基于大尺度脑网络分析方法的脑可塑性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑可塑性是指大脑在外界环境和经验的作用下不断塑造自身的结构与功能从而适应环境需要的能力。在个体发展的整个过程中大脑都具有一定的可塑性。在刚出生时,婴儿大脑便拥有约两千万亿个神经元,但是此时的神经元之间的联结是相对冗余的、杂乱的。随着年龄的增长,在学习、训练以及多种经验等因素下,大脑神经元之间的联结开始逐渐精简和修饰。经常使用的联结得到强化并保留下来,逐渐形成适应外界环境的神经网络。因此,从神经元联结的角度上来说,学习是形成新联结的过程,而练习则是巩固已有联结的过程。以往的神经可塑性研究多从分子、突触水平到皮层功能区域水平的角度来研究,已取得了一定进展。虽然单个神经元或功能脑区都有自身不可忽略的作用,但是这些神经元或脑区构成的网络以及网络中不同部分之间的相互协调和相互作用才是个体表现出综合行为的根本原因。因此,从脑连接网络的角度考察个体发展、学习与训练引起的神经可塑性具有十分重要的理论和应用意义。
     本文主要以脑功能磁共振成像(functional magnetic resonance imaging,fMRI)为载体,以大尺度脑功能连接网络分析方法为手段,辅以形态学分析,以及功能-功能(静息态-任务态)、功能-结构(静息态-结构像)的多模态融合,着重介绍和研究脑功能连接网络分析方法在神经可塑性研究中的应用。其中主要包括两部分的研究:
     第一部分,高级认知专长的学习与训练引起的脑功能连接网络的可塑性变化。该部分主要以中国象棋大师为实验对象,以多模态脑网络分析方法为主线,探测学习与训练对特定的高级认知网络以及全脑大尺度网络的影响。
     首先,研究中国象棋大师在执行与专业领域相关的高级认知任务时激活的四个认知网络(中央执行网络、背侧注意网络、突显性信息加工网络以及默认网络)与新手的差异,并基于任务激活图谱选取种子点,比较象棋大师与新手这四个网络的静息态功能连接差异。结果表明两组间任务态与静息态网络的差异都集中体现在默认网络上。
     其次,针对象棋大师默认网络功能连接变化特征,我们融合了基于静息态功能磁共振成像的功能连接分析方法和基于结构磁共振成像的形态学测量方法,发现象棋大师纹状体的结构改变以及由此引起的纹状体-默认网络功能回路改变。
     第三,针对象棋大师的全局行为特征,我们在全脑大尺度网络层面上,利用功能连接网络分析以及图论方法,探测高级认知专长的学习与训练对全脑功能网络拓扑属性的影响。我们发现象棋大师的全脑功能连接网络具有更高的网络聚类系数和“小世界”属性,表明长期高强度的高级认知训练增强了全脑网络的功能整合,提高了信息交换效率。
     最后,利用功能连接密度分析方法来定量刻画大脑内部的短程和长程功能连接密度,寻找长期高强度专业象棋训练引起的更为精细的脑网络功能连接密度变化,拓展我们对大尺度脑功能连接网络可塑性的理解。
     第二部分,大脑自然发育过程中与学习记忆相关的高级认知脑功能连接网络的可塑性变化。该部分主要集中在学习与记忆最关键的脑区——内侧颞叶系统的功能网络组织模式以及该网络由大脑发育引起的可塑性改变。
     首先,利用基于静息态功能磁共振的大尺度功能连接分析方法全面研究内侧颞叶系统中7个子区域各自的功能连接回路以及这些回路对长时记忆的贡献作用,从而更好地理解学习与记忆的神经机制。
     其次,选取24名7-9岁的正常发育儿童、19名13-17岁正常发育的青少年以及24名18-22岁的年轻人作为研究对象,利用静息态功能连接分析方法,探测儿童与成年人的内侧颞叶系统功能连接回路的异同,从而揭示内侧颞叶系统功能回路在正常发展过程中产生的可塑性变化。
Brain plasticity refers to the capacity of the nervous system to change its structure and function over a lifetime, in reaction to environmental diversity. At birth, the human brain consists of approximately10billion neurons, with rough and redundancy synaptic connections. A decrease in synapses is seen after a period of development, learning and training:synapses that are frequently used have strong connections while rarely used synapses are eliminated. In terms of neuroscience, learning is the process of forming new synaptic connections, and practice is the process of consolidating and strengthening the existing connections. Excaming the brain plasticity changes after learning and training is a major trend of the current neuroplasticity studies. Previous researches demonstrated that neuroplasitcity occurs on a variety of levels, ranging from neurons, columes, functional areas, and even, the large-scale functional networks. On macro scale, dispite the fact that, specific brain regions mediate specific functions, the networks consisted by those regions as well as their interaction and intercoordinations are the basis of the overall human behavior. Therefore, it has extremely important theoretic and application significance to explore the neuroplasticiy changes induced by brain development, learning and trainning, on the level of large-scale functional connectivity brain networks.
     The current work dedicated to investigating the brain plasticity changes on the large-scale brain network level, by means of functional magnetic resonance imaging (fMRI), as well as a newly introduced functional-funcitonal (task-rest), and functional-strutural(rest-VBM) multi-modal fusion methods. Two aspects of this dissertation have been put forword:
     The first part investigated the brain plasticity changes on the level of large-scale brain network after long-term and intensive learning and trainning of high level cognitive expertise. In this part, we studied the brain network differences between world-level Chinese chess grandmaters and noices.
     First, we excamined the influence of cognitive expertise on four networks associated with cognitive task performance:the default mode network (DMN) and three other cognitive networks (central-executive network, dorsal attention network, and salience network), both during task and rest. We found that, in those four networks, the chess grandmasters and noives only showed significant differences in the DMN.
     Secondly, according to the changed functional connectivity in the DMN, we combined the structural and fucntioanl MRI, and found the structural changes of the striatum as well as striatum-DMN connectivity in chess grandmaters.
     Thirdly, by means of the functional connectivity analysis and graph theoretical analysis, we investigated the whole-brain functional connectivity network and its topological properties of chess grandmaster. Increased small-world topology and clustering coefficient were found in chess grandmasters, which indicated that long-term cognitive skill learning leaded to a more efficient organization of the brain networks.
     Finally, we used functional connectivity density mapping analysis to quantificationally depict the short-range and long-range functional connectivity density. We aimed to explore more delicate alteration in the brain of chess grandmasters after long-term training on high-level cognitive expertise.
     In the second part of this dissertation, we investigated the plasticity changes in the learning-and memory-related networks induced by brain natural development. In this part, we focused on the functional organization of the medial temporal lobe (MTL) network and differences in this network between children and adults.
     First, we provided a comprehensive intrinsic functional connectivity analysis of seven distinct subdivisions of the human MTL to delineate the functional circuitry of the MTL for better understanding the contributions of its subregions to learning and memory.
     Secondly, we investigated developmental changes in functional connectivity of the MTL system in twenty-four7-to9-year-old typically developing children, nineteen13-to17-year-old adolescents, and twenty-four19-to22-year-old health adults. Adults showed significantly stronger intrinsic connectivity analysis of the hippocampus with widely-distributed cortical and subcortical areas, demonstrating the functional integration of the MTL system after brain development.
引文
[1]R. J. Zatorre, R. D. Fields, H. Johansen-Berg. Plasticity in gray and white:neuroimaging changes in brain structure during learning [J]. Nat Neurosci,2012,15(4):528-36.
    [2]郭瑞芳,彭冉龄.脑可塑性研究综述[J].心理科学,2005,28(2):409-11.
    [3]R. A. Poldrack. Imaging brain plasticity:conceptual and methodological issues--a theoretical review [J]. Neuroimage,2000,12(1):1-13.
    [4]E. A. Maguire, D. G. Gadian, I. S. Johnsrude, et al. Navigation-related structural change in the hippocampi of taxi drivers [J]. Proc Natl Acad Sci U S A,2000,97(8):4398-403.
    [5]C. Gaser, G. Schlaug. Gray matter differences between musicians and nonmusicians [J]. Ann NY Acad Sci,2003,999(514-7.
    [6]T. F. Munte, E. Altenmuller, L. Jancke. The musician's brain as a model of neuroplasticity [J]. Nat Rev Neurosci,2002,3(6):473-8.
    [7]A. Mechelli, J. T. Crinion, U. Noppeney, et al. Neurolinguistics:structural plasticity in the bilingual brain [J]. Nature,2004,431(7010):757.
    [8]P. I. Yakovlev, A. R. Lecours. Regional Development of the Brain in Early Life [M]. Oxford: Blackwell Scientific,1967.
    [9]T. Paus. Mapping brain maturation and cognitive development during adolescence [J]. Trends Cogn Sci,2005,9(2):60-8.
    [10]E. R. Sowell, D. A. Trauner, A. Gamst, et al. Development of cortical and subcortical brain structures in childhood and adolescence:a structural MRI study [J]. Dev Med Child Neurol,2002,44(1):4-16.
    [11]J. N. Giedd, J. Blumenthal, N. O. Jeffries, et al. Brain development during childhood and adolescence:a longitudinal MRI study [J]. Nat Neurosci,1999,2(10):861-3.
    [12]E. R. Sowell, B. S. Peterson, P. M. Thompson, et al. Mapping cortical change across the human life span [J]. Nat Neurosci,2003,6(3):309-15.
    [13]M. Wilke, J. H. Sohn, A. W. Byars, et al. Bright spots:correlations of gray matter volume with IQ in a normal pediatric population [J]. Neuroimage,2003,20(1):202-15.
    [14]P. Shaw, J. Lerch, D. Greenstein, et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder [J]. Arch Gen Psychiatry,2006,63(5):540-9.
    [15]李艳玮,李燕芳.儿童青少年认知能力发展与脑发育[J].心理科学进展,2010,18(11):1700-6.
    [16]H. T. Chugani, M. E. Phelps, J. C. Mazziotta. Positron emission tomography study of human brain functional development [J]. Ann Neurol,1987,22(4):487-97.
    [17]M. C. Davidson, K. M. Thomas, B. J. Casey. Imaging the developing brain with fMRI [J]. Ment Retard Dev Disabil Res Rev,2003,9(3):161-7.
    [18]L. Tamm, V. Menon, A. L. Reiss. Maturation of brain function associated with response inhibition [J]. J Am Acad Child Adolesc Psychiatry,2002,41(10):1231-8.
    [19]B. J. Casey, N. Tottenham, C. Liston, et al. Imaging the developing brain:what have we learned about cognitive development?[J]. Trends Cogn Sci,2005,9(3):104-10.
    [20]S. Ogawa, T. M. Lee, A. R. Kay, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation [J]. Proc Natl Acad Sci U S A,1990,87(24):9868-72.
    [21]唐孝威.脑功能成像[M].合肥:中国科学技术大学出版社,1999.
    [22]P. D. Acton, K. J. Friston. Statistical parametric mapping in functional neuroimaging:beyond PET and fMRI activation studies [J]. Eur J Nucl Med,1998,25(7):663-7.
    [23]M. D. Fox, A. Z. Snyder, J. L. Vincent, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks [J]. Proc Natl Acad Sci U S A,2005,102(27):9673-8.
    [24]M. E. Raichle. Two views of brain function [J]. Trends Cogn Sci,2010,14(4):180-90.
    [25]M. E. Raichle. The brain's dark energy [J]. Sci Am,2010,302(3):44-9.
    [26]D. Zhang, M. E. Raichle. Disease and the brain's dark energy [J]. Nat Rev Neurol,2010,6(1):15-28.
    [27]B. Biswal, F. Z. Yetkin, V. M. Haughton, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI [J]. Magn Reson Med,1995,34(4):537-41.
    [28]M. D. Greicius, B. Krasnow, J. M. Boyett-Anderson, et al. Regional analysis of hippocampal activation during memory encoding and retrieval:fMRI study [J]. Hippocampus,2003,13(1):164-74.
    [29]B. B. Biswal, M. Mennes, X. N. Zuo, et al. Toward discovery science of human brain function [J]. Proc Natl Acad Sci U S A,2011,107(10):4734-9.
    [30]D. Cordes, V. M. Haughton, K. Arfanakis, et al. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data [J]. AJNR Am J Neuroradiol,2001,22(7):1326-33.
    [31]K. J. Friston, G. Tononi, G. N. Reeke, Jr., et al. Value-dependent selection in the brain: simulation in a synthetic neural model [J]. Neuroscience,1994,59(2):229-43.
    [32]D. Cordes, V. M. Haughton, K. Arfanakis, et al. Mapping functionally related regions of brain with functional connectivity MR imaging [J]. AJNR Am J Neuroradiol,2000,21(9):1636-44.
    [33]M. J. Lowe, B. J. Mock, J. A. Sorenson. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations [J]. Neuroimage,1998,7(2):119-32.
    [34]M. Hampson, B. S. Peterson, P. Skudlarski, et al. Detection of functional connectivity using temporal correlations in MR images [J]. Hum Brain Mapp,2002,15(4):247-62.
    [35]M. D. Greicius, B. Krasnow, A. L. Reiss, et al. Functional connectivity in the resting brain:a network analysis of the default mode hypothesis [J]. Proc Natl Acad Sci U S A,2003,100(1):253-8.
    [36]A. Etkin, K. E. Prater, A. F. Schatzberg, et al. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder [J]. Arch Gen Psychiatry,2009,66(12):1361-72.
    [37]A. K. Roy, Z. Shehzad, D. S. Margulies, et al. Functional connectivity of the human amygdala using resting state fMRI [J]. NeuroImage,2009,45(2):614-26.
    [38]K. S. Taylor, D. A. Seminowicz, K. D. Davis. Two systems of resting state connectivity between the insula and cingulate cortex [J]. Hum Brain Mapp,2009,30(9):2731-45.
    [39]A. Di Martino, A. Scheres, D. S. Margulies, et al. Functional connectivity of human striatum: a resting state FMRI study [J]. Cereb Cortex,2008,18(12):2735-47.
    [40]D. S. Margulies, A. M. Kelly, L. Q. Uddin, et al. Mapping the functional connectivity of anterior cingulate cortex [J]. NeuroImage,2007,37(2):579-88.
    [41]杨丽琴,林富春,雷皓.静息状态下脑功能连接的磁共振成像研究[J].波谱学杂志,2010,27(3):326-40.
    [42]S. G. Horovitz, M. Fukunaga, J. A. De Zwart, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep:a simultaneous EEG-fMRI study [J]. Hum Brain Mapp,2008,29(6):671-82.
    [43]M. Boly, L. Tshibanda, A. Vanhaudenhuyse, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient [J]. Hum Brain Mapp,2009,30(8):2393-400.
    [44]M. D. Greicius, K. Supekar, V. Menon, et al. Resting-state functional connectivity reflects structural connectivity in the default mode network [J]. Cereb Cortex,2009,19(1):72-8.
    [45]Y. I. Sheline, D. M. Barch, J. L. Price, et al. The default mode network and self-referential processes in depression [J]. Proc Natl Acad Sci U S A,2009,106(6):1942-7.
    [46]K. Supekar, L. Q. Uddin, K. Prater, et al. Development of functional and structural connectivity within the default mode network in young children [J]. Neuroimage,2010,52(1):290-301.
    [47]E. A. Lundquist, P. W. Reddien, E. Hartwieg, et al. Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis [J]. Development,2001,128(22):4475-88.
    [48]M. D. Fox, M. E. Raichle. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging [J]. Nat Rev Neurosci,2007,8(9):700-11.
    [49]R. Salvador, J. Suckling, M. R. Coleman, et al. Neurophysiological architecture of functional magnetic resonance images of human brain [J]. Cereb Cortex,2005,15(9):1332-42.
    [50]C. J. Stam, J. C. Reijneveld. Graph theoretical analysis of complex networks in the brain [J]. Nonlinear Biomed Phys,2007,1(1):3.
    [51]D. S. Bassett, E. Bullmore. Small-world brain networks [J]. Neuroscientist,2006,12(6):512-23.
    [52]O. Sporns, J. D. Zwi. The small world of the cerebral cortex [J]. Neuroinformatics,2004,2(2):145-62.
    [53]S. Achard, R. Salvador, B. Whitcher, et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs [J]. J Neurosci,2006,26(1):63-72.
    [54]L. Tian, J. Wang, C. Yan, et al. Hemisphere-and gender-related differences in small-world brain networks:a resting-state functional MRI study [J]. Neuroimage,54(1):191-202.
    [55]M. P. Van Den Heuvel, C. J. Stam, R. S. Kahn, et al. Efficiency of functional brain networks and intellectual performance [J]. J Neurosci,2009,29(23):7619-24.
    [56]V. M. Eguiluz, D. R. Chialvo, G. A. Cecchi, et al. Scale-free brain functional networks [J]. Phys Rev Lett,2005,94(1):018102.
    [57]C. M. Lewis, A. Baldassarre, G. Committeri, et al. Learning sculpts the spontaneous activity of the resting human brain [J]. Proc Natl Acad Sci U S A,2009,106(41):17558-63.
    [58]D. A. Fair, B. L. Schlaggar, A. L. Cohen, et al. A method for using blocked and event-related fMRI data to study "resting state" functional connectivity [J]. NeuroImage,2007,35(1):396-405.
    [59]H. L. Van Der Maas, E. J. Wagenmakers. A psychometric analysis of chess expertise [J]. Am J Psychol,2005,118(1):29-60.
    [60]M. Tanaka-Hino, A. Sagasti, N. Hisamoto, et al. SEK-1MAPKK mediates Ca2+signaling to determine neuronal asymmetric development in Caenorhabditis elegans [J]. EMBO Rep,2002,3(1):56-62.
    [61]R. N. Spreng, R. A. Mar, A. S. Kim. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode:a quantitative meta-analysis [J]. J Cogn Neurosci,2009,21(3):489-510.
    [62]R. L. Buckner, D. C. Carroll. Self-projection and the brain [J]. Trends Cogn Sci,2007,11(2):49-57.
    [63]P. Fransson. Spontaneous low-frequency BOLD signal fluctuations:an fMRI investigation of the resting-state default mode of brain function hypothesis [J]. Hum Brain Mapp,2005,26(1):15-29.
    [64]M. E. Raichle. The neural correlates of consciousness:an analysis of cognitive skill learning [J]. Philos Trans R Soc Lond B Biol Sci,1998,353(1377):1889-901.
    [65]G. Campitelli, F. Gobet, A. Parker. Structure and stimulus familiarity:a study of memory in chess-players with functional magnetic resonance imaging [J]. Span J Psychol,2005,8(2):238-45.
    [66]W. G. Chase, H. A. Simon. Perception in chess [J]. Cognitive Psychology,1973,4(55-81.
    [67]G. Campitelli, A. Parker, K. Head, et al. Left lateralization in autobiographical memory:an fMRI study using the expert archival paradigm [J]. Int J Neurosci,2008,118(2):191-209.
    [68]N. Charness. The impact of chess research on cognitive science.[J]. Psychological Research,1992,54(4-9.
    [69]M. Onofrj, L. Curatola, G. Valentini, et al. Non-dominant dorsal-prefrontal activation during chess problem solution evidenced by single photon emission computerized tomography (SPECT)[J]. Neurosci Lett,1995,198(3):169-72.
    [70]P. Nichelli, J. Grafman, P. Pietrini, et al. Brain activity in chess playing [J]. Nature,1994,369(6477):191.
    [71]M. Atherton, J. Zhuang, W. M. Bart, et al. A functional MRI study of high-level cognition. I. The game of chess [J]. Brain Res Cogn Brain Res,2003,16(1):26-31.
    [72]D. Sridharan, D. J. Levitin, V. Menon. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks [J]. Proc Natl Acad Sci U S A,2008,105(34):12569-74.
    [73]E. Koechlin, C. Summerfield. An information theoretical approach to prefrontal executive function [J]. Trends Cogn Sci,2007,11(6):229-35.
    [74]K. Christoff, A. M. Gordon, J. Smallwood, et al. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering [J]. Proc Natl Acad Sci USA,2009,106(21):8719-24.
    [75]M. D. Fox, M. Corbetta, A. Z. Snyder, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems [J]. Proc Natl Acad Sci U S A,2006,103(26):10046-51.
    [76]W. W. Seeley, V. Menon, A. F. Schatzberg, et al. Dissociable intrinsic connectivity networks for salience processing and executive control [J]. J Neurosci,2007,27(9):2349-56.
    [77]J. S. Mayer, A. Roebroeck, K. Maurer, et al. Specialization in the default mode:Task-induced brain deactivations dissociate between visual working memory and attention [J]. Hum Brain Mapp,2010,31(1):126-39.
    [78]S. L. Miller, K. Celone, K. Depeau, et al. Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation [J]. Proc Natl Acad Sci U S A,2008,105(6):2181-6.
    [79]M. E. Raichle, A. M. Macleod, A. Z. Snyder, et al. A default mode of brain function [J]. Proc Natl Acad Sci U S A,2001,98(2):676-82.
    [80]F. Gobet, N. Charness. Chess and games [M]. Cambridge handbook on expertise and expert performance Cambridge; Cambridge University Press.2006:523-38.
    [81]X. Wan, H. Nakatani, K. Ueno, et al. The neural basis of intuitive best next-move generation in board game experts [J]. Science,2011,331(6015):341-6.
    [82]M. Hampson, N. R. Driesen, P. Skudlarski, et al. Brain connectivity related to working memory performance [J]. J Neurosci,2006,26(51):13338-43.
    [83]A. G. Sanfey. Social decision-making:insights from game theory and neuroscience [J]. Science,2007,318(5850):598-602.
    [84]B. W. Balleine, M. Liljeholm, S. B. Ostlund. The integrative function of the basal ganglia in instrumental conditioning [J]. Behav Brain Res,2009,199(1):43-52.
    [85]A. M. Graybiel. The basal ganglia:learning new tricks and loving it [J]. Curr Opin Neurobiol,2005,15(6):638-44.
    [86]A. M. Graybiel. Habits, rituals, and the evaluative brain [J]. Annu Rev Neurosci,2008,31(359-87.
    [87]L. Barrett. Do chess and GO need'g'?[J]. Trends Cogn Sci,2002,6(12):499.
    [88]N. Charness. The impact of chess research on cognitive science [J]. Psychological Research,1992,54(4-9.
    [89]A. D. De Groot. Thought and choice in chess [M]. Hague:Mouton,1965.
    [90]V. Ferrari, A. Didierjean, E. Marmeche. Effect of expertise acquisition on strategic perception: the example of chess [J]. Q J Exp Psychol (Colchester),2008,61(8):1265-80.
    [91]B. King-Casas, D. Tomlin, C. Anen, et al. Getting to know you:reputation and trust in a two-person economic exchange [J]. Science,2005,308(5718):78-83.
    [92]F. A. Middleton, P. L. Strick. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function [J]. Science,1994,266(5184):458-61.
    [93]O. Monchi, M. Petrides, A. P. Strafella, et al. Functional role of the basal ganglia in the planning and execution of actions [J]. Ann Neurol,2006,59(2):257-64.
    [94]B. W. Balleine, M. R. Delgado, O. Hikosaka. The role of the dorsal striatum in reward and decision-making [J]. J Neurosci,2007,27(31):8161-5.
    [95]L. Welberg. Assisted birth with DISCI [J]. Nat Rev Neurosci,2009,10(5):314.
    [96]S. M. Klose, J. A. Welbergen, E. K. Kalko. Testosterone is associated with harem maintenance ability in free-ranging grey-headed flying-foxes, Pteropus poliocephalus [J]. Biol Lett,2009,5(6):758-61.
    [97]R. A. Poldrack, V. Prabhakaran, C. A. Seger, et al. Striatal activation during acquisition of a cognitive skill [J]. Neuropsychology,1999,13(4):564-74.
    [98]M. H. Beauchamp, A. Dagher, J. A. Aston, et al. Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task [J]. Neuroimage,2003,20(3):1649-60.
    [99]C. A. Seger, C. M. Cincotta. The roles of the caudate nucleus in human classification learning [J]. J Neurosci,2005,25(11):2941-51.
    [100]P. Hagmann,O. Sporns, N. Madan, et al. White matter maturation reshapes structural connectivity in the late developing human brain [J]. Proc Natl Acad Sci U S A,2010,107(44):19067-72.
    [101]B. Luna, J. A. Sweeney. The emergence of collaborative brain function:FMRI studies of the development of response inhibition [J]. Ann N Y Acad Sci,2004,1021(296-309.
    [102]T. D. Barnes, Y. Kubota, D. Hu, et al. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories [J]. Nature,2005,437(7062):1158-61.
    [103]M. H. Kao, A. J. Doupe, M. S. Brainard. Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song [J]. Nature,2005,433(7026):638-43.
    [104]N. Fujii, A. M. Graybiel. Time-varying covariance of neural activities recorded in striatum and frontal cortex as monkeys perform sequential-saccade tasks [J]. Proc Natl Acad Sci U S A,2005,102(25):9032-7.
    [105]A. Pasupathy, E. K. Miller. Different time courses of learning-related activity in the prefrontal cortex and striatum [J]. Nature,2005,433(7028):873-6.
    [106]R. J. Zatorre, S. R. Baum. Musical melody and speech intonation:singing a different tune [J]. PLoS Biol,10(7):e1001372.
    [107]Y. Iturria-Medina, E. J. Canales-Rodriguez, L. Melie-Garcia, et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory [J]. Neuroimage,2007,36(3):645-60.
    [108]O. Sporns, D. R. Chialvo, M. Kaiser, et al. Organization, development and function of complex brain networks [J]. Trends Cogn Sci,2004,8(9):418-25.
    [109]P. Hagmann, L. Cammoun, X. Gigandet, et al. Mapping the structural core of human cerebral cortex [J]. PLoS Biol,2008,6(7):e159.
    [110]Y. Li, Y. Liu, J. Li, et al. Brain anatomical network and intelligence [J]. PLoS Comput Biol,2009,5(5):e1000395.
    [111]L. R. Squire, C. E. Stark, R. E. Clark. The medial temporal lobe [J]. Annu Rev Neurosci,2004,27(279-306.
    [112]L. R. Squire, S. Zola-Morgan. The medial temporal lobe memory system [J]. Science,1991,253(5026):1380-6.
    [113]R. L. Buckner, M. E. Wheeler. The cognitive neuroscience of remembering [J]. Nat Rev Neurosci,2001,2(9):624-34.
    [114]R. A. Poldrack, J. Clark, E. J. Pare-Blagoev, et al. Interactive memory systems in the human brain [J]. Nature,2001,414(6863):546-50.
    [115]W. Liao, Z. Zhang, Z. Pan, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy [J]. PLoS One,2010,5(1):e8525.
    [116]K. Supekar, M. Musen, V. Menon. Development of large-scale functional brain networks in children [J]. PLoS Biol,2009,7(7):e1000157.
    [117]D. Tomasi, N. D. Volkow. Functional connectivity density mapping [J]. Proc Natl Acad Sci U SA,2010,107(21):9885-90.
    [118]K. R. Van Dijk, M. R. Sabuncu, R. L. Buckner. The influence of head motion on intrinsic functional connectivity MRI [J]. Neuroimage,2012,59(1):431-8.
    [119]D. Tomasi, N. D. Volkow. Aging and functional brain networks [J]. Mol Psychiatry,2012,17(5):471,549-58.
    [120]D. Tomasi, N. D. Volkow. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder [J]. Biol Psychiatry,2012,71(5):443-50.
    [121]R. L. Buckner, J. Sepulcre, T. Talukdar, et al. Cortical hubs revealed by intrinsic functional connectivity:mapping, assessment of stability, and relation to Alzheimer's disease [J]. J Neurosci,2009,29(6):1860-73.
    [122]B. Dubois, R. Levy. Cognition, behavior and the frontal lobes [J]. Int Psychogeriatr,2004,16(4):379-87.
    [123]D. Badre, A. D. Wagner. Left ventrolateral prefrontal cortex and the cognitive control of memory [J]. Neuropsychologia,2007,45(13):2883-901.
    [124]C. Whitney, M. Kirk, J. O'sullivan, et al. Executive semantic processing is underpinned by a large-scale neural network:revealing the contribution of left prefrontal, posterior temporal, and parietal cortex to controlled retrieval and selection using TMS [J]. J Cogn Neurosci,2012,24(1):133-47.
    [125]M. Plaza, P. Gatignol, H. Cohen, et al. A discrete area within the left dorsolateral prefrontal cortex involved in visual-verbal incongruence judgment [J]. Cereb Cortex,2008,18(6):1253-9.
    [126]L. R. Squire, S. M. Zola. Structure and function of declarative and nondeclarative memory systems [J]. Proc Natl Acad Sci U S A,1996,93(24):13515-22.
    [127]H. W. Powell, M. Guye, G. J. Parker, et al. Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus [J]. Neuroimage,2004,22(2):740-7.
    [128]C. Granziera, N. Hadjikhani, S. Arzy, et al. In-vivo magnetic resonance imaging of the structural core of the Papez circuit in humans [J]. Neuroreport,2011,22(5):227-31.
    [129]L. Davachi. Item, context and relational episodic encoding in humans [J]. Curr Opin Neurobiol,2006,16(6):693-700.
    [130]R. A. Diana, A. P. Yonelinas, C. Ranganath. Imaging recollection and familiarity in the medial temporal lobe:a three-component model [J]. Trends Cogn Sci,2007,11(9):379-86.
    [131]L. Davachi, A. D. Wagner. Hippocampal contributions to episodic encoding:insights from relational and item-based learning [J]. J Neurophysiol,2002,88(2):982-90.
    [132]H. Eichenbaum, A. P. Yonelinas, C. Ranganath. The medial temporal lobe and recognition memory [J]. Annu Rev Neurosci,2007,30(123-52.
    [133]S. Qin, M. Rijpkema, I. Tendolkar, et al. Dissecting medial temporal lobe contributions to item and associative memory formation [J]. Neuroimage,2009,46(3):874-81.
    [134]J. Poppenk, M. Moscovitch. A hippocampal marker of recollection memory ability among healthy young adults:contributions of posterior and anterior segments [J]. Neuron,2011,72(6):931-7.
    [135]L. Litman, T. Awipi, L. Davachi. Category-specificity in the human medial temporal lobe cortex [J]. Hippocampus,2009,19(3):308-19.
    [136]B. Seltzer, D. N. Pandya. Some cortical projections to the parahippocampal area in the rhesus monkey [J]. Exp Neurol,1976,50(1):146-60.
    [137]E. Duzel, R. Cabeza, T. W. Picton, et al. Task-related and item-related brain processes of memory retrieval [J]. Proc Natl Acad Sci U S A,1999,96(4):1794-9.
    [138]R. N. Henson, M. D. Rugg, T. Shallice, et al. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval [J]. J Cogn Neurosci,2000,12(6):913-23.
    [139]G. Dalla Barba. Memory, consciousness, and the brain [J]. Brain Cogn,2000,42(1):20-2.
    [140]J. Bancaud, F. Brunet-Bourgin, P. Chauvel, et al. Anatomical origin of deja vu and vivid 'memories'in human temporal lobe epilepsy [J]. Brain,1994,117(Pt1)(71-90.
    [141]A. H. Luo, P. Tahsili-Fahadan, R. A. Wise, et al. Linking context with reward:a functional circuit from hippocampal CA3to ventral tegmental area [J]. Science,2011,333(6040):353-7.
    [142]J. E. Lisman, A. A. Grace. The hippocampal-VTA loop:controlling the entry of information into long-term memory [J]. Neuron,2005,46(5):703-13.
    [143]G. Richter-Levin, I. Akirav. Amygdala-hippocampus dynamic interaction in relation to memory [J]. Mol Neurobiol,2000,22(1-3):11-20.
    [144]M. B. Moser, E. I. Moser. Functional differentiation in the hippocampus [J]. Hippocampus,1998,8(6):608-19.
    [145]M. S. Fanselow, H. W. Dong. Are the dorsal and ventral hippocampus functionally distinct structures?[J]. Neuron,2010,65(1):7-19.
    [146]H. J. Spiers, E. A. Maguire. Thoughts, behaviour, and brain dynamics during navigation in the real world [J]. Neuroimage,2006,31(4):1826-40.
    [147]W. B. Scoville, B. Milner. Loss of recent memory after bilateral hippocampal lesions [J]. J Neurol Neurosurg Psychiatry,1957,20(1):11-21.
    [148]C. F. Doeller, J. A. King, N. Burgess. Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory [J]. Proc Natl Acad Sci U S A,2008,105(15):5915-20.
    [149]G. Fernandez, H. Weyerts, M. Schrader-Bolsche, et al. Successful verbal encoding into episodic memory engages the posterior hippocampus:a parametrically analyzed functional magnetic resonance imaging study [J]. J Neurosci,1998,18(5):1841-7.
    [150]I. Kahn, J. R. Andrews-Hanna, J. L. Vincent, et al. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity [J]. J Neurophysiol,2008,100(1):129-39.
    [151]J. N. Giedd. Structural magnetic resonance imaging of the adolescent brain [J]. Ann N Y Acad Sci,2004,1021(77-85.
    [152]N. Gogtay, J. N. Giedd, L. Lusk, et al. Dynamic mapping of human cortical development during childhood through early adulthood [J]. Proc Natl Acad Sci U S A,2004,101(21):8174-9.
    [153]J. P. Bourgeois, P. S. Goldman-Rakic, P. Rakic. Synaptogenesis in the prefrontal cortex of rhesus monkeys [J]. Cereb Cortex,1994,4(1):78-96.
    [154]P. R. Huttenlocher, A. S. Dabholkar. Regional differences in synaptogenesis in human cerebral cortex [J]. J Comp Neurol,1997,387(2):167-78.
    [155]L. Snook, L. A. Paulson, D. Roy, et al. Diffusion tensor imaging of neurodevelopment in children and young adults [J]. Neuroimage,2005,26(4):1164-73.
    [156]L. Zhang, K. M. Thomas, M. C. Davidson, et al. MR quantitation of volume and diffusion changes in the developing brain [J]. AJNR Am J Neuroradiol,2005,26(1):45-9.
    [157]P. J. Olesen, Z. Nagy, H. Westerberg, et al. Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network [J]. Brain Res Cogn Brain Res,2003,18(1):48-57.
    [158]B. J. Casey, J. D. Cohen, K. O'craven, et al. Reproducibility of fMRI results across four institutions using a spatial working memory task [J]. Neuroimage,1998,8(3):249-61.
    [159]S. Qin, C. B. Young, K. Supekar, et al. Immature integration and segregation of emotion-related brain circuitry in young children [J]. Proc Natl Acad Sci U S A,2012,109(20):7941-6.
    [160]S. J. Blakemore, S. Burnett, R. E. Dahl. The role of puberty in the developing adolescent brain [J]. Hum Brain Mapp,2010,31(6):926-33.
    [161]X. Duan, Q. Dai, Q. Gong, et al. Neural mechanism of unconscious perception of surprised facial expression [J]. Neuroimage,2010,52(1):401-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700