菜籽饼生物脱毒的微生物筛选复配、脱毒机理与应用效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发酵法菜籽饼脱毒方法主要指微生物脱毒方法。微生物数量大,种类多,生长快,易培养,且酶系复杂,几乎可以分解一切天然物质。用微生物制剂进行菜籽饼脱毒,有以下几个特点。第一,酶系复杂,分解硫甙的芥子酶多样,能够水解复杂多变的硫甙。第二,分解中间产物的酶系复杂,能将其彻底分解,并合成微生物自身物质。第三,菜籽饼的其它抗营养因子也能被微生物分解,如植酸、单宁、纤维素、芥子碱等,大大地改变菜籽饼的口感,提高菜籽饼的营养成分的利用率。第四,微生物利用自身代谢作用,可以产生香味物质或香味物质的前体物质,提高菜籽饼脱毒后的香味,所以作者认为微生物脱毒方法是一种很有前途的脱毒方法,应该发展广大。
     作者通过一年的室内微生物分离、纯化与脱毒试验和一年的养殖试验,研究了土壤中菜籽饼脱毒微生物的富集和筛选、初选的四十多种微生物纯种的菜籽饼脱毒、属内属间霉菌复配的菜籽饼脱毒、筛选复配FDMRM-1的脱毒效果试验和用FDMRM-1生产的脱毒菜籽饼进行的养殖试验。取得的主要研究结果如下:
     1.利用菜籽饼为发酵基质,对A类土、B类土、C类土中菜籽饼脱毒微生物进行富集。在富集过程中A类土的菜籽饼脱毒结果比较理想,GS脱毒率98.4%。总体脱毒效果是A类土>B类土>C类土。细菌总数,在A类土中经富集后,增殖4.5倍;在B类土中增殖4.0倍;在C类土中增殖3.4倍。霉菌总数在A类土中经富集后,增殖了10.01倍;在B类土中增殖了11.71倍;在C类土中增殖了11.66倍。放线菌总数在A类土中增殖了1.5倍,在B类土中增殖了2.8倍;在C类土中增殖了3.3倍。酵母菌总数在A类土中增殖了4.0倍;在B类土中增殖7.5倍,在C类土中增殖了9倍。根据微生物数量的变化情况,初步认为GS的脱毒率与脱毒微生物的数量的呈正相关,霉菌的脱毒作用>细菌的脱毒作用>放线菌的脱毒作用。并从富集的土壤中分离纯化了四十多种微生物将用于FDMRM的研制。
     2.菜籽饼中的主要有毒成分硫代葡萄糖甙有多种结构,在同一样品中多种结构并存。不同品种菜籽饼的硫甙含量与组成不同,同一品种菜籽饼的不同样品的硫甙含量与组成也有差异,这是因为菜籽饼的硫甙含量与组成不仅取决于菜籽的遗传特性,同时也受油菜的栽培条件、菜籽的贮藏条件、油脂的加工条件和菜籽饼贮存条件的影响。也就是对某一菜籽饼品种来说,它的硫甙是复杂多变的。
     3.对硫甙有降解作用的微生物可能含有某一类或若干类芥子酶,它只能降解菜籽饼中结构与其相适应的某一种或几种硫甙,结构不相适应的硫甙不能降解。某一微生物的硫甙降解率的最高值(或理论值),应该是相对应的硫甙在总硫甙中所占的百分比。
    
    不同微生物所分泌的芥子酶系不同,在同一样品的菜籽饼上的GS降解率不同。同一
    微生物在不同菜籽饼样品上的GS降解率也不同(因不同样品硫贰组成有差异)。菜籽
    饼脱毒微生物复配的实质是一种芥子酶的复配,由于复配后芥子酶系类型增加,则对
    应结构的硫贰在总硫贰中所占比例增加,硫贰降解率也就会相应增加。所以属内霉菌
    复配,GS降解率有所提高,属间霉菌复配,GS降解率又有大幅度提高。远缘多微生
    物复配,达到了较为完美的脱毒效果,GS降解率达到了99%以上,植酸、单片、纤
    维素也有很大程度的降解。不同微生物间的芥子酶结构与性能有不同程度的重叠现象。
    如在甲微生物中芥子酶的结构类型是abc三类,而在乙微生物中芥子酶的结构类型是
    abd,说明有ab的重叠,它们的硫贰降解率的差异主要是在ab百分比基础上。与d的
    差异。微生物的亲缘关系越远、芥子酶结构差异越大,芥子酶结构的重叠现象越少,
    或越轻,成为远缘微生物复配的理论基础。
     在远缘多微生物复配过程中加入了白地霉、酵母菌等四种微生物,它们的GS脱
    毒率不高,但可以利用无机态氮合成菌体蛋白,使得菜籽饼脱毒之后蛋白质含量提高
    到39.2%,从而提高了脱毒饼的营养价值。
     4.以FDMRM一1为脱毒菌剂(远缘多微生物复配)进行了菜籽饼生物脱毒过程
    中的微生态研究。证明了在发酵过程中,发酵的环境温度不同,发酵过程中pH值变
    化状态不同、发酵品温变化也不同。环境温度在25℃条件下品温变化较理想、GS的
    降解率%.8%。
     5.提出了菜籽饼脱毒微生物的交替培养分离法,也就是分离霉菌用察氏培养基
    一RSM培养基交替培养:分离细菌用牛肉膏蛋白脉培养基一RSM培养基交替培养;
    分离酵母菌用麦芽汁培养基一RSM培养基交替培养,可以事半而功倍。
     6.用FDMRM一1发酵生产的脱毒饼代替100%豆饼粉加入猪饲料中进行猪的育
    肥,日增重5079,料肉比3.30:1,和对照(加入豆饼粉)的饲料饲养效果十分接近(P
    >0.01)。月同体品质与内脏重量也基本正常,说明在育肥猪饲料中这种脱毒饼能完全代
    替豆饼粉,可以大大降低饲料成本。
     7.用FDMRM一1发酵生产的脱毒饼饲养黄粉虫连续三代,无致畸作用。脱毒饼
    在黄粉虫饲料中添加量不受限制,可依饲料配比确定。既可降低饲料成本,又可提高
    饲料营养,加快幼虫生长速度,增加产卵量,可以明显地提高养虫效益。
Fermentative detoxicating method is microbes detoxicating method Of RSM. Microbes can decompose all the natural material with the characters of great quality, many species, fast growing, easy culture and complicatedly enzymes. There were some characters with detoxicating microbes. First, the enzymes were complicated, complicated and changefull GS could be decomposed. Second, the middle matters could be decomposed by the microbes enzymes, too, and selfish material were composed. Third, Phytin acid, Tannins, Sinapine and Fibre in RSM could be decomposed, nutrition and utilization ratio could be raised. Fourth, some fragrant matters were produced with the microbes self-metabolism, and the taste of detoxicated RSM was changed. The test proved that microbes detoxicating method had a great future.
    By the experiments of detoxicating microbes seporation, purification and detoxication of RSM in laboratory and feeding test within two ywers, the detoxicating microbes abundance and purification of RSM in soils, single detoxicating effect of 40 species of microbes, the detoxicating result of moulds in genus, between genera and microbes distant combination, feeding pigs and Tenebrio molitor with FDMRM-1 detoxicated RSM were studied in this paper. The main results are as following:
    1. The microbes of RSM detoxicated were abundanced in test, in the A soil, B soil and C soil using RSM as fermentation base, abundancing time 8 weeks, determination every week. B in the A soil increased 4.5 times, in the B soil 4.0 times, in the C soil 3.4 times. M in the A soil increased 10.01 times, in the B soil 11.71 times, in the C soil 11.66 times. A in the A soil increased 1.5 times, in the B soil 2.8 times, in the C soil 3.3 times. Y in the A soil increased 4.0 times, in the B soil 7.5 times, in the C soil 9.0 times. The results of dotoxicating in A soil during the abundance were satisfied. This test proved that action of detoxicating was M >Y > B > A on the basic of microbes change. Microbes of 40 species was sepereted and purified from the abundanced soil with RSM, and that wound be used to study and produce the FDMRM-1.
    2. There were plenty of structures in RSM toxic GS which exited in common in one sample. The content and constituent of GS were different in different species of RSM and in different RSM sample of a common species because the content and constituent of GS were decided by not only the inherent characteristics of rape but also their cultivated conditions of rape, stored conditions of rapeseed, processed conditions of plant oil and stored conditions of rapeseed meal. It was that the structures of GS were complicated and changeable to the species of RSM.
    3. There was one type thioglucosidase or more in one detoxicating microbe. It could only decomposed the glucosinolate which structure was correspending to the enzyme in RSM. It could no decomposed the GS with different structure. The highest measure of detoxicated GS in one microbe was the percentage correspending structure GS with total GS. The typies of thioglucosidases were different in different microbes so the GS decomposed rates were different in a common RSM sample. The GS decomposed rate of a common microbe was different in fifferent sample of RSM (there were difference in different RSM sample). In fact the combination between microbes was the combination of GS enzymes. Because the typies of thioglucosidase owing to the combination were raised and the
    
    
    
    proportion of correspending structure with total GS was increased the detoxicated rate of GS could be raised, the detoxicating rate of GS with M in genus > the detoxicating rate of GS with M between genera. The detoxicating result of many microbes distant combination was sotisfied (99.0%).
    The content of protein in detoxiated RSM was increased to 39.2% because of the joining of some microbes which could compose their cell protein from inorganic nitrogen and the nutrition value of detoxicated RSM was raised.
    There was interlock appearance among enzymes between microbes. If one microbes GS enzym
引文
[1] Ali, M.M. and Islam, M.A. (1965) 'Pectic enzyme of Penicillum frequentens involved in the retting of jate'. Pakistam J. Scient. Ind. Res. 8, 47~51. Ref. CA63, 18989d
    [2] Al-Asheh S et al. The effect of phophate concentration on the phytase production and the reduction of the phytic acid content in canola meal by Aspogillus carbonarus during a solid state fermentation process. App Microbiol Biotechnol. Berlin, Cenmany, 1995, 43(1): 25~30
    [3] Amtlield S D, Murray E D. The influence of processing Parametry as an Indicator of Protein. Can Instit Food Sci Technol J, 1981,14:289~294
    [4] AOAC. Office Methods of Analysis (13th edu). Washington,B C. Association of official Analytical Chemists;1980
    [5] Aoyagi: Effect of microbial phytase and 25-Dihgdaoxycholecalciferol on dieterg copper wtilizetion in chicks. Poult. Sci. 1995.74:121
    [6] Ausfin F L. Wolffl A. J. Agric. Food chem, 1968,16:132
    [7] Batterham ES. Heal digestibility of amino acids in fecdsstuffs for pigs. In: D'mello J P F ed. Farm Animal Nutrition. Wallingford, UK:CAB Internatonal. 1994:113~131
    [8] Bell J M and Keith M O. A survey of variation in the chemical composition of commercial Canole meal produced in Wastern Canadian crushing plants. Can J Anim Sci, 1991(71): 469~480
    [9] Bell J M. Factors affacting the nutritional value sf Canola meal: A review. Can J Anim sci, 1993(73): 679~697
    [10] Bell J M and Keith M O, Performance of finishing pigs fad canola meal in growing finishcing diets. Nutr Rep Int. 1988(38): 263~274
    [11] Bell J M and Shires A. Composefion and digestibility by pigs of hull fractions from rapeseed caltivars with yellow or brown seed coats. Can J Anim Sei, 1982(62): 557~565
    [12] Bell J M. Nutrients and toxicants in raposeed meal: A review. J Anim Sci, 1984, 58(4): 996~1007
    [13] Bell J M. Growth depressing fractors in rapeseed meal. J Anim Sci, 1965.24:1147
    [14] Bell J M and Aheme. Canola meal for pigs. Canola meal for livestock and poultry, Pws 59 canola of canaola, 1981
    [15] Bell J M. Keith M D. A survery of variation in the chemical composition of commercial canola meal produced in wastern Canadian crushing plants. Can. J. Anita. Sci, 1991,71:497~506
    [16] Bell J M, Shire A. Composition and digestibility by pigs of hull fractions from rapeseed cultivars with yellow or brown seed coats. Can. J. Anita. Sci, 1982, 62: 557~565
    [17] Bel J M. Factors affecting the nutritional value of canola meal: A review. Can. J. Anim. Sci, 1993, 73: 679~697
    [18] Besle R. Fontaine J and Heinbeck W. Research evaluates amino acid composition of canola meal. Feedstuffs. 1992(5)4: 16~17
    [19] Bilai, V. I. (1963) 'Antibiotic-produling Microscopic Fungi'. Elsevier Publ. Co, Amsterdam
    [20] Blouin F A. Zaring Z M, Cherry J D. Discoloration of proteins by Binding With Phenolic
    
    compounds. In Food Protein Daterioration. American Chemical Society, Washingtom D C, 1982
    [21] Bondarchuk, A.A. (1964) ('Amylase from the mycelium of penicillum chrysogenum, strain 194'). Mykrobiol. Zh. Kiew, 26, 40~4. Ref. CA62, 10877g,1965
    [22] Bondarchuk, A.A. (1966) ('Isolation of a-amylase from the mycelia of penicillum chrysogenum, strain 194'). Mykrobiol. Zh. Kiew, 28/Ⅰ, 3~6. Ref. CA 65, 4172e, 1966
    [23] Brian, P. W. Hemming, H. G. And lowe, D. (1953) 'Antibiotic producticn by the microfungi of acid heath soils'. J. Gen. Microbiol, 9, 314~41
    [24] Bilai, V. I. And Lanevieh, V. E. And Melashenko, Yn, R. (1961) ('A comparative study of different strain of Gibberella fujikuroi which synthesized gibberallinoid plant growth stimulators'). Mykrobiol. Zh. Kiew, 23/3, 34~8
    [25] Brrges, A. And Fenfon, E. (1953) 'The effect of carbon dioxide on the growth of certain soil fangi'. Trans Br. Mycol. Soc, 36, 104~8
    [26] Butler, M. L. And Raper, K. B. (1949) 'The fungi concerneel in fiber eleterioration. Ⅱ. Their ability to decompose cellulose'. Teat. Res. J, 19, 462~84
    [27] Busato A et al. Effect of feeding rapeseed meal on livar and thyroid gland function and histomorphology in growing pigs. J Anim, physiol Anita Natr, 1991, 66: 12~27
    [28] Campbell L D et al. Glncosinate analysis of rapeseed meal. Research on canola seed oil meal and meal fractim. G Canol Council of Canada 6 Prog Rep Pub, 1980,57:301~433
    [29] Cowley, G.T. and Whittingham, W.F.(1961) 'The effect of tannin on the growth of selected soil miorofungi in culture'. Mycologia, 53, 539~42
    [30] Clendinin D R et al. Rapeseed meal studies. Poult sci, 1959(38): 1367~1372
    [31] Deacon M A et al. Influence of jet-sploding and extrusion on ruminal and intestinal disappearance of canola and sogbeans. J Deirg sci, 1988(71): 745~753
    [32] Domsch, K. H. (1960). ditto 'Ⅲ. Nachweis der Einzelpilze'. Aich. Mikrobiol., 35, 310~39
    [33] Domsch, K. H. And Gams, W. (1969) 'Variability and potential of a soil fungus populetion fo decompose pectin, xylan and carboxymethyl-cellulose'. Soil Biol. Ⅰ, 29~36
    [34] Domsch, K. H. (1960) ditto 'Ⅲ. Nachweis der Eeinzelpilze'. Arch. Mikrobiol, 35, 310~39
    [35] Eggum B O. Digestibility of plant proteins: animal studies. In: Finley J W, Hopkins D T, eds, Digestibility and Amino Acid Availability in Cereals and Qilseads. St. Paul, Minnesota: American Associalion of Cereal chemist, Inc. 1984: 275~283
    [36] Feriol Ismail, Michael Eskin N A. A new quantitative productive pracedure for dertermination of sinapine. J. Agric. Food Cham, 1979, 27(4): 917~918
    [37] Gams, W. And Gerlach, M. (1968) 'Beitrage zur Systematik und Biologic von Plocto speerella cucumeris and der zugehorigen Konidienform'. Persoonia, 5, 177~88
    [38] Glancer M. Process Biochemistry, 1989, 24(3): 109~113
    [39] Grala W, Verstegen M W A, Jansman A J M, et. Nitrogen utilization in pigs fed diets with soybean and rapeseed products leading to different deal endogenous nitrogen loses. J Anim Sci, 1998. 76: 569~577
    
    
    [40] Hill R. Rapeseed meal in the diets of ruminants. Nutr Abstr Rer, 1991(38): 139~155
    [41] Ipples K H. Qualify of Westem Canadian canola. Grain Research Laboratary, Canadian Grains Commission, Winnipeg, MB, 1998
    [42] Khoasem: G R et al. Effest of chemical treatment on in vitro and in situ degradatoin of canola meal crude pretoin. J Dairy sci, 1989(72): 2074~2080
    [43] Kirilenko, T. S. (1965) ('Species of the genus Fuserium in barley and oat zhizosphere in districts of the Poless'e of the Ukrainian SSR'). Mykrobiol. ZH. Kiew, 27/2, 23~9
    [44] Lewis AJ, Bayleg HS. Amino acid bioavailability. In: Ammerman C B, Baker DH, Lewis AJ, eds. Bioavailabilty of nutrieuts for animals: Amino avids, minerals, and vitamins. Newyork: Academic Press, Inc, 1997: 35~65
    [45] Linden T. Enzyme Micro Technol, 1989, 11(9): 583~589
    [46] Low A G. Studies on digestion and absorption in the intestines of growing pigs. 6. Measuremts of the flow of amino acids. Br J Nutr, 1979.14:147~155
    [47] Lorusso L et al. Decrease of tannin content in canola meal by an enzyme preparation from Trametes Versicolor. Biotechnol-lett. Landon U K, 1996,18(3): 309~314
    [48] Mandeis, G. R. (1955) 'Biotim and interrupted growth of Myrothecium vervucaria'. Am. J. Bot. 42, 921~9
    [49] Maga, J,A., J, Agric, Food chem. 1982: 301
    [50] Mekinnon P J et al. Compavison of low glucosinolate-low erucic acid rapeseed meal (Caltivar Tower), commercial rapeseed meal and soybeen meal as sources of protein for starting, growing and fishing pigs and young rats. Can J Anim Sci, 1977(57): 663
    [51] Mekinpon J J et al. The influence of heat and chemical treatment on ruminal disappearance of canola meal. Can J Anim Sci, 1991(71): 738~780
    [52] Mitchell H H. A method of delermining the biological value of protein. J Biol chem, 1984.58: 873~882
    [53] Mitara B N et al. Tannin and fiber contents of rapeseed and canola hulls. Can J Anim Sci, 1982, 62: 661~663
    [54] Moughan P J. Modelling amino acid absorplion and metabolism in the growing. In: D'Mello J P E ed. Amino Acids in Farm Animal Nulrition Walling ford UV: CAB laternational, 1994: 133~184
    [55] Murray E D, Myers C D, Barller L D, Functional Attributes of protein. A Nonocovalent Appruach. Westport, CT: Food and Nutritional press, Inc, 1981: 158~176
    [57] Nelson. Phytase in nutrition and waste management. Poultry Digest. August, 1993: 10~13
    [58] Nutienl reaqirements of swine. Tenth Revised, Edition. NRC, 1998
    [59] Pettersson, G. (1963) 'Separation of cellulases on Sephadex G-100'. Biochim. Biophys. Acta, 77, 665~7
    [60] Pusztai A Antinutrients in rapeseeds Nafr Abstr Rov (seies B), 1989, 59(8): 427~431 Proc 8th Int Rapeseed Congress, 1991: 442~447
    [61] Reese, E. T. And Levinson, H. S. (1965) 'β-Mannanases of fangi'. Can, J. Microbial., Ⅱ, 167~83
    
    
    [62] Slominski B A and Campbell L D. Non-stanh polysal charides of canola meal. J Sci Food Agric, 1990(53): 175~184
    [63] Saller W C et al. Amino acid availability and protein quality of canola and rapeseed meal for pigs and rats. Can J Anim Sci, 1982, 54(2): 292~300
    [64] Schone F et al. Copper and iodine in pig diets with high glucosinolate rapeseed meal. Anim Feed Sci Technol. 1990, 30: 143~154
    [65] Simons. Improvemert of phosphorus aveilability by microbial phytase in broilers and pigs. Br. J. Nutr, 1990.64: 525
    [66] Sibbald I R. The TME System of feed evaluation: Methodology, feed composition data and bibliography, Anita Res Centre Research Branch Agric Can, 1986
    [67] Slominski B A and campbell L D. The carbohydrate cotnent of yellow seed canola. Proc 8th Int Rapeseed Congress Saskatoon SK, 1991: 1402~1407
    [68] Sauer W C, Ozimek L, Digestibility of amino acids in swine: resuets and theiy practical application: Areview, Lives Prod sci, 1986.15: 367~369
    [69] Sauer WC, Dugunm, de Langek, et al. Considerations is methodology for the dotermination of amino acid digestibililies in feedstuffs for pigs. In: Friedman Med. Absorption and utilization of Amino Acids, Vol.Ⅲ. Boca Baton, Florida: CRC press, 1989: 217~230
    [70] Slominski B A and campbell L D. Influence of indole glueosinolate on the nutritive quality of canola meal. Proc 8th Int Rapeseed Congress, 1991: 396~401
    [71] Robbeler Gand Thies W Veriatior in rape seed glucosinolates and breeding for improved meal quality. Brassica crops and thair Wild Allies. Biology and Breeding. Japan Sci soe press Tokyo Japan, 1980
    [72] Slominski B A, Campboll L D. Non-starch polysaccharides of canola meal.J. Sci. Food Agric. 1990,53:175~184
    [73] Slomiski B A and campbell L D. The earbohydrate content of yellow seed canola. Proc. 8th Int. Rapeseed Congress, Saskatoon. SK, 1991: 1402~1407
    [74] Sun Zhide and Ismond M A H. Study on traction, Isolation of Canola Meal Protein After Removing the Phenolic Compoands, Application of new method of canoda protein isolation, Jaurnal of Hwazhong Agricultural University, 1999,18(4): 304~306
    [75] Tanksley T D, Knade. Heal digestibilities of amino acids in pig feeds and their use in formulating diets. In: Cole DJA, Haresing W, Gamsworthy P C eds. Recent developmants in pig nutrion (znd Ed) Loughborough: Nothingham University Press, UV, 1993: 85~94
    [76] Tzagoloff A. Plant physical, 1963,38:202
    [77] Vinze, V. L. (1962) 'Oxidation of carbohydrates by Penicillum chrysogenum spores'. Hindust. Antibiotics Bull, 5:45~50
    [78] Wickins, W. H. And Havris, G. C. M. (1944) 'Investigations into the production of bacteriostatic sabstances by fungi'. Trains. Br. mycol. Soc, 27, 113~20
    [79] Y. I. Fopowiyo, RK Owusu. The Effect of Heat and Acid treatment on structure of Rape-seed
    
    Albuinin. J. Food. Chem, 1997.58.3: 237
    [80] 北京市中宏饲料联营公司,粮食与饲料工业,1993.1:35~38
    [81] 曹义生等,猪用6107菜籽饼解毒剖在生长肥育猪配合饲料中的应用,饲料工业,1991.11:37-39
    [82] 陈喜斌,加大双低菜籽粕作家畜饲料的研究进展,中国饲料,2000.2:35~37
    [83] 陈彤、王克,黄粉虫等昆虫的营养价值与食用性研究,西北农业大学学报,1997.4:78~82
    [84] 陈彤,黄粉虫养殖与利用,金盾出版社,2000.11:25~28
    [85] 董玉京译,菜籽油粕的饲用价值,饲料与畜牧,1988.5:9~10
    [86] 邓栓林等,脱毒菜籽饼对鸡饲养效果的评价Ⅱ,代谢能与氨基酸消化率的测定,青海畜牧兽医杂志,1993.23.1:3~5
    [87] 邓栓林等,脱毒菜籽饼对鸡饲养效果的评价Ⅲ,脱毒菜籽饼——玉米型肉仔鸡饲粮的研究,青海畜牧兽医杂志,1993.23.1:6~9
    [88] 邓栓林等,脱毒菜籽饼对鸡饲养效果的评价Ⅰ,饲喂京黄肉鸡效果的初步观察,青海畜牧兽医杂志,1993.23.1:1~2
    [89] 高玉秀,黄粉虫的饲养方法,杭州农业科技,1993,1:102~108
    [90] 何欣等,植酸酶对北京红鸡蛋用母雏生产性能及血液指标影响的研究,北京农学院学报,1998.13:51~56
    [91] 何再庆,中国菜籽粕脱毒研究,中国油脂,1990.4:25
    [92] 胡令浩,菜籽饼作饲料的营养障碍及其克服途径,青海省畜牧兽医科学院论文汇编.1986:482~489
    [93] 华红霞、杨长举、余纯、胡建芳,饲养条件对黄粉虫幼虫的影响,华中农业大学学报,2001年第20卷第4期:337~339.
    [94] 贾建波等,同体发酵法制取植酸酶,生物技术,2001.4:22~25
    [95] 蒋玉琴等,脱毒菜籽粕饲喂肉鸡试验结果,华中农业大学学报,1999.6:588
    [96] 蒋玉琴等,复合菌体系酶法脱毒菜籽粕饲喂肉鸡试验研究,粮食饲料工业,2000.2:34~35
    [97] 蒋玉琴等,复合菌体系酶法菜籽粕脱毒及其应用研究Ⅰ不同处理条件下对硫甙降解效果研究,江苏农业学报,1999.2:13~17
    [98] 蒋玉琴等,不同处理条件对菜籽粕中酚类物质的影响,粮食与饲料工业,1998.3:24~28
    [99] 胡令浩等,工业脱毒菜籽饼喂鸡试验,新疆家禽.1988.1:37~38
    [100] 胡德高,网箱培育—日龄大规格鱼种试验,淡水渔业,1990.1:19~21
    [101] 四川科技情报所,菜籽饼去毒及其综合利用,1985
    [102] 莫尚武、张家藻、邱淑华,大豆、油菜粗蛋白质的微量快速分析,中国饲料,1986年第3期:69~71
    [103] 楼洪兴等,RM—1菜籽饼解毒剂在养猪生产上的研究与应用,饲料工业,1992.11:48~50
    [104] 何欣等,植酸酶对褐壳蛋用母雏日粮中总磷及植酸磷存留率影响的研究,北京农学院学报,1999.14.1:38~42
    [105] 黄世义,菜籽饼发酵蛋白饲料饲养试验,中国饲料,1996.2:14~15
    [106] 吕忠进,菜籽饼粕饲用的限制因素研究,饲料与畜牧,1992.2:10~13
    [107] 廖小军等,食品和饲料中硫代葡萄糖苷及其降解产物,食品科学,1999.12:19~21
    
    
    [108] 刘中秋等,6107菜籽饼解毒添加剂应用效果试验,饲料与畜牧,1992.1:27~29
    [109] 卿中全等,双低菜籽(粕)的营养成分及抗营养因子的含量分析,饲料工业:2000.21.10:26~28
    [110] 卿中全等,“双低”菜籽粕的营养价值评价(一),粮食与饲料工业,1999.6:20~22
    [111] 卿中全等,“双低”菜籽粕的营养价值评价(二),粮食与饲料工业,1999.7:29~31
    [112] 李延云等,菜籽饼与玉米糖化醪混合发酵脱毒草试验研究,饲料工业,1998.1:20
    [113] 李建凡,菜籽饼及菜籽中硫葡萄糖苷及其分解产物分析测定的新进展,饲料工业,1998.1:37~38
    [114] 雷得漾、伍先元,化工小商品生产法(第十一集),湖南科技出版社,1992:147~151
    [115] 刘伯生,积极开发黄粉虫饲料资源,饲料工业,1994.15.9:35
    [116] 彭中健、黄秉资,黄粉虫的研究,昆虫知识,1993,30(2):111~114
    [117] 傅廷栋,中国油菜生产与品种改良.华中农业大学学报,1999.18.6:501~504
    [118] 傅寿仲主编,菜籽粕脱毒及应用.江苏科技出版社,1996:560~582。
    [119] 彭健军,“双低”菜籽饼等氮替代豆柏饲喂生长肥育猪试验,中国饲料,1995.24:13~16
    [120] 彭健军,“双低”菜粕配合日粮满足生长肥育猪可消化赖氨酸研究,华中农业大学学报,1999.6:584~586
    [121] 祁锦纳,建鲤大规格鱼种培育高产试验,淡水渔业,1992.3:42~44
    [122] 饶思军等,推广双低优质油菜,开发蛋白饲料资源,饲料工业,1998.19.6:37~38
    [123] 上海市粮油工业公司技校、上海酿造科学研究所编著,发酵调味品检验,轻工业出版社,1987:127~135
    [124] 陕西粮油科学设计院,菜籽粕脱毒生产蛋白饲料工艺试验总结,中国油脂,1990.1:15
    [125] 邵春荣、包承玉,菜籽饼(粕)粗蛋白质及氨基酸营养价值的评价,饲料研究,1995.5:4
    [126] 山东农学院,作物栽培学,农业出版社,1979:763~756
    [127] 涂国尧等,菜籽饼粕脱毒及其饲喂肉猪研究,饲料工业,1991.12:5~6
    [128] 吴世林,菜籽饼在猪饲料中的应用研究概况,饲料博览,1992(1):8~11
    [129] 吴谋成、袁俊华,食品科学,1997 Vol.18 NO.2:46~48
    [130] 王春林、赵京扬,猪营养中植酸及植酸酶研究,中国饲料,2000.18:13~15
    [131] 王建清、陈曼玲,蒽酮比色法快速测定油菜籽中硫代葡萄糖甙,中国饲料,1994,第16卷,第4期:50~52
    [132] 无锡轻工业学院、华南工学院、天津轻工业学院、大连工业学院合编,微生物学,轻工业出版社,1987.1.6:481~491
    [133] 王忠等,网箱养鲤菜籽饼最适用量的研究,饲料研究,1989.1:19~21
    [134] 王在钧等,低硫甙菜籽饼在生长猪日粮中的应用,中国饲料,1999.1:9~11
    [135] 吴新富译,油菜籽中的抗营养素,饲料与畜牧,1990.4:30~34
    [136] 熊谱成,几种饲用酶制剂的添加效应,粮食饲料工业,1997.5:24~25
    [137] 谢保令,黄粉虫营养成分的分析研究,昆虫知识,1993,31(3):177~183
    [138] 杨纪珂、孙长鸣、汤旦林,应用生物统计.科学出版社,1983:267~286
    [139] 余伯良,人工病胃发酵菜籽饼粕脱毒的研究,饲料工业,1997.18.7:7~9
    [140] 余琏等,菜籽蛋白喂肉鸡试验,饲料与畜牧,1989.6:1~3
    
    
    [141] 殷萍等,ZR热喷系统脱毒菜籽饼粕在肉鸡日粮中的应用,中国饲料,1998.3:14~15
    [142] 张根旺等,植物油副产品的综合利用,武汉、湖北科学技术出版社,1982
    [143] 祖岫杰,菜籽饼在鱼饲料中的应用,饲料工业,1994.15.7:34~35
    [144] 赵新楼,以菜籽饼和棉仁饼为主培育鲤鱼种,淡水渔业,1990.1:34~35
    [145] 周永明.油菜品种育种,现代科技综述大辞典,农业科学,1992
    [146] 中国饲料成分及营养价值表,1998年修订版,中国饲料数据库,中国饲料,1998.4:26~31
    [147] 张麟,双低油菜产业开发,中国饲料,1998.4:37
    [148] 周明等,菜籽饼机械脱毒及其饲用价值的研究,中国饲料,1995.14:28~30
    [149] 王在钧等,低硫甙菜籽饼在生长猪日粮中的应用.中国饲料,1999.1:9~1
    [150] 周立新、黄风洪,蛋白饲料资源的开发利用,粮食与饲料工业,1999.4:23~24
    [151] 张观明,不去毒的油菜籽饼限量喂猪,饲料工业研究,1984.2:23~25
    [152] 张宗舟,发酵法菜籽饼脱毒研究,甘肃高师学报(自然科学版),1996(3):59~61
    [153] 张宗舟等,菜籽饼去毒方法的分析与评价,甘肃农大学报,1991.4:433~436
    [154] 张宗舟,论菜籽饼的理论与微生物脱毒,甘肃农业科技,2002.7:5~8
    [155] 中国科学院微生物研究所《常见与常用真菌》编写组,常见与常用真菌,科学出版社,1973:143~247,250~258,282
    [156] 张梅申、熊晓辉、沈爱光、沈昌,植酶的研究进展,食品科学,1997,Vol.18 No.5:3~6
    [157] 中国农科院油料所油菜品质育种组,菜籽饼异硫氰酸盐和口恶唑烷硫酮的测定—气相色谱、紫外吸收联用法,中国饲料,1982年第4期:9~13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700