毛竹四个木质素合成相关酶基因的克隆及组织特异性表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用RT-PCR结合RACE方法,从一年生实生苗毛竹中克隆了木质素合成过程中非常重要的四个相关酶基因—CCoAOMT1、CCoAOMT2、C4H、4CL的全长。运用生物信息学方法对其核苷酸序列、编码的氨基酸序列进行分析。并利用荧光定量PCR(QRT-PCR)技术对毛竹一年生根、叶、杆箨、茎、二年生茎、三年生茎、冬笋、春笋、笋顶部、笋中部、笋基部植物材料分析了这四个基因在不同发育时期、不同表达部位中表达丰度的变化,并验证了其在维管组织中特异表达特性。本论文得到以下结论:
     (1)毛竹CCoAOMT1基因cDNA序列全长1045bp,从第86bp有一个起始密码子到第871bp处终止密码子结束,含有一个完整的开放读码框,共编码了262个氨基酸。将该基因的蛋白序列通过在SMART网站进行分析,发现该基因属于细胞色素p450酶家族中一员。通过ExPaSy网站分析发现该基因具有15个第Ⅷ因子结构域位点标记;2个整合素beta链半胱氨酸富集区位点标记;9个表皮样生长因子位点标记; 1个4Fe-4S铁氧化还原蛋白铁硫结合区位点标记;2个2Fe-2S铁氧化还原蛋白铁硫结合区位点标记;1个过敏毒素位点标记;2个硫解酶激活位点;4个羧基端胱氨酸结位点标记;1个类生长因子N结合蛋白末端结构域信号区。与NCBI核酸数据库中序列进行比对,与绿竹相似性最高,得分均为99%,其次是禾本科的玉米和水稻,得分分别为88%、88%,与双子叶及木本植物的亲缘较远。通过荧光定量分析,该基因在毛竹不同发育时期和不同组织中表达丰度不同,在春笋顶部表达量最高,其次是春笋中部、春笋基部、杆箨、冬笋、二年生茎、一年生茎、一年生根、一年生叶、春笋和三年生茎。
     (2)毛竹CCoAOMT2基因cDNA序列全长1014bp,从第48bp含有一个开放读码框,第839bp处有终止密码子,共编码了264个氨基酸。将该基因的蛋白序列通过在SMART网站进行分析,发现该基因属于细胞色素p450酶家族中一员。通过ExPaSy网站分析发现该基因具有有1个整合素beta链半胱氨酸富集区位点标记;9个表皮样生长因子位点标记;15个第Ⅷ因子结构域位点标记;4个2Fe-2S铁氧化还原蛋白铁硫结合区位点标记; 2个4Fe-4S铁氧化还原蛋白铁硫结合区位点标记;3个过敏毒素位点标记; 2个硫解酶激活位点;3个羧基端胱氨酸结位点标记。
     与NCBI核酸数据库中序列进行比对,与禾本科单子叶的水稻、玉米相似性最高,得分分别为88%、87%,与双子叶及木本植物的亲缘较远。通过荧光定量分析,该基因在毛竹不同发育时期和不同组织中表达丰度不同,在春笋顶部中表达量最高,其次是春笋中部、冬笋、春笋基部、二年生茎、三年生茎、春笋、一年生根、杆箨、一年生茎、一年生叶。
     (3)毛竹C4H基因cDNA序列全长1746bp,从第72bp有一个起始密码子,到第1577bp处终止密码子结束,含有一个完整的开放读码框,共编码了502个氨基酸。将该基因的蛋白序列通过在SMART网站进行分析,发现该基因属于细胞色素p450酶,CYP73亚家族中一员。通过ExPASy网站分析,该基因序列上含有:12个表皮样生长因子位点标记;3个过敏毒素位点标记;2个羧基端胱氨酸结位点标记;6个2Fe-2S铁氧化还原蛋白铁硫结合区位点标记;12个第Ⅷ因子结构域位点标记;1个4Fe-4S铁氧化还原蛋白铁硫结合区位点标记;1个硫解酶激活位;1个整合素beta链半胱氨酸富集区位点标记;1个哺乳动物防御素位点标记。与NCBI核酸和数据库中序列进行比对,得出毛竹与禾本科单子叶的高粱、水稻和玉米相似性最高,分数分别为:88%、88%、87%,与双子叶及木本植物的亲缘较远。通过荧光定量分析,该基因在毛竹不同发育时期和不同组织中表达丰度不同,在冬笋中表达量最高,其次是春笋顶部、春笋中部、一年生叶、三年生茎、杆箨、一年生根、二年生茎、春笋、一年生茎、春笋基部。
     (4)毛竹4CL基因cDNA序列全长1792bp,从第90bp有一个起始密码子,到第1715bp处终止密码子结束,含有一个完整开放读码框,共编码了543个氨基酸。将4CL基因的蛋白序列通过SMART网站进行分析,发现该基因属于AMP-Binding家族中一员。通过ExPASy网站分析,该基因序列包括10个表皮样生长因子位点标记;2个过敏毒素位点标记;2个羧基端胱氨酸结位点标记;6个2Fe-2S铁氧化还原蛋白铁硫结合区位点标记;20个第Ⅷ因子结构域位点标记;2个4Fe-4S铁氧化还原蛋白铁硫结合区位点标记;4个整合素beta链半胱氨酸富集区位点标记;3个哺乳动物防御素位点标记;2个胰岛素样生长因子结合蛋白;1个Janus-faced atracotoxin (J-ACTX) family signature;与NCBI核酸数据库中序列进行比对,得出毛竹与慈竹的相似性最高,分数为100%,其次是单子叶水稻和玉米,得分分别为97%和83%,与双子叶及木本植物的亲缘较远。通过荧光定量分析,该基因在毛竹不同发育时期和不同组织中表达丰度不同,在冬笋中表达量最高,其次是春笋中部、春笋顶部、一年生叶、二年生茎、三年生茎、杆箨、一年生根、一年生茎、春笋基部、春笋。
     通过对C4H,CCoAOMT1,CCoAOMT2,4CL在毛竹不同组织中的表达量的分析,结果证明这四种基因与发育时期维管组织的细胞壁加厚相关。CCoAOMT1,CCoAOMT2的表达量明显高于C4H, 4CL,说明CCoAOMT1,CCoAOMT2基因在竹子快速生长时期需要大量表达。这4个基因在维管组织发育过程中的特异表达说明它们可作为调控竹子木质素合成的外源基因应用于竹子基因工程。
The cDNA encoding full-length of CCoAOMT1, CCoAOMT2, C4H, 4CL genes were cloned from cDNA prepared from tissue culture seedings of Moso bamboo using RT-PCR and RACE methods. Its nucleotide sequences and the encoded amino acid sequences were analyzed. The important component to explicit the functions of gene is to carry out the study of gene expression with tissues,for instance, winter-shoot, whole spring-shoot, top-springshoot, mid-springshoot, base-shoot, leaf, leaf sheath, root, 1-year-old stem, 2-year-old stem and 3-year-old stem, using technology of fluorescence quantitative real-time PCR(QRT-PCR). To determine their expression properities and confirm their involvement in the lignin biosythesis in bamboo genes.
     (1)The whole open reading frame of CCoAOMT1 gene is 1045 bp encoding 262 amina acids. From the analysis of the sequence through the website of SMART and ExPASy against NCBI database, it is found that CCoAOMT1 is belong to p450 family and there are nine EGF-like domain signature 1, fifteen VWFC domain signature,one Integrins beta chain cysteine-rich domain signature, two Integrins beta chain cysteine-rich domain signature, two 2Fe-2S ferredoxins, iron-sulfur binding region signature, one 4Fe-2S ferredoxins, iron-sulfur binding region signature, one Anaphylatoxin domain signature, two Thiolases active site, four C-terminal cystine knot signatureone Insulin-like growth factor- binding protein (IGFBP) N-terminal domain signature.
     The amino acid sequence showed high similarity with the corresponding genes from monocots Bambusa oldhamii, oryza and zea mays at 99%, 88% and 88%,respectively. Expression analysis of CoAOMT1 by real time quantitative PCR showed the expression level in different tissues from high to low was in the following order: top-springshoot and mid-springshoot, base-shoot, leaf sheath, winter-shoot , 2-year-old stem, 1-year-old stem, root, whole spring-shoot, leaf, and the lowest expression level in the 3-year-old stem.
     (2)The whole open reading frame of CCoAOMT2 gene is 1131 bp encoding 262 amina acids. From the analysis of the sequence through the website of SMART and ExPASy, it is found that CCoAOMT2 is also belong to p450 family and there are nine EGF-like domain signature 1, fifteen VWFC domain signature, one Integrins beta chain cysteine-rich domain signature, four 2Fe-2S ferredoxins, iron-sulfur binding region signature, two 4Fe-2S ferredoxins, iron-sulfur binding region signature, three Anaphylatoxin domain signature, two Thiolases active site, three C-terminal cystine knot signature.
     The amino acid sequence showed high similarity with the corresponding genes from monocots oryza and zea mays at 88% and 87%,respectively. Expression analysis of CoAOMT2 by real time quantitative PCR showed the expression level in different tissues from high to low was in the following order: top-springshoot and mid-springshoot, winter-shoot, base-shoot, 2-year-old stem, 3-year-old stem, whole spring-shoot, and the lowest expression level in the leaf sheath, 1-year-old stem, root, leaf.
     (3)The whole open reading frame of C4H gene is 1006 bp encoding 502 amina acids. From the analysis of the sequence through the website of SMART and ExPASy, it is found that C4H is belong to p450 family and there are twelve EGF-like domain signature 1, two C-terminal cystine knot signature, twelve VWFC domain signature, one Integrins beta chain cysteine-rich domain signature, six 2Fe-2S ferredoxins, iron-sulfur binding region signature, one Thiolases active site, one 4Fe-2S ferredoxins, iron-sulfur binding region signature, one Mammalian defensins signature, three Anaphylatoxin domain signature.
     The amino acid sequence showed high similarity with the corresponding genes from monocots Sorghum Moench, oryza and zea mays at 88%, 88% and 87%,respectively. Expression analysis of C4H by real time quantitative PCR showed the expression level in different tissues from high to low was in the following order: winter-shoot, top-spring shoot, mid-spring shoot, leaf, 3-year-old stem, root, leaf sheath, 2-year-old stem, whole spring-shoot, 1-year-old stem, the base-shoot.
     (4) The whole open reading frame of 4CL gene is 1792 bp encoding 543 amina acids. From the analysis of the sequence through the website of SMART and ExPASy, it is found that 4CL is belong to AMP-binding family and there are ten EGF-like domain signature 1, two C-te rminal cystine knot signature, twenty VWFC domain signature, four Integrins beta chain cystei ne-rich domain signature, six 2Fe-2S ferredoxins, iron-sulfur binding region signature, two 4Fe-2S ferredoxins, iron-sulfur binding region signature, three Mammalian defensins signature, two Anaphylatoxin domain signature, two Insulin-like growth factor-binding protein (IGFBP) N-terminal domain signature, one Janus-faced atracotoxin (J-ACTX) family signature.
     The amino acid sequence showed high similarity with the corresponding genes from monocots Neosinocalamus affinis, oryza and zea mays at 100%, 97% and 83%,respectively. Expression analysis of 4CL by real time quantitative PCR showed the expression level in different tissues from high to low was in the following order: winter-shoot, mid-springshoot, top-springshoot, leaf, 2-year -old stem, 3-year-old stem, leaf sheath, root, 1-year-old stem, base-springshoot, the lowest expr ession level in the whole spring-shoot. This indicates that the cloned CCoAOMT1、CCoAOMT2、C4H、4CL involved in the cell wall deposition during the development of vascular tissues thus could be used in modulation of lignin biosynthesis in bamboo through genetic engineering.
引文
[1]江泽慧.世界竹藤.[M].沈阳:辽宁科学技术出版社,2002.
    [2] Kajita S, et a1. Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate: coenzyme A ligase. Plant Cell Physiology, 1996, 37: 957~965.
    [3] Chandra A, Guha S R D. Studies on the decay of bamboo (Dendrocalamus strictus) during outside sto rage-degradation of lignin [J]. Indian Forester, 1981, 107(1): 54~59.
    [4] Baucher M, Monties B,Van Montagu M, et al.Biosyntensis and Genetic Enineering of Lignin[J].Critical Reviews in Plant Sciences,1998,12(2):125~197.
    [5]蒋庭大.木质素[M].化学工业出版社, 2001.
    [6] Li L G. Zhou Y H.Cheng X.F.et al. Combinatorial Modification of multiple ligin traits in trees through multigene cotransformation. PNAS USA.2003.100(8):4939~4944 .
    [7] LEE D, MEYERK, CHAPPLEC. Down-regulation of 4-coumarate: CoA ligase (4CL) in Arabi dopsis effect on lignin composition and implication for the control of monlignol biosynthesis [J]. Plant Cell, 1997, 9:1985~1998.
    [8] Meyermans H, Morreel K, Lapierre C, et al. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem, 2000, 275(47): 36899~36909.
    [9] MEYER K, CUSUMANO J C, RUEGGER M, et a1. Regulation and manipulation of lignin monomer composition by overexpression of ferulate 5-hydroxylase: a cytochrome P450-depen dent mono- oxygenase required for syringyl lignin biosynthesis[M]. International Wood Biotech nology Symposium, 1997: 9.
    [10] Hu W J. S A Harding, J RHAN LUNG,et al. Repression of ligion biosynthesis promotes cellulose accumulation and biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature. Biotechnology. 1999,17:808~812.
    [11] Dixon R A, et al. The biosynthesis of monolignols: a metabolicgrid, or independent pathways to guaiacyl and syringyl units. Phytochemistry, 2002, 57: 1068.
    [12] Sewalt V J H, et al. Lignin impact on fiber degradation: Increased enzymatic digestibility of genetically eng ineered tobacco stems reduced in lignin content. of Agricultural and Food Chemistry[J], 1997, 45: 1977.
    [13] BATE N, ORR J, NI W, et a1. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis [J]. Proc. Natl. Acad. Sci. USA. 1994, 91: 7608~7612.
    [14] Franke R, et al. Modified lignin in tobacco and poplar plants overexpressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J,2000,22:223~224.
    [15] Kajita.S. Hishiyama.S. Tomimura,T. et al. Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate:coenzyme A ligase is depressed.Plant Physiol. 1997,114:871~879.
    [16] Cramer C L, Edwards K, Dron M.Phenylalanine ammonia-lyase gene organization and structure. Plant Mol Biol.1989, 12: 367~383.
    [17] Franke R, et a1. The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metaboli sm. Plant J, 2002, 30(1): 33.
    [18] Franke R, et a1. Changes in secondary metabolism and deposition of an unusual lignin in the ref 8 mutant of Arabidopsis. Plant J, 2002, 30(1): 47.
    [19] Sewalt V J H, et al. Reduced lignin content and altered lignin cornposition in transgenic tobacco down -regulated in expression of phenylalanine ammonialyase or cinnamate 4-hydroxylase. Plant Physiol, 1997, 115: 41.
    [20] VINCENT J H, SEWAL T, WELTING N, et a1. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonialy ase or cinnamate 4-hydrelase [J]. Plant Physiology, 1997, 115: 41~50.
    [21] Marita J M, et al NMR characterization of lignins in Arabidopsis altered in the activity of feru late 5-hyf roxylase Proc Natl Acad Sci, 1999, 96: 12382.
    [22] HUGO MEYERMANS, KRIS MORREEL, CATHERINELAPIERRE, et a1. Modifications in lignin and accumulation of Phenolic Glucosides in poplar xylem upon down-regulation of Caffeoyl-coengyme A O-methy-ltransferase, an enzyme involved in lignin biosynthesis[J]. The Jo urnal of Biological Chem istry, 2000, 275(47): 36899~36909.
    [23] ZHONG R Q, MORRISON W H, HIMMELSBACHDS, et a1. Essential role of caffeoyl coe nzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants[J]. Plant Physiol, 200 0, 124(2): 563~578.
    [24] ZHONG RUI QIN, HERBERT W, NEGREL J, et a1. Dual methylation path way in lignin biosynthesis[J]. The Plant Cell, 1998, 10: 2033~2045.
    [25] Guo D, et a1. Down~regulation of caffeic acid 3-O-methyhransferase and caffeoyl CoA 3-O- methylt rans-ferase in transgenic alfalfa: Impacts on lignin structure and implications for the bio synthesis of G and S lignin. Plant Cell, 2001, 13: 73.
    [26] Lapierre C, et a1. Structural alterations of lignins in transgenic poplars with depresse cinna myl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping.Plant Physiol, 1999, 119: 153.
    [27] Tsai C J, et a1.Suppression of O-methyltransferase gene by homologous sense transgene in quaking aspen causes red-brown wood phenotypes. Plant Physiol, 1998, 17: 101.
    [28] Van Do rsselaere J. et a1. A novel lignin in polar tress with a reduced caffeic acid/5-hydroxy ferulic acid O-methyltransferase activity. Plant J, 1995, 8: 855.
    [29] Ni W, et a1. Reduced lignin in transgenic plants containing an engineered caffeic acid O-methyhrans ferase antisense gene Transgenic Research, 1994, 3: 120.
    [30] UPENDRE N D, WILBER H C, YU J, et a1. Modification of lignin biosynthesis in transge nic Nicoti ana through expression of an antisense O-methylltransferase gene from Popalus[J]. P lant Molecular Biology, 1994, 26: 61~71.
    [31] CATHERINE L, BRIGATTE P, MICHE L P, et a1. Structural alteration of lignin in trans genic poplars with depressed cinnamyl alcohol dehydrogenase or cafeic acid O-methyhransferase activity have an opp osite impact on the efficiency of industrial kraft pulping[J]. Plant Physio1. 1999, 119: 153~163.
    [32] ZHONG RUI QIN, HERBERT W, NEGREL J, et a1. Dual methylation pathway in lignin biosynthesis [J]. The Plant Cell, 1998, 10: 2033~2045.
    [33] TSAI CH J, JACQUELINE L P, IVIELISSA R M, et a1. Supperssion of O-methyltransfer ase gene by homologous sense transgene in quaking aspen canse red-brown wood phenotype[J]. Plant Physiology, 1998, 117: 101~112.
    [34]JOUANIN L, THOMAS G, CATHERINE L. Lignification in transgenic poplars with extr emeely reduc ed caffeic acid O-methyltransferase activity[J]. Plant Physiol, 2000, 123: 1363~1373.
    [35] ELKIND Y, EDWARDS R, MAVAN DAD M, et a1. Abnormal plant development and down-regulat ion of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologuo us phenylalanine ammonia lyase gene[J]. Proceeding of National Academic Science. USA 1990, 87: 9057~9061.
    [36] HALPIN C, KNIGHT M E, FOXON G A, et a1. Manipulation of lignin quality by down-regulation ofcinnamyl alcohol dehydrogenase[J]. The Plant Journal, 1994, 6: 339~350.
    [37] HIBINO T, TAKABE K, KAWAZU T, et a1. Increase of cinnamaldehyde groupas in lignin of transgen ic tobacco plants carrying and antisense gene for cinnamyl alcohol dehydrogenase [J]. Bioscci. Biotech. Biotechm, 1995, 59:929~931.
    [38] NI W, NANCYL P, RICHARD A D, Reduced lignin in transgenic plants containing a cafeic acid O-met hyl transferase antisense gene[J]. Transgenic Research, 1994, 3: 120~126.
    [39] Piquemal J, et a1. Down-regulation of cinnamoyl CoA reductase induces significant changes of Lignin profiles in transgenic tobacco plants Plant J, 1998, 13: 71.
    [40] Louise J A, et a1. Cloning and characterization of irregular xylem 4(irx4)a severely lignin-deficient mut ant of Arabidopsis. Plant J, 2001, 26(2): 205.
    [41] JOEL P, CATHERINE L, KATE M, et a1. Down-regulation of cinnamoyl-CoA reductase in duces signi ficant changes of lignin profiles in transgenic tobacco plants[J]. The Plant Journal, 1998, 13(1): 71~83.
    [42] ATANASSOVA R, FAVET N, MARTZ F. Altered lignin composition in transgenic toba cco expressi on O-methyltransferase sequence in sense and antisence ofitation[J]. Plant J, 1995, 8: 465~477.
    [43] NI W, NANCYL P, RICHARD A D. Reduced lignin in transgenic plants containing a cafeic acid O-met hyl transferase antisense gene[J]. Transgenic Research, 1994, 3: 120~126.
    [44] CATHERINE L, BRIGATTE P, MICHE L P, et a1. Structural alteration of lignin in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or cafeic acid O-methyhrans ferase activity have an opposite impact on the efficiency of industrial kraft pulping[J]. Plant Physio1.1999, 119: 153~163.
    [44] BAUCHER M, ANDREE M, VAILHE B, et a1. Down-regulation of cinnanyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L. )and the effect on lignin composition and digestibility[J]. Plant Molecular Biology, 1999, 39: 437~447.
    [45] HIBINO T, TAKABE K, KAWAZU T, et a1. Increase of cinnamaldehyde groupas in lignin of transgenic tobacco plants carrying and antisense gene for cinnamyl alcohol dehydrogenase[J]. Bioscci. Biotech. Biotechm. , 1995, 59: 929~931.
    [46] Baucher M, et a1. Down-regulationof cinnamyl alco hol dehydrogenase in transgenic alfalfa and the effect on lignin composition and digestibility. Plant Molecular Biology, 1999, 39: 437.
    [47] Halpin C, et a1. Brown-midrib maize (bm1) a mutation affecting the cinnarnyl alcohol dehydrogenase gene. Plant J, 1998, 14(5): 545.
    [48] Mackay J J, et al. Inheritance, gene expression, and lignin characterization in a mutant deficient in cinnamyl alcohol dehydrogenase. Proc Natl Acad Sci, 1997, 94: 8255.
    [49] Pilonel C, et a1. Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Souhum bicolor L Moench. Planta, 1991, 185: 538.
    [50] Lapierre C, et a1. Structural alterations of lignins in transgenic poplars with depresse cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol, 1999, 119: 153.
    [51] ZELIHA I, TIJEN O, ALTINKUT A, et a1. Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar[J]. Plant Biotechnology , 1999, 16(5): 381~387.
    [52] BATE N, ORR J, NI W, et a1. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determini ng step in natural product synthesis [J]. Proc. Natl. Acad. Sci. USA, 1994, 91: 7608~7612.
    [53] Rosler J, Krekel F, Amrhein N. Maize phenylalanine ammomalynse has tyrosine ammonia lyase activety. Plant Physiol, 1997, 113: 175~179.
    [54] Subramaniam R, Reinold S, Molitor E et a1.Structure inheritance, and expression of hybrid poplar (Populus trichocarpa×Populus deltoids)phenylala. nine ammonia-lyase genes. Plant Physio1. 1993. 102, 71~83.
    [55] Magel E. Hnbner B. Distribution of phenylalanine am monia-lyase and synthase within trunks of Robinia pseudoacacia L.Bot Acta, 1997, 110, 314~322.
    [56] Nakashima J, Awano T.Takabe K et a1.Immunocytochemieal localization of phenylalanine ammonia-ly ase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mes ophyll cells.Plant Cell Physiol, 1997.38, 113~123.
    [57] Schuler M A.Plant eytochrome P450 monoxygenases.Crit Rev Plant Set, 1996, 15, 234~284.
    [58] Whetten R , SederoffR R .Lignin biosynthesis.The Plant Cel1.1995.7, 1001~1013.
    [59] Bugos R C, Chiang V L C, Campbell W H.cDNA cloning, sequence analysis and seasoonal expression of lignin-bispecific caffeic acid/5-hydmxyferulie acid O-methyltransferase of aspen.Plant Mol Biol, 1991.17, 1203~1215.
    [60] Bugos R C, Chiang V L C, Campbell W H.Characterization of bispecific caffeic acid 5-hydroxyferulic acid O-methyltransferase from aspen.Phytochemistry, 1992. 31, 1495~1498.
    [61] Ye Z H, Kneusel R E, Matern U. An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell, 1994, 6: 1427~1439.
    [62] Ye Z H, Varner J E.Differential expression of two O-methyhransferase in lignin biosynthesis in Zinnia elegans. PIant Physio1, 1995.108, 459~467.
    [63] Van Doorsselaere J, Baucher M , Chogn ot E et a1.A novel lign in in po plar trees with a reduced caf feic acid/5-hydroxyferulic acid O.methyltransferase activity.Plant J, 1995, 8, 855~864.
    [64] Atanassova R, Favet N, Martz F et a1.Altered lignin composition in transgenic tobacco expression O- methyltransferase sequences in sense and antisense orientation.Plant J.1995,8, 465~477.
    [65]魏建华,赵华燕,张景等.毛白杨CCoAOMT cDNA片段的克隆与转基因杨木质素含量的调控[J].植物学报, 2001, 43(11):1179~1183.
    [66]赵华燕,魏建华,张景昱等.抑制COMT与CCoAOMT调控植物木质素的生物合成.科学通报, 2002, 47(8):604~607.
    [67] HumDhreys J M .Chapple C.Rewriting the lignin rnadmap.Current Opinion in Plant Biology, 2002, 5, 224~229.
    [68] Osakabe K, Tsao CC, Li L.Coniferyl aaldehyde 5-hydroxylation and methylation direct Sssyringl lignin biosythesis in angiosperms.Proc Natl Acad Sci USA, 1999, 96: 8955~8960.
    [69] Grand C, Furulic acid 5-hydroylase, a new cytochrome P450-dpendent enzyme from higher microsomes involved in lignin synthesis. FEBS Lett, 1984, 169, 7~11.
    [70] Meyer K , Cusumano J C. Somerville C et a1.Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases.Proc Nail Acad Sci USA.1996, 93, 6869~6874.
    [71] Meyer K , Shirley A M. Cusumano J C et a1.Lignin monomer composition is determined by the express ion of a cytochrome P450 dependent monooxygenases. Arabidopsis.Proc Natl Acad sci USA .1998.95, 6619~6623.
    [72] Goffner D , Campbell M M, Campargue C et a1. Purification and characterization of cinnamoyl-coenzy me A , NADP oxidoreductase in Eucalyptus gunnii. Plant Physiol, 1994.106, 625~632.
    [73] Grima-Pettenati J, Goffner D.Lignin genetic engineering revisited.Plant Science.1999.145, 5l~65
    [74] Lacombe E.Hawkins S.Van Doorsselaere J et al. Cinmamoyl CoA reductase .the first committed enzy me of the lignin branch biosynthetic pathway, Cloning, expression and phylogenetic relation ships.Plant J.1997, 11, 429~441.
    [75] Douglas C J.Phenylpropaniod metabolism and li~in biosynthesis, from weeds to trees. Trends in Plant Sci, 1996, (1), l7l~178.
    [76] Halpin C, Knight M E.Foxon G A et a1. Manipulation of lignin quality by downregulation of cinnamyla lcohol dehydmgenasae. Plant J, 1994, 6, 339~350.
    [77] Goffner D, Joffroy l Grima-Pettenati J et a1. Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta.1992, 198, 48~53.
    [78] Boudet A M, Lapierre C, Grima-Pettenati.Tansley review No.80 biochemistry and molecular biology of lignification.New Phytol, 1995.129, 203~236.
    [79] Sato Y , Watanabe T, Komamine A et a1.Changes in the activity and mRNA of cinnamyl alcohol dehyd rogenase during tracheary element differentiation in Zinnia.Plant Physiol, 1997, 113, 425~430.
    [80] Feuillet C Lauvergeat V, Deswarte C et a1.Tissue and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants Plant Mol Biol, 1995, 27, 65l~667.
    [81] Nakasbima J, Awano T.Takabe K et a1.Immunocytochemical localization of phenylalanine ammonia- lyase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia mesophyll cells.Plant Cell Physiol, 1997.38, 113~123.
    [82] Roth R , Boudet A M , Pont-Leziea R. Lignification and cinnamyl alcohol dehydrogenase activity in developing stems of tomato and poplar, a spatial and kinetic study through tissue printing. J Exp Bot, 1997, 48, 247~254.
    [83] ZELIHA I, TIJEN O, ALTINKUT A, et a1.Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar[J].Plant Biotechnology , 1999, 16 (5): 381~387.
    [84] Voo K S, Whetten R W O, Mlley D M. 4-coumarate:CoA ligase in xylem of loblolly pine. Plant Physiol,1995,108:85~97.
    [85] Ehlting J,Buttner D,Wang Q,Douglas CJ,et al.Three 4-coumarate:coenzyme A ligase in Arabidopsis tha liana represent two evolutionarily divergent classes in angiosperms.Plant J,1999,19:9~20.
    [86] Harding.S.A. Leshkevich.J. Chiang.V.L, et al..Differential substrate inhibition couples kinetically distin ct 4-coumarate:coenzyme A ligases with spatially distinct metabolic roles in Quaking Aspen1.Plant Phy siol..2002,128(2):428~438.
    [87] JIA Caihong, ZHAO Huayan, WANG Hongzhi.Obtaining the transgenic poplars with low lignin content through down-regulation of 4CL. Chinese Science Bulletin 2004 Vol.49(9):905~909.
    [88] Uhlmann,A.et al.Molecular cloning and expression of 4-coumarate:Coenzyme ligases, an enzyme involved in the resistance of soybean(Glycine max)againse pathogen infection. Plant Physiol.1993, 102:1147.
    [89] zhang,X.H.et al.Molecular cloning of 4-coumarate:CoA ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood. Plant Physiol.1997,113(1):65~74.
    [90] Christian.L.M, Britta.M, Judith.F.M, et al. Divergent members of a soybean(Glycine max L.) 4-co umarate: coenzyme A ligases gene family.European J.Biochem. 2002,269(4):1304~1315.
    [91] Hu.W.J, Kawaoka.A, Tsai.C.J.et al. Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (populus tremuloides). PNAS USA.1998,95:5407~5412
    [92] Li.L.G, Zhou.Y.H, Cheng.X.F, et al. Combinatorial Modification of multiple ligin traits in trees through multigene cotransformation. PNAS USA.2003.100(8):4939~4944.
    [93] Lee D, et a1. Antisense suppressionof 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition.Plant Cell, 1997, 9(11);1985~1998.
    [93] Lee, D.et al.Two divergent members of a tobacco 4-coumarate:CoA ligase (4CL) gene family.cDNA structure, gene inheritance and expression, and properties of the recombinant proteins.Plant Physiol. 1996,112:193~205.
    [94] Hauffe K D, Lefert P S, et al. A parsly 4CL-1 promoter fragment specifies complex expression patterns in transgenic tobacco. Plant Cell. 1991,3:435~443.
    [95]贾彩红,王宏芝,杜克久,宋艳茹,魏建华.抑制4CL基因表达的转基因毛白杨中木质素含量与茎杆颜色的关系.农业生物技术学报, 2004,12 (6):621~624.
    [96]贾彩红,赵华燕,王宏芝,邢智峰,杜克久,宋艳茹,魏建华.抑制4CL基因表达获得低木质素含量的转基因毛白杨. 2004, 49(7) 662~666.
    [97]赵艳玲,陆海,陶霞娟,陈雪梅,蒋湘宁. GRP1.8融合反义4CL1基因调控烟草木质素生物合成.北京林业大学学报2003, 25(4): 16~20.
    [98]梁海泳,夏秀英,冯雪松. UGPase和反义4CL基因对转基因烟草纤维素和木质素合成的调控.植物生理学通讯. 2006,42(6):l067~1072.
    [99]杨雪萍,陆海,陈雪梅,蒋湘宁.反义4CLI基因转化烟草调控木质素生物合成.北京林业大学学报. 2003, 25(3): 1~5.
    [100]杨雪萍,蒋湘宁等.反义4CL1基因转化烟草调控木质素生物合成.北京林业大学学报, 2003, 25(3):55~59.
    [101] Douglas,C.J,et al. Structure and elicitor or UV-light-simulated expression of two 4-coumarate:CoA ligases in parsley.EMBOJ,1987,6:1189~1195.
    [102] Becker-Andre, M.et al.Structural comparison,modes of expression,and putative cis-acting elem ents of the two 4-coumarate:CoA ligase genes in potato.J.Bio.Chem.,1991,266:8551~8559
    [103] Konbloch K-H,Hahlbrock K. 4-Coumarate:Coenzyme A Ligase from cell suspension cultures of Petr oselinum hortense Hoffm partial purification, substrate specificity,and further properties.Arch Bioch em Biophys.1977, 184: 237~248.
    [104] Linderman,C.et al.Divergent members of a soybean(Glycinemax L.) 4-Coumarate:Coenzyme A Ligase gene family.Eur.J.Biochem.,2002,269:1304.
    [105] Malgorzata P, Hans-Peter S,Erich K,et al.4-Coumarate:Coenzyme A Ligase Has the Catalytic Capacity to Synthesize and Reuse Various (Di)Adenosine Polyphosphates.Plant Physiol.2003, Vol.131:1401~1409
    [106] Zhao.H.Y..Wei.J.H..Song.Y.R.et al..cDNA cloning and functional analysis of 4-coumarate CoA:ligase (4CL) gene in Chinese white aspen.Progress in Nature. Science. 2003.12:895~900.
    [107] Zhao Y. Kung S D. Duba S K.Nucleotide sequence of rice 4-eoumarate;CoA ligase gene 4CL. Nucle ic Acids Res. 1990, 18: 6144.
    [108]张齐生等.中国主要竹材微观构造[M].北京:中国林业出版社, 1995.
    [109]曾荣等.木质素研究进展.四川农业大学学报. 2004, 22(3):274~277.
    [110]张齐生等.中国竹的工业化利用[M].北京:中国林业出版社, 2001.
    [111] Higuchi T, Nakatsubo F. Acidolysis of bamboo lignin(I,Ⅱ,Ⅲ)[J]. Mokuzai Gakkaishi Journal of the Japan Wood Research Society, 1972, 18(4);183~189.
    [112]马灵飞,韩红,徐真旺.部分竹材灰分和木素含量的分析[J].浙江林学院学报. 1996, 13(3): 27 6~279.
    [113]王文久,辉朝茂,刘翠等.云南14种主要材用竹化学成分研究[J].竹子研究汇刊, 1999, 18(2): 7478.
    [114]林金国,董建文,方夏峰等.麻竹材化学成分的变异[J].植物资源与环境学报, 2000, 9 (1): 5556.
    [115] Li J X, He X Q, Hu Y X, et al. Ligninification and lignin heterogeneity for various age classess of bam boo (Phyllostachys pubescens) stems[J]. Physiologia Plantarum, 2002, 114(2):296302.
    [116]郑蓉.不同海拔毛竹竹材化学组成成份分析[J].浙江林业科技, 2001,1.
    [117]藤井康代.竹子节间伸长中维管束内木质素与酯化酚酸的分布[J].竹类研究, 1994, (2):59~66.
    [118] Fengel D, Shao X. Studies on the lignin of the bamboo species Phyllostachys makinoi Hay [J]. Wood Science and Technology, 1985, 19(2):131~137.
    [119] Lin J X, He X Q, Hu Y X, et a1. Lignification and lignin heterogeneity for various age clas ses of bamboo (Phyllostachys pubescens) stems [J]. Physiologia Plantarum, 2002, 114(2):296~302.
    [120] Kuroda H, Shimada M, Higuchi T. Roles of bamboo O-methyltransferase in the lignin biosy nthesis[J]. Wood Research Kyoto University, 1981, 67: 17~28.
    [121]吴晓丽,顾小平,苏梦云等.离体毛竹笋纤维素和木质素含量及POD和PAL活性研究.林业科学研究. 2008, 21(5): 697~701.
    [122]林海萍,吴家森,付顺华等.雷竹笋采后贮藏生理的研究.江苏林业科技. 2002, 19(4): 16~17.
    [123]王敬文.采后竹笋老化生理研究.林业科学研究. 2002, 15(6): 687~692.
    [124]席屿芳,罗自生,程度等.竹笋采后木质素与多酚氧化酶、过氧化物酶和苯丙氨酸解氨酶活性的关系[J].植物生理学通, 2001, 37(4): 294~295
    [125]陆胜民.鲜切竹笋冷藏过程中生理和生化变化的研究.中国食品学报. 2004,6.
    [126]郭晓艺,胡尚连,曹颖等.调控S木质素合成基因F5H1研究进展及对竹遗传改良的展望.福建林业科技. 2007, 34(3): 234~237, 243.
    [127] Takei T, Kato N, Iijima T, et a1.Raman spectroscopic analysis of wood and bamboo lignin [J]. Mokuzai Gakkaishi Journal of the Japan Wood Research Society, 1995, 41(2);229~236.
    [128] Chandra A, Guha S R D. Fengel D, Shao X .Studies on the lignin of the bamboo species Phyllostachys makinoi Hay[J].Physiologia Plantarum,2002.114(2) :296~302.
    [129] Fengel D, Shao X.Studies on the lignin of the bamboo species Phyllostachys makinoi Hay[J]. Wood Science and Technology, 1985, 19(2);131~137.Indian Forester, 1981, 107(1);54~59.
    [130] Kuroda H, Shimada M, Higuchi T. Roles of bamboo O-methyltransferase in the lignin biosynthesis [J]. Wood Research KyotoUniversity, 1981, 67;17~28.
    [131]郭京波,陶宗娅,罗学刚.不同提纯方法对竹木质素结构特性的影响分析.
    [132]林曙明,李志清,陈中豪.不同年生竹材木素的光谱特性[J].西北轻工业学院学报, 1995, 13(2):102~106.
    [133]毛燕,王学利.毛竹等九种竹叶中蛋白质和总糖含量的测定.竹子研究会刊, 1998(2):18~20.
    [134]叶忠华.毛竹材特性及工业利用分析.林业科技, 2002, 27(3):39~42.
    [135]马乃训,张文燕.竹材制浆造纸述评.林业科学研究, 1995, 8(3):329~333.
    [136]汪奎宏,黄伯惠主编.中国毛竹[M].上海;上海科学技术出版社, 1998:69.2.
    [137] Lin J X, He X Q, Hu Y X ,et al. Lignification and lignin heterogeneity for carious age calles of bamboo (Phyllostachys pubescens) stems[J]. Physiologia Plantarum, 2002,114(2) :296~302.
    [138] Shimada M, Fukuzuka T,Higuchi T. Ester linkages of p-coumaric acid in bamboo and grass lignins[J]. Tappi,1971,54(1) :72~78.
    [139]陈英,何秋伶,诸葛强,黄敏仁,王明庥.林木基因工程研究进展.
    [140]陈建荣,郭清泉,张学文,李建军.木质素生物合成调控基因工程研究进展.农业生物技术科学, 2005(7):24~27.
    [141]陈永忠,谭晓风, David Clapham.木质素生物合成及其基因调控研究综述.江西农业大学学报, 20 03, 25(4):613~617.
    [142]陈有民.树木学[M].中国林业出版社, 1990.
    [143]沈茂成.中国林业年鉴.北京,中国林业出版社, 1990.
    [144]付月,李学龙,薛永常.木质素合成酶基因F5H的克隆及其鉴定.
    [145]付月,薛永常.木质素生物合成及其基因调控研究进展.安徽农业科学.1766~1767、1771
    [146]耿飒,徐存拴,李玉昌.木质素的生物合成及其调控研究进展.
    [147]李伟,熊谨,陈晓阳.木质素代谢的生理意义及其遗传控制研究进展.
    [148]蔺占兵,马庆虎,徐洋.木质素的生物合成及其分子调控.自然科学通报, 2003, 13(5):455~461.
    [149]穆环珍,刘晨,郑涛.木质素的化学改性方法及其应用.
    [150]邱学青,楼宏铭.木素水处理剂的应用研究进展[J].环境保护, 1996(6):45~47.
    [151]徐洋,硕士论文,分子调控咖啡酸-O-甲基转移酶(COMT)对木质素合成及植物生长发育的影响.
    [152]薛永常,李金花,卢孟柱,张绮纹.木质素单体生物合成途径及其修订[J].林业科学, 2003, 39(6):148~152.
    [153]王剑波,隋智慧.木质素的应用研究进展.
    [154]于明革,杨洪强,翟衡.植物木质素及其生理学功能.山东农业大学学报(自然科学版), 2003, 34 (1);124~128
    [155]赵华燕,魏建华,宋艳茹.木质素生物合成及其基因工程研究进展.植物生理与分子生物学学报, 2004, 30(4):361~370
    [156]张德强.毛白杨木材形成相关基因的克隆及在烟草和杨树中的表达.中国林业科学研究院博收后研究工作报告.2004:38~63.
    [158]章霄云,郭安平,贺立卡,孔华.木质素生物合成及其基因调控的研究进展.分子植物育种. 2006, 4 (3) :431~437.
    [159]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控.植物生理学通讯, 1988.24(3):9~l6
    [160]欧阳光察,应初衍等.植物苯丙氨酸解氨酶的研究.Ⅵ.水稻、小麦PAL的纯化及基本特性[J].植物生理学报,1985,l1 (2):204~214
    [161]王敬文,薛应龙.植物苯丙氨酸解氨酶的研究I.植物激素对甘薯块根植物苯丙氨酸解氨酶和内桂酸羟化酶活性变化及其伴随性的影响[J].植物生理学报, 1981.7(4) 373~379.
    [162]余沛涛,薛应龙.植物荤丙氨酸解氨酶(PAL)在细胞分化中的作用[J].植物生理学报1986, 13(1): 37~38.
    [163]余沛涛,薛应龙.植物苯丙氨酸解氨酶(PAL)在细咆分化中的作用[J].植物生理学报, 1987, 13 (1):14~19
    [164]中野准三编.高洁,鲍禾,李忠正译.木质素的化学.北京:中国轻工业出版社, 1988, 21.
    [165]曹珍,全金英,李忠正.中国造纸, 1997, (1): 68~70.
    [166]马涛,詹怀远,王德汉等.广东造纸. 1997, (56):125~127.
    [167]曹珍,全金英,李忠正.中华纸业, 1998, (2): 68.
    [168]陈国符,邬义明.植物纤维化学[M].北京:轻工业出版社, 1980.
    [169]隆言泉.制浆造纸工艺学[M].北京:轻工业出版社, 1980.
    [170]宋云,王义镛,余贻骥.二氧化硫处理碱法草浆黑液有关工艺及参数的研究[J].中国造纸, 1981, (2).
    [171]陈嘉翔.草类原料蒸煮脱木素的特点[J].中国造纸, 1987, (1).
    [172]刘可星,王德汉,唐宗文.广东造纸, 1998, (3):14~15.
    [173]穆环珍,杨问渡,黄衍初.环境污染制理技术与设备. 2001,2 (3): 26~30.
    [174]马宝歧.纤维素科学与技术. 1994, 2(3-4):32.
    [175]张洁,李忠正.纤维素科学与技术. 1997, 5(1): 48~53.
    [176]张洁,李忠正.纤维素科学与技术. 1997, 5(2): 37.
    [177]马宝歧.纸和造纸. 1994, (1): 10~11.
    [178]张珂,周思毅主编.造纸工业蒸煮废液的综合利用与污染防治技术.北京:中国轻工业出版社, 1992, 359.
    [179] Whetten R W, Sederof R R. Phenylalanine ammonia-lyase from loblolly pine. Purification of the enzy me and isolation of complementary DNA clones[J]. Plant Physiology, 1992, 98(1):380~386
    [180] Given N I, et a1. Purification and properties of phenylalanine ammonia-lyase from strawberry fruit and its synthesis during ripening [J]. Journal of Plant Physiology, 198, 133(1): 31~37.
    [181] Lim H W, et a1. Purification and properties of phenylalanine ammonia-lyase from leaf mustard [J]. Molecules and Cells, 1997, 7 (6): 71 5~720
    [182] Havir E A. Phenylalanine ammonia-lyase: purification and charaeterization from soybean cell suspension cultures [J]. Archives of Biochemistry and Biophysics, 1981, 211(2):856~563.
    [183] lwasa K. Changes in activity of phenylalanine ammonia-lyase in tea leaves[J]. Journal of the Agri cultural Chemical Society of Japan. 1974, 48 (8):445~450
    [184]赵卫东等.荧光PCR方法定性和定量检测BT63转基因大米.食品研究与开发. 2009, 30(3)133~135.
    [185]朱捷,杨成军,王军.荧光定量PCR技术及其在科研中的应用.生物技术通报. 2009(2)73~76.
    [186]王玉林,史进方,蔡惠芬.内参基因β-actin质粒标准品的构建.中国组织工程研究与临床康复. 2008, 12 (48): 9501~9504.
    [187]张垲,余冰菲,陈瑞川.荧光定量检测细胞绿色荧光蛋白技术的建立与应用.厦门大学学报:自然科学版. 2008, 47(A02):264~267.
    [188]栗文凯,张智勇,胡建和.实时荧光定量PCR应用技术综述.中国畜禽种业. 2008, 4 (19):71~72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700