192
    14Algin O, Hakyemez B, Gokalp G, et al. Phase-contrast cine MRI versusMR cisternography on the evaluation of the communication betweenintraventricular arachnoid cysts and neighbouring cerebrospine fluidspaces.Neuroradiology,2009,51(5):305-312
    15Yildiz H, Erdogan C, Yalcin R, et al. Evaluation of communicationbetween intracranial arachnoid cysts and cisterns with phase-contrast cineMR imaging.AJNR Am J Neuroradiol,2005,26(1):145-151
    16Yildiz H, Yazici Z, Hakyemez B, et al. Evaluation of CSF flow patterns ofposterior fossa cystic malformations using CSF flowMR imaging.Neuroradiology,2006,48:595-605
    17Unal O, Kartum A, Avcu S, et al. Cine phase-contrast MRI evaluation ofnormal aqueductal cerebrospine fluid flow according to sex and age. DiagnInterv Radiol,2009,15(4):227-231
    18Lee JH, Lee HK, Kim JK, et al. CSF flow quantification of the cerebralaqueduct in normal volunteers using phase contrast cine MR imaging.Korean J Radiol,2004,5(2):81-86
    19Kolbitsch C, Schocke M, Lorenz IH, et al. Phase-contrast MRImeasurement of systolic cerebrospine fluid peak velocity (CSFV(peak)) inthe aqueduct of Sylvius: a noninvasive tool for measurement of cerebralcapacity. Anesthesiology,1999,90(6):1546-1550
    20Bhadelia RA, Bogdan AR, Wolpert SM, et al. Analysis of cerebrospinefluid flow waveforms with gated phase-contrast MR velocitymeasurements. AJNR Am J Neuroradiol,1995,16(2):389-400
    21Barkhof F, Kouwenhoven M, Scheltens P, et al. Phase-contrast cine MRimaging of normal aqueductal CSF flow. Effect of aging and relation toCSF void on modulus MR. Acta Radiol,1994,35(2):123-130
    22Henry-Feugeas MC, Idy-Peretti I, Blanchet B, et al.Temporal and spatialassessment of normal cerebrospine fluid dynamics with MR imaging.Magn Reson Imaging,1993,11(8):1107-1118
    23Sweetman B, Linninger AA.Cerebrospine fluid flow dynamics in thecentral nervous system.Ann Biomed Eng,2011,39(1):484-496
    24L. HOWDEN, D. GIDDINGS, H. POWER, et al.Three-dimensionalcerebrospine fluid flow within the human ventricular system. ComputerMethods in Biomechanics and Biomedical Engineering,2008,11(2):123-133
    25Brian Sweetman, MichalisXenos, LauraZitella, et al. Three-dimensionalcomputational prediction of cerebrospine fluid flow in the human brain.Computers in Biology and Medicine,2011,41:67-75
    26Fredrickson JO, Pelc NJ. Time resolved MR imaging by automatic datasegmentation. Magn Reson Imaging,1994,4(2):189-196
    27Vivian S, Charles E, Barbara A, et al. Flow quantification using fast cinephase-contrast MR imaging conventional cine phase-contrast MR imaging,and Doppler sonography: in vitro and in vivo validation. AJR Am JRoentgenol,1997,169(4):1125-1130
    28YAN le-ka,LIU huai-jun,SHANG hua.Parameters optimization of3.0TMR fast cine-PC in imaging cerebrospine Fluid flow of thoracic vertebracanal.CHINESE J OF INTERVENTIONAL IMAGING AND THERAPY,2011,8(4):303-306
    29Iskandar BJ, Haughton V. Age-related variations in peak cerebrospine fluidvelocities in the foramen magnum. Neurosurg,2005,103:508-511
    30Stoquart-ElSankari S, Baledent O, Gondry-Jouet C, et al. Aging effects oncerebral blood and cerebrospine fluid flows. Cereb Blood Flow Metab,2007,27:1563-1572
    31Greitz D,Wirestam R, Frank A,, et al. Pulsatile brain movement andassociated hydrodynamics studied by magnetic resonance phase imaging:the Monro-Kellie doctrine revisited. Neuroradiology,1992,34:370-380
    32Wentland AL, Wieben O, Korosec FR, et al.Accuracy and reproducibilityof phase-contrast MR imaging measurements for CSF flow.AJNR Am JNeuroradiol,2010,31(7):1331-1336
    33Bhadelia RA, Bogdan AR, Wolpert SM, et al. Analysis of cerebrospinefluid flow waveforms with gated phase-contrast MR velocitymeasurements.AJNR Am J Neuroradiol,1995,16(2):389-400
    34Bhadelia RA, Bogdan AR,Wolpert SM,Analysis of the cerebrospine fluidflow waveforms using gated phase contrast MR velocity measurements.AJNR,1995,16:389-400
    35Naidich TP, Altman NR, Gonzales-Arias SM, et al. Phase contrast CINEmagnetic resonance imaging: normal cerebrospine fluid oscillation andapplications to hydrocephalus. Neurosurg Clin N Am,1993,4:677-706
    36Levy LM, Di Chiro G.MR phase imaging and cerebrospine fluid flow inthe head and spine. Neuroradiology,1990,32(5):399-406
    37Czosnyka M, Czosnyka Z, Momjian S, et al.Cerebrospine fluiddynamics.Physiol Meas,2004,25(5):51-76
    38Steer JC, Horney FD.Evidence for passage of cerebrospine fluid amongspine nerves. Can Med Assoc,1968,98(2):71-74
    39Noam Alperin, Sang Hoon Lee. PUBS: Pulsatility-Based Segmentation ofLumens Conducting Non-steady Flow. Magnetic Resonance in Medicine,2003,49:934-944
    40Greitz D, Hannerz J.A proposed model of cerebrospine fluid circulation:observations with radionuclide cisternography. AJNR Am J Neuroradiol,1996,17(3):431-438
    41Bergstrand G, Nordell B, Stahlberg F, et al. Cerebrospine fluid flow studiedwith gated magnetic resonance imaging during the various parts of thecardiac cycle. Acta Radiol Suppl,1986,369:490-491
    42Wagshul ME, Chen JJ, Egnor MR, etal. Amplitude and phase ofcerebrospine fluid pulsations: experimental studies and review of theliterature.J Neurosurg,2006,104(5):810-819
    1Feinberg DA, Mark AS. Human brain motion and cerebrospine fluidcirculation demonstrated fluid demonstrated with MR velocity imaging.Radiology,1987,163:793-799
    2Poncelet BP, Wedeen VJ, Weisskoff RM, et al. Brain parenchyma motion:Measurement with cine echo planar MR imaging. Radiology,1992,185:645-651
    3Enzmann DR, Pelc NJ. Brain motion measurement with phase-contrast MRimaging. Radiology,1992,185:653-660
    4Enzmann DR, Pelc NJ. Normal flow patterns of intracranial and spinecerebrospine fluid defined with phase-contrast cine MR imaging.Radiology,1991,178:467-474
    5Dolar MT, Haughton V, Iskandar BJ, et al. Effects of craniocervicaldecompression on peak CSF velocities in symptomatic patients with ChiariI malformation. AJNR Am J Neuroradiol,2004,25:142-145
    6Alperin N, Vikingstad EM, Gomez Anson B, et al. Hemodynamicallyindependent analysis of cerebrospine fluid and brain motion observed withdynamic phase contrast MRI. Magn Reson Med,1996,35:741-754
    7Levy LM. MR imaging of cerebrospine fluid flow and spine cord motion inneurologic disorders of the spine. Magn Reson Imaging Clin N Am,1999,7:573-587
    8Greitz D, Franck A, Nordell B. On the pulsatile nature of intracranial andspine CSF-circulation demonstrated by MR imaging. Acta Radiol,1993,34:321-328
    9Henry-Feugeas MC, Idy Peretti I, Baledent O, et al. Origin of subarachnoidcerebrospine fluid pulsations: a phase-contrast MR analysis. Magn ResonImaging,2000,18:387-395
    10Strik C, Klose U, Erb M, et al. Intracranial oscillations of cerebrospinefluid and blood flows: analysis with magnetic resonance imaging. MagnReson Imag,2002,15:251-258
    11Klose U, Strik C, Kiefer C, et al. Detection of a relation betweenrespiration and CSF pulsation with an echoplanar technique. Magn ResonImaging,2000,11:438-444
    12Ludwig HC, Klingler M, Timmermann A, et al. The influence of airwaypressure changes on intracranial pressure (ICP) and the blood flow velocityin the middle cerebral artery (VMCA). Anasthesiol IntensivmedNotfallmed Schmerzther,2000,35:141-145
    13Wagshul ME, Ebin D, Egnor MR, et al. Evidence of respiratory modulationof CSF flow dynamics using EPI. Proc Int Soc Magn Reson Med,2003,11:2280-2289
    14Guppy KH, Charbel FT, Corsten LA, et al. Hemodynamic evaluation ofbasilar and vertebral artery angioplasty. Neurosurgery,2002,51:327-333
    15Kato T, Indo T, Yoshida E, et al. Contrastenhanced2D cine phase MRangiography for measurement of basilar artery blood flow in posteriorcirculation ischemia. AJNR Am J Neuroradiol,2002,23:1346-1351
    16Rutgers DR, Blankensteijn JD, van der Grond J et al. Preoperative MRAflow quantification in CEA patients: flow differences between patients whodevelop cerebral ischemia and patients who do not develop cerebralischemia during cross-clamping of the carotid artery. Stroke,2000,31:3021-3028
    17Wasserman BA, Lin W, Tarr RW, Haacke EM, Muller E. Cerebralarteriovenous malformations: flow quantitation by means oftwodimensional cardiac-gated phase-contrast MR imaging. Radiology,1995,194:681-686
    18Marks MP, Pelc NJ, Ross MR, Enzmann DR. Determination of cerebralblood flow with a phase-contrast cine MR imaging technique: evaluation ofnormal subjects and patients with arteriovenous malformations. Radiology,1992,182:467-476
    19Hendrikse J, van der Zwan A, Ramos LM, Tulleken CA, Van der Grond J.Hemodynamic compensation via an excimer laser-assisted, high-flowbypass before and after therapeutic occlusion of the internal carotid artery.Neurosurgery,2003,53:858-865
    20Van der Zwan A, Tulleken CA, Hillen B. Flow quantification of thenon-occlusive excimer laser-assisted EC-IC bypass. Acta Neurochir (Wien),2001,143:647-654
    21Blankensteijn JD, van der Grond J, Mali WPTM, et al. Flow volumechanges in the major cerebral arteries before and after carotidendarterecto-my: an MR angiography study. Eur J Vasc Endovasc Surg,1997,14:446-450
    22Kim SG, Tsekos NV. Perfusion imaging by a flow-sensitive alternatinginversion recovery (FAIR) technique: application to functional brainimaging. Magn Reson Med,1997,37:425-435
    23Kim SG, Ugurbil K. Comparison of blood oxygenation and cerebral bloodflow effects in fMRI: estimation of relative oxygen consumption change.Magn Reson Med,1997,38:59-65
    24Kim SG. Quantification of relative blood flow change by flowsensitivealternating inversion recovery (FAIR) technique: application to functionalmapping. Magn Reson Med,1995,34:293-301
    25Andreas Kastrup, Tie-Qiang Li, Gary H, et al. Cerebral BloodFlow–Related Signal Changes during Breath-Holding. Neuroradiol,1999,20:1233-1238
    26Stoll M, Seidel A, Treib J, et al. Influence of different techniques of breathholding on the measurement of cerebrovascular reserve in carotid arterydisease. Stroke,1996,27:1132-1133
    27Boorder MJ, Hendrikse J, van der Grond J, et al. Phase-contrast magneticresonance imaging measurements of cerebral autoregulation with abreath-hold challenge: a feasibility study. Stroke,2004,35(6):1350-1354
    28Kastrup A, Thomas C, Hartmann C, et al. Sex dependency ofcerebrovascular CO2reactivity in normal subjects. Stroke,1997,28:2353-2356
    29Kastrup A, Dichgans J, Niemeier M, et al. Changes of cerebrovascularCO2reactivity during normal aging. Stroke,1998,29:1311-1314
    30Kastrup A, Li TQ, Takahashi A, et al. Functional magnetic resonanceimaging of regional cerebral blood oxygenation changes during breathholding. Stroke,1998,29:2641-2645
    31Li TQ, Kastrup A, Takahashi A, et al. Moseley ME Functional MRI ofhuman brain during breath holding by BOLD and FAIR techniques.NeuroImage,1999,9:243-249
    32Gill RW. Measurement of blood flow by ultrasound: accuracy and sourcesof error. Ultrasound Med Biol,1985,11:625-641
    33Spilt A;Box FM;van der Geest RJ.et al. Reproducibility of total cerebralblood flow measurements using phase contrast magnetic resonanceimaging.J Magn Reson Imaging,2002,16:1-5
    34Noam PhD, Sang MS, Anusha MS,et al. Quantifying the Effect of Postureon Intracranial Physiology in Humans by MRI Flow Studies. MagneticResonance Imaging,2005,22:591-596
    35van Es AC, van der Grond J, ten Dam VH,Associations between totalcerebral blood flow and age related changes of the brain. PLoS One,2010,23;5(3):e9825
    36朱晓黎,沈天真,陈星荣. MR相位对比电影法在正常颈部及颅内大血管血流测量中的应用.中国医学影像技术,2005,21(3):365-368
    37Yoshida K, Takahashi H, Saijo M,etal.Phase-contrast MR studies of CSFflow rate in the cerebral aqueduct and cervical subarachnoid space withcorrelation-based segmentation.Magn Reson Med Sci,2009,8(3):91-100
    38Balédent O, Gondry-Jouet C, Stoquart-Elsankari S,et al. Value of phasecontrast magnetic resonance imaging for investigation of cerebralhydrodynamics. J Neuroradiol,2006,33:292-303
    39Greitz D,Wirestam R, Frank A, et al. Pulsatile brain movement andassociated hydrodynamics studied by magnetic resonance phase imaging:the Monro-Kellie doctrine revisited. Neuroradiology,1992,34:370-380
    40Bhadelia RA, Bogdan AR,Wolpert SM et al. Analysis of the cerebrospinefluid flow waveforms using gated phase contrast MR velocitymeasurements. AJNR,1995,16:389-400
    41Naidich TP, Altman NR, Gonzales-Arias SM et al. Phase contrast CINEmagnetic resonance imaging: normal cerebrospine fluid oscillation andapplications to hydrocephalus. Neurosurg Clin N Am,1993,4:677-706
    42Bhadelia RA, Bogdan AR,Wolpert SM, et al. Cerebrospine fluid flowwaveforms: analysis in patients with Chiari I malformation by means ofgated phasecontrast MR imaging velocity measurements. Radiology,1995,196:195-202
    43Ludwig HC, Klingler M, Timmermann A, et al. The influence of airway
    pressure changes on intracranial pressure (ICP) and the blood flow velocity
    in the middle cerebral artery (VMCA). Anasthesiol Intensivmed
    Notfallmed Schmerzther,2000,35:141-145
    1Alperin N, Lee SH, Sivaramakrishnan A, et al. Quantifying the effect ofposture on intracranial physiology in humans by MRI flow studies. MagnReson Imaging,2005,22(5):591-596
    2Alperin N, Hushek SG, Lee SH, et al. MRI study of cerebral blood flowand CSF flow dynamics in an upright posture: the effect of posture on theintracranial compliance and pressure. Acta Neurochir Suppl,2005,95:177-181
    3Wei F, Wang J, Zou J, et al. Effect of lumbar angular motion on centralcanal diameter: positional MRI study in491cases. Chin Med J (Engl),2010,123(11):1422-145
    4Niggemann P, Grosskurth D, Beyer HK, et al. Pathomechanisms of spinecanal stenosis-upright MRI image gallery. Orthop Unfall,2009,147(2):205-209
    5Epstein HM, Linde HW, Crampton AR, et al. The vertebral venous plexusas a major cerebral outflow tract. Anesthesiology,1970,32:332-337
    6Dilenge D, Perey B. An angiographic study of the meningorachidianvenous system. Radiology,1973,108:333-337
    7Valdueza JM, von Munster T, Hoffman O, et al. Postural dependency of thecerebral venous outflow. Lancet,2000,355:200-201
    8Suarez T, Baerwald JP, Kraus C, et al. Central venous access: the effects ofapproach, position, and head rotation on internal jugular vein cross-sectional area. Anesth Analg,2002,95:1519-1524
    9Cirovic S, Walsh C, Fraser WD, et al.The effect of posture and positivepressure breathing on the hemodynamics of the internal jugular vein. AviatSpace Environ Med,2003,74:125-131
    10Gisolf J, van Lieshout JJ, van Heusden K, et al. Human cerebral venousoutflow pathway depends on posture and central venous pressure. Physiol,2004,560:317-327
    11Matejovic M, Rokyta R Jr, Radermacher P,Effect of prone position onhepato-splanchnic hemodynamics in acute lung injury. Intensive Care Med,2002,28(12):1750-1755
    12Rigamonti A, Gemma M, Rocca A, et al. Prone versus knee-chest positionfor microdiscectomy: a prospective randomized study of intra-abdominalpressure and intraoperative bleeding. Spine,2005,30(17):1918-1923
    13De Laet IE, Malbrain ML. Current insights in intra-abdominal hypertensionand abdominal compartment syndrome. Med Intensiva,2007,31:88-99
    14Deeren D, Dits H, Malbrain ML, et al. Correlation betweenintra-abdominal and intracranial pressure in nontraumatic brain injury.Intensive Care Med,2005,31:1577-1581Citerio G. Vascotto E, Villa F, et al. Induced abdominal compartmentsyndrome increases intracranial pressure in neutrotrauma patients:a prospective study. Crit Care Med,2001,29:1466-1471
    15Deeren DH, Dits H, Malbrain ML, et al. Correlation betweenintra-abdominal and intracranial pressure in nontraumatic brain injury.Intensive Care Med,2005,31:1577-1581
    16Bloomfield GL, Ridings PC, Blocher CR, et al. Effects of increasedintra-abdominal pressure upon intracranial and cerebral perfusion pressurebefore and after volume expansion. Trauma,1996,40:936-941
    17Citerio G, Vascotto E, Villa F, et al. Induced abdominal compartmentsyndrome increases intracranial pressure in neurotrauma patients: Aprospective study. Crit Care Med,2001,29:1466-1471
    18Citerio G, Berra L. Intraabdominal hypertension and the central nervoussystem. In: Ivatury R, Cheatham M, Malbrain M, Sugrue M, editors.Abdominal compartment syndrome. Georgetown (TX): Landes Bioscience,2006, pp.144-156
    19Halverson AL, Barrett WL, Iglesias AR, et al. Decreased cerebrospinefluid absorption during abdominal insufflation. Surg Endosc,1999,13:797-800
    20Papavramidis TS, Marinis AD, Pliakos I, et al. Abdominal compartmentsyndrome-Intra-abdominal hypertension: Defining, diagnosing, andmanaging. Emerg Trauma Shock,2011,4(2):279-291
    21Takata M, Wise RA, Robotham JL Effects of abdominal pressure onvenous return: abdominal vascular zone conditions. Appl Physiol,1990,69:1961-1972
    22Hering R, Vorwerk R, Wrigge H, et al. Prone positioning, systemichemodynamics, hepatic indocyanine green kinetics, and gastricintramucosal energy balance in patients with acute lung injury. IntensiveCare Med,2002,28:53-58
    23Kiefer P, Morin A, Putzke C, et al. Influence of prone position on gastricmucosal–arterial PCO2gradients. Intensive Care Med,2001,27:1227-1230
    24Matejovic M, Rokyta R Jr, Radermacher P,et al. Effect of prone position onhepato-splanchnic hemodynamics in acute lung injury. Intensive Care Med,2002,28:1750-1755
    25Michelet P, Roch A, Gainnier M, et al. Influence of support onintra-abdominal pressure, hepatic kinetics of indocyanine green,extravascular lung water during prone positioning in patients with ARDS: arandomized crossover study.Crit Care,2005,9(4):308
    1Di Chiro G. Movement of the cerebrospine fluid in human beings. Nature,1964,204:290-291
    2Di Chiro G. Observations on the circulation of the cerebrospine fluid. ActaRadiol,1966,5:988-1002
    3Du Boulay GH. Pulsatile movements in the CSF pathways. Br J Radiol,1966,39:255-262
    4Du Boulay GH, O Connell J, Currie J, Bostick T, Verity P. FurtherFurtherinvestigations on pulsatile movements in the cerebrospine fluid pathways.Acta Radiol1972;13:496-523
    5Enzmann DR, Pelk NJ. Normal flow patterns of intracranial and spinecerebrospine fluid defined with phase-contrast cine MR imaging.Radiology,1991,178:467-474
    6Al-Zain FT, Rademacher G, Meier U, et al. The role of cerebrospine fluidflow study using phase contrast MR imaging in diagnosing idiopathicnormal pressure hydrocephalus.Acta Neurochir Suppl,2008,102:119-23
    7Al-Zain FT, Rademacher G, Lemcke J, et al. Idiopathic normal-pressurehydrocephalus. Flow measurement of cerebrospine fluid using phasecontrast MRI and its diagnostics importance. Nervenarzt,2007,78(2):181-187
    8Algin O, Hakyemez B, Parlak M, et al. The efficiency of PC-MRI indiagnosis of normal pressure hydrocephalus and prediction of shuntresponse. Acad Radiol,2010,17(2):181-187
    9Kim DS, Choi JU, Huh R, et al. Quantitative assessment of cerebrospinefluid hydrodynamics using a phase-contrast cine MR image inhydrocephalus.Childs Nerv Syst,1999,15(9):461-467
    10Luetmer PH, Huston J, Friedman JA, et al.Measurement of cerebrospinefluid flow at the cerebral aqueduct by use of phase-contrast magneticresonance imaging: technique validation and utility in diagnosingidiopathic normal pressure hydrocephalus. Neurosurgery,2002,50(3):534-543
    11Stoquart-El Sankari S, Lehmann P, Gondry-Jouet C, et al. Phase-contrastMR imaging support for the diagnosis of aqueductal stenosis.AJNR Am JNeuroradiol,2009,30(1):209-214
    12Penn RD, Basati S, Sweetman B, et al. Ventricle wall movements andcerebrospine fluid flow in hydrocephalus. Neurosurg,2011,115(1):159-164
    13Levy LM, DiChiro G. MR phase imaging and cerebrospine fluid flow inthe head and spine. Neuroradiology,1990,32:399-406
    14Di X, Ragab M, Luciano MG, et al. Cine phase-contrast MR images failedto predict clinical outcome following ETV.Can J Neurol Sci,2009,36(5):643-647
    15McGirt MJ, Nimjee SM, Fuchs HE, et al. Relationship of cinephase-contrast magnetic resonance imaging with outcome afterdecompression for Chiari I malformations. Neurosurgery,2006,59(1):140-146
    16McGirt MJ, Atiba A, Attenello FJ, et al. Correlation of hindbrain CSF flowand outcome after surgical decompression for Chiari I malformation.ChildsNerv Syst,2008,24(7):833-840
    17Ko K, Anik Y, Anik I, et al. Chiari1malformation with syringomyelia:correlation of phase-contrast cine MR imaging and outcome.TurkNeurosurg,2007,17(3):183-192
    18Algin O, Hakyemez B, Gokalp G, et al. Phase-contrast cine MRI versusMR cisternography on the evaluation of the communication betweenintraventricular arachnoid cysts and neighbouring cerebrospine fluidspaces.Neuroradiology,2009,51(5):305-312
    19Yildiz H, Erdogan C, Yalcin R, et al. Evaluation of communicationbetween intracranial arachnoid cysts and cisterns with phase-contrast cineMR imaging.AJNR Am J Neuroradiol,2005,26(1):145-151
    20Yildiz H, Yazici Z, Hakyemez B, et al. Evaluation of CSF flow patternsof posterior fossa cystic malformations using CSF flowMR imaging.Neuroradiology,2006,48:595-605
    21Watabe N, Tominaga T, Shimizu H, et al. Quantitative analysis ofcerebrospine fluid flow in patients with cervical spondylosis using cinephase-contrast magnetic resonance imaging. Neurosurgery,1999,44:779-784
    22Y. Morishita, M. Naito, H. Hymanson, et al. The relationship between thecervical spine canal diameter and the pathological changes in the cervicalspine. European Spine Journal,2009,18(6):877-883
    23Gundry C. R., Fritts H. M. Magnetic resonance imaging of themusculoskeletal system: part8. The spine, section2. Clinical Orthopaedicsand Related Research,1997,343:260-271
    24潘显明,邓少林,黄欣,等.脊髓型及神经根型颈椎病的前路手术治疗.中国矫形外科杂志,2011,19(3):243-245
    25Jahnke R. W., Hart B. L.. Cervical stenosis, spondylosis, and herniated discdisease. Radiologic Clinics of North America,1991,29(4):777-791
    26Tominaga T, Watabe N, Takahashi T, et al. Quantitative assessment ofsurgical decompression of the cervical spine with cine phase contrastmagnetic resonance imaging. Neurosurgery,2002,50:791-796
    27Schellinger D, LeBihan D, Rajan SS, et al. MR of slow CSF flow in thespine. AJNR,1992,13:1393-1403
    28Lee M. J., Cassinelli E. H., Riew K. D., et al. Prevalence of cervical spinestenosis: anatomic study in cadavers. Bone and Joint Surgery. American,2007,89(2):376-380
    29Sherman JL, Nassanx PY, Citrin CM, et al. Measurements of the normalcervical spine cord on MR imaging. AJNR,1990,11:369-372
    30Lee KH, Chung TS, Jeon TJ, et al. Application of spatial modulation ofmagnetization to cervical spine stenosis for evaluation of the hydrodynamicchanges occurring in cerebrospine fluid. Korean J Radiol,2000,1(1):11-18
    31Shibuya R, Yonenobu K, Koizumi T, et al. Pulsatile cerebrospine fluidflow measurement using phase-contrast magnetic resonance imaging inpatients with cervical myelopathy. Spine,2002,27(10):1087-1093
    32Bednarik, Kadanka Z, Dusek L, et al. Presymptomatic spondyloticcervical cord compression. Spine,2004,29(20):2260-2269
    33Ohshio, A. Hatayama, K. Kaneda, et al. Correlation betweenhistopathologic features and magnetic resonance images of spine cordlesions. Spine,1993,18(9):1140-1149
    34Uchida K, Nakajima H, Sato R, et al. Multivariate analysis of theneurological outcome of surgery for cervical compressive myelopathy.Orthopaedic Science,2005,10(6):564-573
    35M. Nakamura, Y. Fujimura. Magnetic resonance imaging of the spinecord in cervical ossification of the posterior longitudinal ligament. Spine,1998,23(1):38-40
    36Avadhani A, Rajasekaran S, Shetty A. P., et al. Comparison of prognosticvalue of different MRI classifications of signal intensity change in cervicalspondylotic myelopathy. Spine Journal,2010,10(6):475-485
    37Ito T, Oyanagi K, Takahashi H, et al. Cervical spondylotic myelopathy:clinicopathologic study on the progression pattern and thin myelinatedfibers of the lesions of seven patients examined during complete autopsy.Spine,1996,21:827-833
    38Yukawa Y, Kato F, Yoshihara H, et al. MR T2image classification in
    cervical compression myelopathy: predictor of surgical outcomes. Spine,
    2007,32(15):1675-1678
    1Lotz J, Meier C, Leppert A, et al. Cardiovascular flow measurement withphase-contrast MR imaging: basic facts and implementation.Radiographics,2002,22:651-671
    2Enzmann DR, Pelc NJ. Normal flow patterns of intracranial and spinecerebrospine fluid defined with phase-contrast cine MR imaging.Radiology,1991,178:467-474
    3Tsuruda JS, Shimakawa A, Pelc NJ, et al. Dural sinus occlusion: evaluationwith phase-sensitive gradient-echo MR imaging. Neuroradiol,1991,12:481-488
    4Bradley WG, Daroff RB, Fenichel GM, et al. Neurology in clinical practice:Principles of diagnosis and management. Philadelphia, Elsevier,2006, pp306-309
    5Wentland AL, Korosec FR, Vigen KK, et al. Cine flow measurementsusing phase contrast with undersampled projections: in vitro validation andpreliminary results in vivo. Magn Reson Imaging,2006,24:945-951
    6Gatehouse PD, Rolf MP, Graves MJ, et al. Evidence across CMR sites andsystems of phase-contrast background velocity offsets requiring correctionfor accurate regurgitant or shunt flow. In: Proceedings of the17thInternational Society for Magnetic Resonance in Medicine. Honolulu,Hawaii,2009,18-24
    7Saloner D. The AAPM/RSNA physics tutorial for residents. Anintroduction to MR angiography. Radiographics,1995,15:453-465
    8Greil G, Geva T, Maier SE, et al. Effect of acquisition parameters on theaccuracy of velocity encoded cine magnetic resonance imaging blood flowmeasurements. Magn Reson Imaging,2002,15:47-54
    9Connor SE, O’Gorman R, Summers P, Simmons A, Moore EM, ChandlerC, et al. SPAMM, cine phase contrast imaging and fast spin-echoT2-weighted imaging in the study of intracranial cerebrospine fluid (CSF)flow. Clin Radiol,2001,56:763-772
    10Nitz WR, Bradley WG Jr, Watanabe AS, et al. Flow dynamics ofcerebrospine fluid: assessment with phase-contrast velocity MR imagingperformed with retrospective cardiac gating. Radiology,1992,183:395-405
    11Lotz J, Meier C, Leppert A, et al. Cardiovascular flow measurement withphase-contrast MR imaging: basic facts and implementation.Radiographics,2002,22:651-671
    12Dumoulin CL, Yucel EK, Vock P, et al. Two and three-dimensional phasecontrast MR angiography of the abdomen. Comput Assist Tomogr,1990,14:779-784
    13Chatzimavroudis GP, Zhang H, Halliburton SS, et al. Clinical blood flowquantification with segmented k-space magnetic resonance phase velocitymapping. Magn Reson Imaging,2003,17:65-71
    14Yildiz H, Erdogan C, Yalcin R, et al. Evaluation of communicationbetween intracranial arachnoid cysts and cisterns with phase-contrast cineMR imaging. AJNR Am J Neuroradiol,2005,26:145-151
    15Yildiz H, Yazici Z, Hakyemez B, et al. Evaluation of CSF flow patterns ofposterior fossa cystic malformations using CSF flow MR imaging.Neuroradiology,2006,48:595-605
    16Adams RD, Fisher CM, Hakim S, et al. Symptomatic occult hydrocephaluswith ‘‘normal’’ cerebrospine fluid pressure: A treatable syndrome. N Engl JMed,1965,273:117-126
    17Ng SE, Low AM, Tang KK, et al. Idiopathic normal pressurehydrocephalus: correlating magnetic resonance imaging biomarkers withclinical response. Ann Acad Med Singapore,2009,38:803-808
    18Luetmer PH, Huston J, Friedman JA, et al. Measurement of cerebrospinefluid flow at the cerebral aqueduct by use of phase-contrast magneticresonance imaging: technique validation and utility in diagnosingidiopathic normal pressure hydrocephalus. Neurosurgery,2002,50:534-543
    19McGirt MJ, Nimjee SM, Fuchs HE, et al. Relationship of cinephase-contrast magnetic resonance imaging with outcome afterdecompression for Chiari I malformations. Neurosurgery,2006,59:140-146
    20Brugieres P, Idy-Peretti I, Iffenecker C, et al. CSF flow measurement insyringomyelia. AJNR Am J Neuroradiol,2000,21:1785-792
    1Luciano, M., Dombrowski, S. Hydrocephalus and the heart: interactions ofthe first and third circulations. Cleve. Clin. J. Med,2007,74:128-131
    2Milhorat, T.H. The third circulation revisited. J. Neurosurg,1975,42:628-645
    3Dandy, W.E. Experimental hydrocephalus. Ann. Surg.1919,70:129–142
    4Oreskovic D, Klarica, M. Development of hydrocephalus and classicalhypothesis of cerebrospine fluid hydrodynamics: Facts and illusions D.rogress in Neurobiology,2011,94:238-258
    5Bergstrand G, Nordell B, St hlberg F, et al.Cerebrospine fluid flow studiedwith gated magnetic resonance imaging during the various parts of thecardiac cycle. Acta Radiol Suppl,1986,369:490-491
    6Brown P.D, Davies S.L, Speake T, et al. Molecular mechanisms ofcerebrospine fluid production. Neuroscience2004,129:957-970
    7Cserr H.F. Flow of CSF and brain interstitial fluid (ISF) into deep cervicallymph. In: Gjeris, F., Borgensen, S.E., Sorensen, P.S.(Eds.), Outflow ofCerebrospine Fluid. Munksgaard, Copenhagen,1989,58-63
    8Segal MB, Pollay M. The secretion of cerebrospine fluid.Exp Eye Res,1977,25:127-148
    9Sato O, Takei F, Yamada S, et al. Hydrocephalus: is impaired cerebrospinefluid circulation only one problem involved? Childs Nerv. Syst,1994,10:151-155
    10Marakovic J, Ores kovic D, RadosM, et al. Effect of osmolarity on CSFvolume during ventriculo-aqueductal and ventriculo-cisternal perfusions incats. Neurosci. Lett,2010,484:93-97
    11Di Chiro G. Observations on the circulation of the cerebrospine fluid. ActaRadiol. Diagn,1966,5:988-1002
    12Johanson C.E., Duncan III J.A., Klinge P.M., et al. Multiplicity ofcerebrospine fluid functions: new challenges in health and disease.Cerebrospine Fluid Res,2008,14:5-10
    13Henry-Feugeas M.C., Idy-Pereti, I., Blanchet, B., et al. Temporal andspatial assesment of normal cerebrospine fluid dynamics with MR imaging.Magn. Reson. Imaging,1993,11:1107-1118
    14Schroth G, Klose U. Cerebrospine fluid flow. I. Physiology ofcardiac-related pulsation. Neuroradiology,1992,35:1-9
    15Brodbelt, A., Stoodley, M. CSF pathways: a review. Br. J. Neurosurg,2007,21:510-520
    16Welch, K., Pollay, M. Perfusion of particles through arachnoid villi of themonkey. Am. J. Physiol,1961,201:651-654
    17J.F. Alksne, E.T. Lovings. Functional ultrastructure of the arachnoid villus.Arch.Neurol,1972,27(5):371-377
    18A.L. Shabo, D.S. Maxwell. The fine structure of the primate arachnoidvillus under normal and experimental conditions, Acta Neurol. Latinoa,1971,1:53-81
    19R.C. Tripathi. The functional morphology of the outflow systems of ocularand cerebrospine fluids. Exp. Eye Res,1977,25:65-116
    20J.E. Levine, J.T. Povlishock, D.P. Becker, et al. The morphologicalcorrelates of primatecerebrospine fluid absorption. Brain Res,1982,241(1):31-41
    21M.L. Upton, R.O.Weller, The morphology of cerebrospine fluid drainagepathways in human arachnoid granulations. Neurosurg,1985,63(6):867-875
    22D. D’Avella, R. Cicciarello, G. Andrioli, Scanning electron microscopestudy of human arachnoid villi. Neurosurg,1983,59(4):620-626
    23S. Kida, T. Yamashima, T. Kubota, et al. A light and electron microscopicand immunohistochemical study of human arachnoid villi. Neurosurg,1988,69:429-435
    24K. Ohta, T. Inokuchi, Y. Hayashida,, et al. Regional diminution of vonWillebrand factor expression on the endothelial covering arachnoidgranulations of human, monkey, and dog brain. Kurume Med,2002,49(4):177-183
    25L.H. Weed. The theories of drainage of cerebro-spine fluid with an analysisof the methods of investigation. Med. Res,1914,31:21-117
    26W.M. Faber. The nasal mucosa and the subarachnoid space. Am. J. Anat,1937,62:121-148
    27J.B. Brierley, E.J. Field. The connexions of the spine sub-arachnoid spacewith the lymphatic system.. Anat,1948,82:153-166
    28T. Brinker,W. Ludemann, D.B. Rautenfeld, et al. Dynamic properties oflymphatic pathways for the absorption of cerebrospine fluid. ActaNeuropathol,1997,94:493-498
    29R.T. Jackson, J. Tigges,W. Arnold, et al. Subarachnoid space of the CNS,nasal mucosa, and lymphatic system, Arch. Otolaryngol,1979,105(4):180-184
    30Bulat M., Lupret V, Ores kovic D, et al. Transventricular and transpialabsorption of cerebrospine fluid into cerebral microvessels. Coll. Antropol,2008,31:43-50
    31Dodge, P.R., Fishman, M.A. The choroid plexus–two way traffic? NewEngl. J. Med,1970,283:316-317

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700