β1,3-N-乙酰氨基葡萄糖基转移酶(β3Gn-T8)对人脑星形胶质瘤侵袭和增殖的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在探讨β1,3-N-乙酰氨基葡萄糖基转移酶8(β3Gn-T8)对胶质瘤侵袭及增殖的影响。通过对胶质瘤细胞恶性表型相关因子、成瘤模型及临床标本的相关指标检测分析,来了解β3Gn-T8在胶质瘤的发生发展中扮演的重要作用,为治疗人恶性胶质瘤提供一个新的有效的辅助分子治疗方法。
     目的:
     (1)探讨糖基转移酶β3Gn-T8在人脑胶质瘤组织与正常脑组织中表达的差异。
     (2)在人胶质瘤U251细胞水平探讨糖基转移酶β3Gn-T8对胶质瘤侵袭及增殖能力的影响,以及β3Gn-T8与MMP-2的关系。
     (3)观察糖基转移酶β3Gn-T8对胶质瘤U251细胞裸鼠皮下种植瘤生长的影响。
     (4)探讨糖基转移酶β3Gn-T8对肿瘤细胞多聚乳糖胺链的影响。
     方法:
     (1)运用免疫组织化学方法,在人脑星形胶质瘤和正常脑组织的石蜡标本上,分别检测β3Gn-T8的表达情况并分析其差异。收集相关胶质瘤组织标本的临床病理参数,通过统计学方法分析胶质瘤β3Gn-T8表达与临床病理参数的关系。
     (2)将β3Gn-T8的真核表达正义载体pEGFP-C1-T8及空载体pEGFP-C1、RNA干扰载体pSilenCircle-T8Si及对照载体pSilenCircle-T8Scr,通过脂质体转入人星形胶质瘤U251细胞,经G418筛选出稳定细胞株,RT-PCR挑选出上调、下调β3Gn-T8最优的细胞株。将细胞分为五组:U251转染正义载体组(T8S)与空载体组(Mock)、U251转染干扰载体组(T8Si)与对照载体组(T8Scr)、U251未转染组(NC)。RT-PCR、Western blot及免疫荧光检测五组细胞β3Gn-T8的表达,并用流式细胞术分析β3Gn-T8高/低表达细胞株的多聚乳糖胺链的变化。
     (3)在体外实验中,通过MTT检测以上各组细胞生长状况,集落形成实验检测各组细胞单细胞形成集落的能力;Boyden小室和划痕修复实验检测各组细胞侵袭迁移能力差异;采用RT-PCR及Western blot方法检测以上五组细胞的MMP-2、TIMP-2mRNA及蛋白水平表达变化。
     (4)在体内实验中,将转染正义载体组(T8S)、干扰载体组(T8Si)及未转染组(NC)的U251细胞通过皮下接种BALB/c裸鼠的方法构建胶质瘤移植瘤模型。通过对移植瘤成瘤时间、生长曲线和最终体积指标的测量以及病理学观察,探讨β3Gn-T8对胶质瘤移植瘤增殖和侵袭能力的影响。
     结果:
     (1)临床人脑星形胶质瘤组织中β3Gn-T8蛋白表达阳性率为88.10﹪,显著高于正常脑组织12.5﹪(P﹤0.01),且β3Gn-T8蛋白的表达与胶质瘤的临床病理分级正相关(P﹤0.05)。
     (2)通过RT-PCR和Western blot的检测,以及激光共聚焦显微镜观察各组细胞,可见载体成功转入人星形胶质瘤U251细胞,得到稳定转染细胞株。同时,流式细胞术显示,上调β3Gn-T8的表达水平,多聚乳糖胺链产量增加,下调β3Gn-T8的表达水平,多聚乳糖胺链产量减少。
     (3)对转染pEGFP-C1-T8的U251细胞进行侵袭和增殖能力的系列检测,和空载体组相比较,MTT检测显示细胞的增殖能力升高(P﹤0.05),集落形成实验显示细胞集落形成能力增强;Boyden小室实验和划痕修复实验发现细胞的侵袭迁移能力增强(P﹤0.05);RT-PCR及Western blot检测发现MMP-2的表达在mRNA水平及蛋白水平相应升高(P﹤0.05),而TIMP-2的表达不存在统计学意义。
     对转染pSilenCircle-T8Si的U251细胞进行侵袭和增殖能力的系列检测,和对照载体组相比较,MTT检测显示细胞的增殖能力下降(P﹤0.05),集落形成实验显示细胞集落数明显降低;Boyden小室实验发现细胞穿膜率较低,侵袭能力弱(P﹤0.05),划痕修复实验显示细胞划痕修复较慢,迁移能力下降(P﹤0.05);RT-PCR及Western blot检测发现MMP-2的表达在mRNA水平及蛋白水平相应降低(P﹤0.05),而TIMP-2的表达不存在统计学意义。
     (4)人星形胶质瘤U251细胞裸鼠移植瘤成瘤率100﹪。与NC组相比,T8S组移植瘤成瘤时间较短,生长速度较快,最终体积更大(P﹤0.05);T8Si组移植瘤成瘤时间延长,其生长速度和最终体积均小于NC组(P﹤0.05)。移植瘤组织学呈现典型的恶性肿瘤细胞形态特点,且T8S组的移植瘤细胞向周围肌肉组织侵袭生长。
     结论:
     (1) β3Gn-T8在人星形胶质瘤组织的表达较正常脑组织显著增加,其表达与胶质瘤的临床病理分级正相关。
     (2)成功构建了稳定的β3Gn-T8上调及下调细胞株。
     (3) β3Gn-T8促进了多聚乳糖胺链的合成。
     (4) β3Gn-T8增强了人星形胶质瘤U251细胞的增殖和侵袭能力。
     (5)在细胞水平,随着β3Gn-T8表达的上调,MMP-2的表达也相应升高,而TIMP-2表达水平不存在统计学意义。β3Gn-T8可能通过促使多聚乳糖胺链的合成,影响MMP-2/TIMP-2比值,打乱了两者间的平衡,而促进了U251细胞的增殖和侵袭能力。
     (6) β3Gn-T8增强了胶质瘤裸鼠移植瘤的增殖和侵袭能力。
     综上所述,糖基转移酶β3Gn-T8在人胶质瘤组织的表达与胶质瘤的临床病理分级正相关;糖基转移酶β3Gn-T8对胶质瘤细胞的增殖和侵袭能力有增强作用;糖基转移酶β3Gn-T8对胶质瘤细胞中的MMP-2的表达具有调控作用,推测这可能是促进胶质瘤侵袭的机制之一。
Objective:
     (1) To investigate the difference of β3Gn-T8protein expression in astrogliomatissue and normal brain tissues.
     (2) To investigate proliferating and invasion regulation of glioma by β3Gn-T8inhuman astroglioma cell lines U251and subcutaneous glioma of nude mice.
     (3) To investigate the relationship between β3Gn-T8and MMP-2.
     (4) To investigate the effect of β3Gn-T8on Biosynthesis of polylactosamines.
     Methods:
     (1) Detected the expression of β3Gn-T8on human astroglioma and normal braintissues by immunohistochemistry. Collected clinical and pathological parameters of42cases of astroglioma and analyzed the correlation of β3Gn-T8expression withclinicopathological parameters.
     (2) β3Gn-T8sense vector and its empty vector, β3Gn-T8RNA interference vectorand its control vector were transfected stably into U251cells by Liprofectamine2000.And the stably transfected cell lines were sieved by G418. The optimal cell lines ofβ3Gn-T8upregulation and knockdown were chosed by RT-PCR. There were fivegroups: U251transfected with sense vector and empty vector groups, U251transfectedwith interference vector and control vector groups, U251non-tranfected group. AndRT-PCR, Western blot and Laser Confocal Microscope were used to compare theexpression of β3Gn-T8in the five group cell lines. U251cells transfected withpEGFP-C1-T8or pSilenCircle-T8Si were examined for changes in the cell surfaceexpression of carbohydrate chains by flow cytometric analysis.
     (3) MTT was used to detect the cell proliferation, and colony formation assay wasused to evaluate the ability of colony formation from single cell in different groups. Wound healing and Boyden chamber were used to compare the ability of cell migrationand invasion in five groups. RT-PCR and Western blot were used to evaluate thevariational characteristics of MMP-2and TIMP-2expression at mRNA and proteinlevel.
     (4) Constructed model of glioma via subcutaneous inoculation transfected U251cells of pSilenCircle-T8Si and pEGFP-C1-T8to nude mouse. By the time of tumorformation, growth curves and tumor size were detected to research the effect ofβ3Gn-T8on proliferation of glioma. Detected the effect of β3Gn-T8on the invasiveability of glioma of nude mice by HE staining.
     Results:
     (1) β3Gn-T8expression in astroglioma tissues was significantly higher than innormal brain tissues (P﹤0.01), and with increasing depth of higher clinical stage,β3Gn-T8expression was increased (P﹤0.05);
     (2) Vectors were transfected into cells successfully, which was observed throughRT-PCR, Western blot and Laser Confocal Microscope. And we got the stablytransfected cell lines whose β3Gn-T8expressions were upregulated and knockdown.The biosynthesis of polylactosamine chains was decreased in pSilenCircle-T8Si cells,while increased in pEGFP-C1-T8cells.
     (3) MTT assay showed cell proliferation was higher in over-expressing β3Gn-T8cells than control. And cells with β3Gn-T8knockdown had a poor ability ofproliferation (P﹤0.05). The over-expression β3Gn-T8cells formed more colonies thanthe cells thansfected with empty vetors. And the knockdown of β3GnT8cells formedletter colonies than the control cells (P﹤0.05).
     Compared to control, over-expression of β3Gn-T8promoted the invasion of U251cells while knock-down of β3Gn-T8inhibited U251cell invasion. Furthermore, woundhealing was performed to investigate the effect of β3Gn-T8on U251cell migration.Consistent with the results of the Boyden chamber assay, over-expression of β3Gn-T8enhanced cell migration (P﹤0.05) in vitro, while knockdown of β3Gn-T8inhibited themigration (P﹤0.05) of U251cells.
     Our results showed that the expression of MMP-2increased in β3Gn-T8over-expression cells, and decreased in β3Gn-T8knockdown cells both in mRNA and protein levels. But the expression of TIMP-2had no statistical significance in mRNAand protein levels.
     (4) Glioma model of nude mice was constructed successfully, the tumor form ratewas100%. The forming rate and volume of tumor of nude mice in pSilenCircle-T8Sigroup were significantly smaller than the control group (P﹤0.05); on the contrary side,those except the forming time in pEGFP-C1-T8group were significantly higher than thecontrol group (P﹤0.05). And pEGFP-C1-T8group showed tumor invasion of thesurrounding muscle.
     Conclusion:
     (1) β3Gn-T8expression in human astroglioma was increased, and β3Gn-T8expression in human glioma was positive correlated with clinical stage of glioma.
     (2) The stable upregulation and downregulation of β3Gn-T8U251cells wereestablished
     (3) The result indicated that β3Gn-T8is involved in the biosynthesis ofpolylactosamine chains
     (4) β3Gn-T8can promoted the invasion and proliferation of U251glioma cells.Up-regulation of β3Gn-T8increased the mRNA and protein expression of MMP-2.Down-regulation cells showed opposite results. But the expression of TIMP-2had nostatistical significance in mRNA and protein levels. Therefore, these results suggestedthat β3Gn-T8might affect the balance of MMP-2and TIMP-2, and then promote cellmigration and invasion.
     (5) β3Gn-T8can promote the proliferation and invasion of glioma xenografts innude mice.
     Therefore, our findings indicated that β3Gn-T8might play a role in cellproliferation and invasion in glioma, indicating a new adjuvant molecular therapystrategy to effective therapy of human malignant glioma.
引文
[1] Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of braintumours. Brain Pathol1993,3(3):255-268.
    [2] Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol2006,1:97-117.
    [3] Kargiotis O, Rao JS, Kyritsis AP. Mechanisms of angiogenesis in gliomas.Neuro Oncol2006,78(3):281-93.
    [4] Kleber S, Martinez SI, Wiestler B, et al. Yes and PI3K bind CD95to signalinvasion of glioblastoma. Cancer Cell2008,13(3):235-248.
    [5] Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases.Nature Rev Cancer2003,3(7):489-501.
    [6] Drake PM, Cho W, Li B, et al. Sweetening the pot: adding glycosylation to thebiomarker discovery equation.Clin Chem.2010,56(2):223-236.
    [7] Liu F, Qi Hl, Chen Hl. Regulation of differentiation-and proliferation-inducerson Lewis antigens,-fucosyltransferase and metastatic potential in hepatocacinomacells. Brit J Cancer.2001,84(11):1556-1563.
    [8] Guo P, Chen HJ, Wang QY, et al. Down regulation of N-acetyl-glucosaminyltransferase V facilitates all-trans retinoic acid to induce apoptosis ofhuman hepatocarcinoma cells. Mol Cell Biochem.2005,284(1-2):103-110.
    [9] Wang QY, Guo P, Duan LL, et al.-1,3-Fucosyltransferase-VII stimulates thegrowth of hepatocarcinoma cells via cyclin dependent kinase inhibitor p27Kip1. CellMol Life Sci.2005,62(2):171-178.
    [10] Wang H, Wang QY, Zhang Y, et al.1,3Fucosyltransferase-VII modifies thesusceptibility of apoptosis induced by ultraviolet and retinoic acid in humanhepatocarcinoma cells. Glycoconj J.2007,24(4-5):207-220.
    [11]陈惠黎.糖蛋白糖链与疾病:糖复合物的结构和功能.上海:上海医科大学出版社,1997,104-134
    [12] Shiraishi N, Natsume A, Togayachi A, et al. Identification and characterizationof three novel β1,3-N-acetylglucosaminyltransferases structurally related to the β1,3-galactosyltransferase family. Biol Chem2001,276(5):3498-3507.
    [13] Hiruma T, Togayachi A, Okamura K, et al. A novel human β1,3-N-acetyl-galactosaminyltransferase that synthesizes a unique carbohydrate structure,GalNAcβ1-3GlcNAc. Biol Chem2004,279(14):14087-14095.
    [14] Ishida H, Togayachi A, Sakai T, et al. A novel β1,3-N-acetylglucosaminyl-transferase (β3Gn-T8), which synthesizes poly-N-acetyllactosamine, is dramaticallyupregulated in colon cancer. FEBS Lett2005,579(1):71-78.
    [15] Narimatsu H. Human glycogene cloning: focus on β3-glycosyltransferase andβ4-glycosyltransferase families. Curr Opin Struct Biol2006,16(5):567-575.
    [16] Huang CQ, Zhou JL, Wu SL, et al. Cloning and tissue distributrion of thehuman β3GnT8(GalT7) gene, a member of the β1,3-Glycosyltransferase family.Glyconj. J2004,21(5):265-271.
    [17] Seko A, Yamashita K. Characterization of a novel galactose: β–1,3-Nacetyl-Glucosaminyltransferase (β3Gn-T8): the complex formation of β3Gn-T2andβ3Gn-T8enhances enzymatic activity. Glycobiology2005,15(10):943-951.
    [18] Brockhausen I. Pathway of O-glycan biosynthesis in cancer cells. BiochimBiophys Acta1999,1473(1):67-95.
    [19]吴艳,吴士良.糖基化与N-乙酰氨基葡萄糖转移酶家族.江苏大学学报(医学版)2006,16(3):272-276.
    [20] J. Weinstein, S. Sundaram, X. Wang, et al. A point mutation causesmistargeting of golgi GlcNAc-TV in the Lec4A Chinese hamster ovary glycosylationmutant. J. Biol. Chem.1996,271(44):27462-27469.
    [21] Wang C, Yang Y, Yang ZH, et al. EGF-mediated migration signalingactivated by N-acetylglucosaminyltransferase-V via receptor protein tyrosinephosphatase kappa. Arch Biochem Biophys2009,486(1):64-72.
    [22] Gutowski KA, Hudson JL, Aminoff D. Flow cytometric analysis of humanerythrocytes: I. Probed with lectins and immunoglobulins. Exp Gerontol.1991,26(4):315-26.
    [23] Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor-host cellcommunication. Differentiation2002,70(9-10):561-573.
    [24] Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinasesin cancer progression and their pharmacological targeting. FEBS J2011,278(1):16–27.
    [25] Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkersand potential therapeutic targets in human cancer. J Clin Oncol2009,27(31):5287-5297.
    [26] Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors invascular remodeling and vascular disease. Biochem Pharmacol2008,75(2):346-359.
    [27] Raffetto JD, Khalil RA. Matrix metalloproteinases in venous tissueremodeling and varicose vein formation. Curr Vasc Pharmacol2008,6(3):158-172.
    [28]曾义,杨忠,韩杨云.不同分化程度的胶质瘤细胞侵袭相关差异表达基因的筛选.中国神经精神疾病杂志2008,34(7):428-430.
    [29] Nuttall RK, Pennington CJ, Taplin, et al. Elevated membrane-type matrixmetallo proteinases in gliomas revealed by profiling proteases and inhibitors in humancancer cells. Mol Cancer Res2003,1(5):333-345
    [30] Deryugina EI, Soroceanu L, Strongin AY. Up-regulation of vascularendothelial growth factor by membrane-type1matrix metalloproteinase stimulateshuman glioma xenograft growth and angiogenesis. Cancer Res2002,62(2):580-588.
    [31] Stojic J, Hagemann C, Haas S, et al. Expression of matrix metalloproteinasesMMP-1, MMP-11and MMP-19is correlated with the WHO-grading of humanmalignant gliomas. Neurosci Res2008,60(1):40-49.
    [32] Wild-Bode C, Weller M, Wick W. Molecular determinants of glioma cellmigration and invasion. J Neurosurg2001,94(6):978–984.
    [33] Lakka SS, Gondi CS, Rao JS. Proteases and glioma angiogenesis. BrainPathol2005,15(4):327–341.
    [34] Akiyama Y, Jung S, Salhia B, et al. Hyaluronate receptors mediating gliomacell migration and proliferation. Journal of Neuro-Oncology.2001,53(2):115–127.
    [35] Brat DJ, Castellano-Sanchez AA, Hunter SB, et al. Pseudopalisades inglioblastoma are hypoxic, express extracellular matrix proteases, and are formed by anactively migrating cell population. Cancer Research.2004,64(3):920–927.
    [36] Blavier L, Henriet P, Imren S, et al. Tissue inhibitors of matrixmetalloproeinases in cancer. Ann N Y Acad Sci1999,878:108-119.
    [37] Shen L, Liu Z, Tu Y, et al. Regulation of MMP-2expression and activity byβ-1,3-N-acetylglucosaminyltransferase-8in AGS gastric cancer cells. Mol Biol Rep.2011,38(3):1541-1550.
    [38] Liu Z, Shen L, Xu L, et al. Down-regulation of β-1,3-N-acetylglucosaminyltransferase-8by siRNA inhibits the growth of human gastric cancer. Mol Med Report.2011,4(3):497-503
    [1] Huang CQ, Zhou JL, Wu SL, et al. Cloning and tissue distributrion of thehuman β3GnT8(GalT7) gene, a member of the β1,3-Glycosyltransferase family.Glyconj. J2004,21(5):265-271.
    [2] Ishida H, Togayachi A, Sakai T, et al. A novel β1,3-N-acetylglucosaminyl-transferase (β3Gn-T8), which synthesizes poly-N-acetyllactosamine, is dramaticallyupregulated in colon cancer. FEBS Lett2005,579(1):71-78.
    [3] Guo HB, Nairn A, Harris K, et al. Loss of expression of N-acetylglucosaminyl-transferase Va results in altered gene expression of glycosyltransferases and galectins.FEBS Lett2008,582(4):527-535.
    [4] Guo HB, Lee I, Kamar M, et al. Aberrant N-glycosylation of β1integrin causesreduced α5β1integrin clustering and stimulates cell migration. Cancer Res.2002,62(23):6837-6845.
    [5] Demetriou M, Nabi IR, Coppolino M, et al. Reduced contact-inhibition andsubstratum adhesion in epithelial cells expressing GlcNAc-transferase V. Cell Biol1995,130(2):383-392.
    [6] Guo HB, Randolph M, Pierce M. Inhibition of a specific N-glycosylationactivity results in attenuation of breast carcinoma cell invasiveness-related phenotypes:inhibition of epidermal growth factor-induced dephosphorylation of focal adhesionkinase. Biol Chem2007,282(30):22150-22162.
    [7] Abbott KL, Troupe K, Lee I, et al. Integrin-dependent neuroblastoma celladhesion and migration on laminin is regulated by expression levels of two enzymes inthe O-mannosyl-linked glycosylation pathway, PomGnT1and GnTVb. Experim CellRes2006,312(15):2837-2850.
    [8] Yamamoto H, Swoger J, Greene S, et al. Beta-1,6-Nacetylglucosamine-bearingN-glycans in human gliomas: implications for a role in regulating invasivity. CancerRes2000,60(1):134-142.
    [9] Yamamoto H, Oviedo A, Sweeley C, et al. Alpha-2,6-sialylation of cell-surfaceN-glycans inhibits glioma formation in vivo. Cancer Res2001,61(18):6822-6829.
    [10] Brown RS, Wahl RL. Overexpression of Glut-1glucose transporter in humanbreast cancer: an immunohistochemical study. Cancer1993,72(10):2979-2985.
    [11]焦保华,主编.神经胶质瘤—基础与临床,第1版.北京:科学技术文献出版社.2006.
    [12] Nakagawa T, Kubota T, Kabuto M, et al. Secretion of matrixmetalloproteinase-2(72kD gelatinase/type IV collagenase=gelatinase A) by malignanthuman glioma cell lines: implications for the growth and cellular invasion of theextracellular matrix. J Neurooncol.1996,28(1):13-24.
    [13] Gu J, Sato Y, Kariya Y, et al. A mutual regulation between cell-cell adhesionand N-glycosylation: Implication of the bisecting GlcNAc for biological functions. J.Proteome Res.2009,8(2):431–435
    [14] Wang L Y, Liang Y L, Li Z X, et al. Increase in beta1-6GlcNAc branchingcaused by N-acetylglucosaminyl transferase V directs in/tegrin beta1stability in humanhepatocellular carcinoma cell line SMMC-7721. J. Cell Biochem.2007,100(1):230–241
    [15] Chakraborty AK, Pawelek JM. GnT-V, macrophage and cancer metastasis: acommon link. Clin ExpMetastasis.2003,20(4):365-373
    [16] Shen L, Liu Z, Tu Y, et al. Regulation of MMP-2expression and activity byβ-1,3-N-acetylglucosaminyltransferase-8in AGS gastric cancer cells. Mol Biol Rep.2011,38(3):1541-1550.
    [17] Guo HB, Lee I, Kamar M, et al.Aberrant N-Glycosylation of1integrincauses reduced α5β1integrin clustering and stimulates cell migration. Cancer Res.2002,62(23):6837-6845
    [18] Niu X, Fan X, Sun J, et al. Inhibition of fucosyl transferase VII by gallic acidand its derivatives. Arch Biochem Biophys.2004,425(1):51-57
    [1] Kazuaki O, Marth JD. Glycosylation in cellular mechanisms of health anddisease. Cell2006,126(5):855-867.
    [2] Brockhausen I. Pathway of O-glycan biosynthesis in cancer cells. BiochimBiophys Acta1999,1473(1):67-95.
    [3] Huang CQ, Zhou JL, Wu SL, et al. Cloning and tissue distributrion of thehuman β3GnT8(GalT7) gene, a member of the β1,3-Glycosyltransferase family.Glyconj. J2004,21(5):265-271.
    [4] Liu Z, Shen L, Xu L, et al. Down-regulation of β-1,3-N-acetylglucosaminyltransferase-8by siRNA inhibits the growth of human gastric cancer. Mol Med Report.2011,4(3):497-503
    [5] Qiu H, Guo XH, Mo JH, et al. Expressions of polypeptide:N-acetylgalactosaminyl transferase in leukemia cell lines during1,25-dihydroxyvitamin D3induced differentiation. Glycoconj J.2006,23(7-8):575-584.
    [6] Demetriou M, Nabi IR, Coppolino M, et al. Reduced contact-inhibition andsubstratum adhesion in epithelial cells expressing GlcNAc-transferase V. Cell Biol1995,130(2):383-392.
    [7] Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature2007,446(7139):1023-1029.
    [8] Wang C, Yang Y, Yang ZH, et al. EGF-mediated migration signalingactivated by N-acetylglucosaminyltransferase-V via receptor protein tyrosinephosphatase kappa. Arch Biochem Biophys2009,486(1):64-72.
    [9]朱睿,张开立,邹向阳. RNA干扰(RNAi)技术及其在功能基因组学研究中的应用.大连医科大学学报2003,25(2):105-107.
    [10] Schwarz DS, Hutvagner G, Haley B, et al. Evidence that siRNAs function asguides, not primers, in the drosophila and human RNAi pathways. Mol Cell2002,10(3):537-48.
    [11] Holen T, Amarzguioui M, Wiiger MT, et al. Positional effects of shortinterfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic AcidsRes2002,30(8):1757-1766.
    [12] Castronovo V, Luyten F, van den Br le F, et al. Identification of a14-kDalaminin binding protein (HLBP14) in human melanoma cells that is identical to the14-kDa galactoside binding lectin. Arch. Biochem. Biophys.1992,297(1):132-138.
    [13] Ohyama C, Tsuboi S, Fukuda M. Dual roles of sialyl Lewis Xoligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO J.1999,18(6):1516-1525.
    [14] Dennis, J.W., Carver, et al. Asparaginelinked oligosaccharides in murinetumor cells: comparison of a WGA-resistant (WGAr) nonmetastatic mutant and arelated WGA-sensitive (WGAs) metastatic line. J. Cell. Biol.1984,99(3):1034-1044.
    [15] Drake PM, Cho W, Li B, et al. Sweetening the pot: adding glycosylation tothe biomarker discovery equation.Clin Chem.2010,56(2):223-236.
    [1] Smith C, Ironside JW. Diagnosis and pathogenesis of gliomas. Curr DiagnPathol2007,13(3):180-192.
    [2] Qiang L, Yang Y, Ma YJ, et al. Isolation and characterization of cancer stemlike cells in human glioblastoma cell lines. Cancer Lett.2009,279(1):13-21.
    [3] Brockhausen I. Pathway of O-glycan biosynthesis in cancer cells. BiochimBiophys Acta1999,1473(1):67-95.
    [4] Kazuaki O, Marth JD. Glycosylation in cellular mechanisms of health anddisease. Cell2006,126(5):855-867.
    [5] Shen L, Liu Z, Tu Y, et al. Regulation of MMP-2expression and activity byβ-1,3-N-acetylglucosaminyltransferase-8in AGS gastric cancer cells. Mol Biol Rep.2011,38(3):1541-1550.
    [6]曾义,杨忠,韩杨云.不同分化程度的胶质瘤细胞侵袭相关差异表达基因的筛选.中国神经精神疾病杂志2008,34(7):428-430.
    [7]刘柏麟,章翔.胶质细胞瘤的侵袭机制及分子靶向治疗研究进展.中华神经外科疾病研究杂志2007,6(6):568-571.
    [8] Onishi M, Ichikawa T, Kurozumi K et al. Angiogenesis and invasion in glioma.Brain Tumor Pathol2011,28(1):13-24.
    [9] Brockhausen I. Pathway of O-glycan biosynthesis in cancer cells. BiochimBiophys Acta1999,1473(1):67-95.
    [10] Chun cheng Mei, Juan Yan. Effect of SHG-44cells expressedbeta-1,4-galactosyl transferase V on the sensifivity of etoposide. Chinese Journal ofClinical Rehabilitation.2004,8:5585-5587
    [11] Jiang JH, Zhou J, Wei YY, et al. β4GalT-II increases cisplatin-inducedapoptosis in HeLa cells depending on its Golgi localization. Biochem Biophys ResCommun2007,358(1):41-46.
    [12] Chen XN, Jiang JH, Yang JW, et al. Down-regulation of the expression of β1,4-galactosyltransferase V promotes integrinβ1maturation. Biochem Biophys ResCommun2006,343(3):910-916.
    [13] Wei YY, Liu D, Ge YQ, et al. Down-regulation of β1,4GalT V at proteinlevel contributes to arsenic trioxide-induced glioma cell apoptosis. Cancer Lett2008,267(1):96-105.
    [14] Wang C, Yang Y, Yang ZH, et al. EGF-mediated migration signalingactivated by N-acetylglucosaminyltransferase-V via receptor protein tyrosinephosphatase kappa. Arch Biochem Biophys2009,486(1):64-72.
    [15]行书丽,岳爱环,唐春花,等. β3GalT7基因转染HL-60细胞及对其生物学行为的影响.江苏大学学报(医学版)2008,18(6):503-506.
    [16] Liu Z, Shen L, Xu L, et al. Down-regulation of β-1,3-N-acetylglucosaminyltransferase-8by siRNA inhibits the growth of human gastric cancer. Mol Med Report.2011,4(3):497-503
    [17] Moutasim KA, Nystrom ML, Thomas GJ. Cell migration and invasion assays.Methods Mol Biol2011,731:333-343.
    [18] Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases.Nat Rev Cancer2003,3(7):489-501.
    [19] Guo P, Imanishi Y, Cackowski FC, et al. Up-regulation of angiopoietin-2,matrix metalloprotease-2, membrane type1metalloprotease, and laminin5γ2correlates with the invasiveness of human glioma. Am J Pathol2005,166(3):877-890.
    [20] Wang H, Wang HM, Shen WP, et al. Insulin-like growth factor bindingprotein2enhances glioblastoma invasion by activating invasion-enhancing genes.Cancer Res.2003,63(15):4315-4321.
    [21] Guo HB, Lee I, Kamar M, et al. Aberrant N-Glycosylation of1integrincauses reduced α5β1integrin clustering and stimulates cell migration. Cancer Res.2002,62(23):6837-6845
    [22] Niu X, Fan X, Sun J, et al. Inhibition of fucosyl transferase VII by gallic acidand its derivatives. Arch Biochem Biophys.2004,425(1):51-57
    [23] Douglas DA, Shi Easing QA.Computational sequence analysis of the tissueinhibitor of metalloproteinase family. J.Protein.Chem.1997,16(4):237-255
    [24]马军,王兵,李明建,等.基质金属蛋白酶及其抑制剂与脑膜瘤侵袭性的研究进展.临床神经外科杂志2006,11(8):507-509.
    [25] Robinson KM, Maistry L.Tumorigenicity and other properties of cells fromten continuous human esophageal carcinoma cell lines in nude mice. JNCI.1983,70(1):89-93
    [1]黄强,陈忠平,兰青主编.胶质瘤.北京:中国科学技术出版社.1998
    [2]焦保华,主编.神经胶质瘤—基础与临床,第1版.北京:科学技术文献出版社.2006
    [3] Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell2002,110(6):673–687
    [4] D'Abaco GM. Kaye AH. Integrins: molecular determinants of glioma invasion.Journal of Clinical Neuroscience,2007,14(11):1041-1048
    [5] Giancotti FG, Ruoslahti E. Integrin signaling. Sciencep.1999,285(5430):1028-1032
    [6] Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: Integrating signalsfrom front to back. Science,2003,302(5651):1704-1709
    [7] Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell.2002,110(6):673-687
    [8] Gingras MC, Roussel E, Bruner JM, et al. Comparison of cell adhesionmolecule expression between glioblastoma multiforme and autologous normal braintissue. Neuroimmunol.1995,57(1-2):143-153
    [9] Friedlander DR, Zagzag D, Shiff B, et al. Migration of brain tumor cells onextracellular matrix proteins in vitro correlates with tumor type and grade and involvesalphav and beta1integrins. Cancer Res.1996,56(8):1939-1947
    [10] Paulus W, Baur I, Schuppan D, et al. Characterization of integrin receptors innormal and neoplastic human brain. Am J Pathol.1993,143(1):154-163
    [11] Uhm JH, Gladson CL, Rao JS. The role of integrins in the malignantphenotype of gliomas. Front Biosci.1999,4: D188-199
    [12] Rutka JT, Muller M, Hubbard SL, et al. Astrocytoma adhesion to extracellularmatrix: Functional significance of integrin and focal adhesion kinase expression. JNeuropathol ExpNeurol.1999,58(2):198-209
    [13] Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin alpha v beta3antagonists promote tumor regression by inducing apoptosis of angiogenic bloodvessels. Cell.1994,79(7):1157–1164
    [14] Fukushima Y, Ohnishi T, Arita N, et al. Integrin alpha3beta1-mediatedinteraction with laminin-5stimulates adhesion, migration and invasion of malignantglioma cells. Int J Cancer.1998,76(1):63-72
    [15] Taga T, Suzuki A, Gonzalez-Gomez I, et al. Alpha v-Integrin antagonist EMD121974induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int JCancer.2002,98(5):690-697
    [16] Akiyama Y, Jung S, Salhia B, et al. Hyaluronate receptors mediating gliomacell migration and proliferation. J Neurooncol2001,53(2):115-127
    [17] Merzak A, Koocheckpour S, Pilkington GJ. CD44mediates human gliomacell adhesion and invasion in vitro. Cancer Res.1994,54(15):3988-3992.
    [18] Hall CL, Wang C, Lange LA, et al.Hyaluronan and the hyaluronan receptorRHAMM promote focal adhesion turn-over and transient tyrosine kinase activity. J CellBiol.1994,126(2):575-588
    [19] Petit V, Thiery JP. Focal adhesions: Structure and dynamics. Biol Cell.2000,92(7):477-494
    [20] Parsons JT, Martin KH, Slack JK, et al.Focal adhesion kinase: A regulator offocal adhesion dynamics and cell movement. Oncogene2000,19(49):5606-5613
    [21] Van Aken E, De Wever O, Correia da Rocha AS, et al.Defectiv E-cadherin/catenin complexes in human cancer. Virchows Arch2001,439(6):725-751
    [22] Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancerinvasion. Physiol Rev.2003,83(2):337-376
    [23] Perego C, Vanoni C, Massari S, et al. Invasive behavior of glioblastomas celllines is associated with altered organization of the cadherin-catenin adhesionsystem.Jcell Sci.2002,115(Pt16)::3331-3340
    [24] Utsuki S, Sato Y, Oka H, et al. Relationship between the expression of E-,N-cadherins and beta-catenin and tumor grade in astrocytomas. J Neurooncol.2002,57(3):187-192
    [25] Hamada J, Sawamura Y, Van Meir EG. CD44expression and growth factors.Frontiers in Bioscience.1998,1(3):657–D664.
    [26] Akiyama Y, Jung S, Salhia B, et al. Hyaluronate receptors mediating gliomacell migration and proliferation. Journal of Neuro-Oncology.2001,53(2):115–127.
    [27] Brat DJ, Castellano-Sanchez AA, Hunter SB, et al. Pseudopalisading cells inglioblastoma are hypoxic, express extracellular matrix proteases, and are formed by anactively migrating population. Cancer Research2004,64(3):920–927.
    [28] Bellail AC, Hunter SB, Brat DJ, et al. Microregional extracellular matrixheterogeneity in brain modulates glioma cell invasion The International. Journal ofBiochemistry&Cell Biology2004,36(6):1046–1069
    [29] Vassalli JD. Baccino D. Belin DA. A cellular binding site for the Mr55,000form of the human plasminogen activator, urokinase. J Cell Biol1985,100(1):86–92
    [30] Zhou HM, Nichols A, Meda P, et al. Urokinase-type plasminogen activatorand its receptor synergize to promote pathogenic proteolysis. EMBO J2000,19(17):4817–4826
    [31] Ossowski L, Aguirre-Ghiso, JA. Urokinase receptor and integrin partnership:coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol2000,12(5):613–620.
    [32] Sidenius N, Andolfo A, Fesce R, et al. Urokinase regulates vitronectin bindingby controlling urokinase receptor oligomerization. J. Biol Chem2002,277(31):27982–27990
    [33] Rao JS. Molecular mechanisms of glioma invasiveness: the role ofproteases.Nature Reviews Cancer2003,3(7):489-501
    [34] Spiess E, Bruning A, Gack S, et al. Cathepsin B activity in human lung tumorcell lines: ultrastructural localization, pH sensitivity and inhibitor status at the cellularlevel. J Histochem Cytochem1994,42(7):917–929
    [35] Kobayashi H, Ohi H, Sugimura M, et al. Inhibition of in vitro ovarian cancercell invasion by modulation of urokinase-type plasminogen activator and cathepsin B.Cancer Res1992,52(13):3610–3614
    [36] Koblinski JE, Dosescu J, Sameni M, et al. Interaction of human breastfibroblasts with collagen I increases secretion of procathepsin B. J. Biol. Chem2002,277(35):32220–32227
    [37] Somanna A, Mundodi V, Gedamu L. Functional analysis of cathepsin B-likecysteine proteases from Leishmania donovani complex. Evidence for the activation oflatent transforming growth factor-β. J. Biol. Chem2002,277(28):25305–25312
    [38] Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenicswitch during tumorigenesis. Cell1996,86(3):353–364.
    [39] Holash J, Maisonpierre PC, Compton D, et al. Vessel cooption, regression,and growth in tumors mediated by angiopoietins and VEGF. Science1999,284(5422):1994–1998.
    [40] Hoelzinger DB, Demuth T, Berens ME. Autocrine Factors That SustainGlioma Invasion and Paracrine Biology in the Brain Microenvironment. J Natl CancerInst2007,99(21):1583-1593
    [41] de Groot JF, Gilbert MR. New molecular targets in malignant gliomas.Current Opinion in Neurology2007,20(6):712–718
    [42] Brown LF, Papadopoulos-Sergiou A, Berse B, et al. Osteopontin expressionand distribution in human carcinomas. American Journal of Pathology1994,145(3):610-623
    [43] Riethdorf S, Reimers N, Assmann V, et al. High incidence of EMMPRINexpression in human tumors. Int. J. Cancer2006,119(8):1800–1810
    [44] Lefranc F, Brotchi J, Kiss R. Possible Future Issues in the Treatment ofGlioblastomas: Special Emphasis on Cell Migration and the Resistance of MigratingGlioblastoma Cells to Apoptosis. Journal of Clinical oncology2005,23(10):2411-2422
    [45] Vredenburgh JJ, Desjardins A, Herndon JE2nd, et a1.Phase II trial ofbevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res2007,13(4):1253-1259.
    [46] Rich JN, Sathornsumetee S, Keir ST, et al. ZD6474, a novel tyrosine kinaseinhibitor of vascular endothelial growth factor recep tor and epidermal growth factorrecep tor, inhibits tumor growth of multip lenervous system tumors. Clin Cancer Res2005,11(22):8145-8157.
    [47] Bello L, Lucini V, Giussani C, et al. IS20I, a specific alpha v beta3integrininhibitor, reduces glioma growth in vivo. Neurosurgery2003,52(1):177-185;discussion185-186
    [48] MacDonald TJ, Taga T, Shimada H, et al. Preferential suscep tibility of braintumors to the antiangiogenic effects of an alpha (v) integrin antagonist. Neurosurgery2001,48(1):151-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700