柑橘黄龙病菌及与其混合发生病毒的分子特性及超低温脱除研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘黄龙病(Citrus Huanglongbing,HLB)是世界性柑橘生产上的毁灭性病害。易与其混合发生的几种柑橘病毒病及类似病害主要包括衰退病、裂皮病和碎叶病;病原分别为Citrus tristeza virus(CTV),Citrus exocortis viroid(CEVd),Citrus tatter leaf
     virus(CTLV)。本研究主要以HLB病菌、CTV、CEVd、CTLV为对象,从生物学角度及分子水平上对其部分特性进行研究;目的是建立上述4种病原的高灵敏度的分子检测技术体系;在分子水平上明确其部分分子特性。另外初步探讨运用超低温技术脱除HLB病菌、CTV、CEVd的可能性及机理。主要获得结果如下:
     1.HLB病菌生物学鉴定及PCR检测体系优化。以长春花和椪柑为指示植物,部分待检材料表现了明显HLB症状。通过对影响PCR技术的各个主要因素的调整,建立了HLB病菌PCR、Semi-Nested PCR及Nested-PCR检测技术;并对三种方法的检测灵敏度进行比较,结果发现Semi-Nested PCR及Nested-PCR检测灵敏度远高于常规PCR,是常规PCR的10~4倍。运用Nested-PCR技术在黄皮上检测出HLB病菌(Candidatus Liberobacter asiaticus),在国内外属于首次报道。
     2.不同引物检测HLB病菌灵敏度比较。对基于rplA/rplK,β-operon,16SrDNA和16S/23SrDNA不同基因组序列设计的5对引物依次为fP400/rP400,fP535/rP535,fA2/rJ5,fOI1/rOI2c,fOI2/r23S1检测HLB病菌灵敏度进行了比较,结果发现不同引物检测灵敏度不一样,其检测灵敏度由高到低依次为:fP400/rP400>fP535/rP535>fA2/rJ5>fOI1/rOI2c>fOI2/r23S1。
     3.HLB菌亚洲株系分子鉴定。HLB病菌16SrDNA片段RFLP-SSCP分析及基于16SrDNA序列中国柑橘黄龙病菌属分类地位的确立,分析结果显示来自中国7省区9个代表性的分离物16SrDNA高度保守,全部属于亚洲菌系(Candidatus
     Liberobacter asiaticus)。HLB病菌16S/23SrDNA间区序列分析及系统进化树分析结果显示:来自中国7省区分布在不同的寄主体内、导致寄主表现不同症状的18个分离物在该区段没有发生显著变异,各分离物之间的同源性达99%以上,全部与亚洲菌系(Candidatus Liberobacter asiaticus)高度同源,而与非洲菌系(Candidatus Liberobacter africanum)差异较大。
     4.HLB病菌Southern blotting检测。利用α-~(32)P-dCTP标记16SrDNA探针进行HLB病菌Dot-blotting检测,结果发现Dot-blotting检测灵敏度高于常规PCR而低于Semi-Nested PCR及Nested-PCR,最低检测下限为30fg总核酸。
     5.CTV生物学鉴定、RT-PCR检测技术的建立及来自不同寄主的21个分离物3'端、5'端分子特性分析。以墨西哥莱檬和甜橙为指示植物,待检样品表现典型的CTV致病症状。核苷酸序列多重比对分析结果显示:21个CTV分离物的5'端和3'端共4个变异区(A区,F区,CP,P20)存在明显的差异。A区的核苷酸序列
Citrus huanglongbing globally has been regarded as one of the most destructive disease to citrus production. Pothogens easily mix infect with it are Citrus tristeza virus(CTV), Citrus exocortis viroid (CEVd) and Citrus tatter leaf virus (CTLV). Biological and molecular characteristic of these four pathogens were studied. The objective is to establish highly sensitive molecular detection method for their rapid detection; and to study part of their molecular character; another objective is to make sure the possibility and the mechanism of eliminating the above 3 pathogen (HLB, CTV, CEVd) by cryopreservation protocol. The main results are described as follows:
    1. Biological identification and optimization of PCR system for the identification of HLB pathogen. Several HLB samples were inoculated to Catharanthus roseas and Citrus reticulata Blanco by mechanical method and grafting-inoculation respectively. These isolates caused typical symptoms on indicator plants. PCR, Semi-Nested PCR and Nested-PCR were established by adjusting the main factors in PCR system. Results showed the sensibility of Semi-Nested PCR and Nested-PCR was 10~4 times higher than single PCR. HIB pathogen (Candidatus Liberobacter asiaticus) was firstly detected out on wampee by Nested-PCR. It is the first report that HLB pathogen can infect wampee throughout the world.
    2. Comparison of sensitivity of different primer sets for the detection of HLB pathogen. Based on the sequence of rplA/rplK, β-operon, 16SrDNA and 16S/23S rDNA, 5 different primer sets were designed. The detection results showed sensitivity of different primer sets were not identical, from the highest to the lowest were fP400/r P400> fP535/r P535>fA2/rJ5> fOIl/rOI2c> fOI2/r23S1.
    3. Identification of Candidatus Liberobacter asiaticus, amplification of 16SrDNA, the consequent analysis of its products by RFLP, SSCP and phylogenetic tree analysis for 16SrDNA. Results showed that 9 different representative isolates coming from 7 provinces were all belong to Candidatus Liberobacter asiaticus. Sequence analysis of 16S/23SrDNA intergenic region and phylogenetic tree constructed showed that 18 representative isolates coming from different hosts, showing different symptoms (7 provinces) had no variation; the homology among isolates was above 99%. They were all highly homologous with Candidatus Liberobacter asiaticus, and distinct from Candidatus Liberobacter africanum.
    4. Detection of HLB pathogen by Southern blotting. The α-~(32)P-dCTP labeled probe of
引文
1.陈国庆,王洪祥,严申祥.构头橙种子中柑橘衰退-茎陷点病毒的检测.植物病理学报,1997,27:75-78
    2.陈剑平,董玛佳,陶金斐.胶体金免疫电镜技术检测和鉴定病汁液中不同形态的植物病毒.植物病理学报,1993,23(2):169-177
    3.陈品良.植物组织培养物的超低温保存.武汉植物学研究,1989,7(4):390-398
    4.陈青瑛,陈景耀,柯冲.柑橘茎尖培养的研究Ⅰ:茎尖培养与增殖.福建省农科院学报,1994,9(3):1-6
    5.邓晓玲,梁志惠,唐维文.快速检测柑橘黄龙病菌的研究.华南农业大学学报,1999,20(1):1-4
    6.邓晓云,洪霓,胡红菊,王国平.检测砂梨潜隐病毒的IC-RT-PCR和TC-RT-PCR的研究.果树学报,2004,21(6):569-572
    7.董雅凤,张尊平,张少瑜,洪霓,于济民.茎尖培养结合热处理脱除苹果和梨树的病毒研究.落叶果树,2002,1:26
    8.高峰,陈杰忠,陈善春,张进仁,吴安仁.柑橘未受精胚珠离体培养获得无病毒珠心苗.植物学报,1990,32(7):505-509
    9.何新华,蒋元晖,赵学源.柑橘碎叶病毒的脱毒.云南农业大学学报,1995, 10(2): 100-101
    10.洪霓,王国平,张尊平.梨病毒脱除技术研究.中国果树,1995,4:5-7
    11.洪霓.发状病毒属病毒研究进展.武汉大学学报(理学版),2003,49(2):271-276
    12.侯义龙.果树主要病毒RT-PCR检测体系的建立、优化及病毒特异DNA片段克隆测序研究.[博士学位论文].沈阳:沈阳农业大学,2000
    13.胡勤学,林木兰,张春立,吴德喜,陈捷.利用RT-PCR扩增和分析柑橘裂皮病类病毒.植物学报,1997,39(7):613-617
    14.姜玲,万蜀渊.柑橘茎尖嫁接操作方法的改进及研究.华中农业大学学报,1995,14(4):381-385
    15.蒋迪军,牛建新.苹果茎尖快速繁殖研究.1992,4:29-31
    16.金羽,文景芝.植物病毒检测方法研究进展.黑龙江农业科学,2005,(3):9
    17.柯冲,林先沾,陈辉.柑橘黄龙病与类立克次体及线状病毒的初步研究.科学通报,1979,10:493-496
    18.柯穗,唐伟文,高乔婉.柑橘黄龙病菌物提纯方法和血清学的初步研究.华南农业大学学报,1989,10(1):1-7
    19.孔维文,邓晓玲,梁志慧,唐伟文.柑橘黄龙病菌DNA片断的克隆及序列分析.植物病理学报,2000,2(1):71-75
    20.李红叶,陈力耕,周雪平.柑橘病毒与类似病毒分子生物学和抗病毒基因工程研究进展.果树科学,2000,17:131-137
    21.李韬,柯冲.应用Nested-PCR技术检测柑橘木虱及其寄主九里香的柑橘黄龙病带菌率.植物保护学报,2002,29(1):31-35
    22.廖晓兰,朱水芳,赵文军,罗宽,漆艳香,陈红运,何昆,朱晓湘.柑橘黄龙病病原16SrDNA克隆、测序及实时荧光PCR检测方法的建立.农业生物技术学报,2004,12(1):80-85
    23.林伯年,胡春根,沈德绪,张君圻.甜橙成年树侧芽离体繁殖诱导成苗研究.园艺学报,1992,3:19-24
    24.林孔湘.柑橘黄梢(黄龙)病研究.植物病理学报,1956,2(1):1-12
    25.林尤剑,高日霞.用FBA染色法观察黄龙病病株中的病原难培养细菌.福建农学院学报,1990,19(1):1-6
    26.刘干生,刘震,刘尚泉,龙安农,陈辉球.柑橘碎叶病危害的调查.中国南方果树,2003,32(2):22
    27.鲁辛辛,杨持,杨宏欣.16S-23SrDNA间区在链球菌和流感嗜血杆菌分类中的应用.遗传,2003,2(27):71-76
    28.骆学海.柑橘黄龙病热治疗的研究.植物保护学报,1981,8(1):47-52
    29.权银.柑橘种质离体保存研究进展(综述).亚热带植物科学,1996,2:47-51
    30.宋瑞琳,吴如健,柯冲.茎尖嫁接脱除柑橘主要病原的研究.植物病理学报,1999,29:275-279
    31.覃兰英.核果类脱毒及试管快繁.见:实用植物组织培养技术教程(曹孜义,陈国民主编).甘肃科学技术出版社,1999,116-126
    32.田文会,王江柱.双链检测技术在鉴定病毒中的应用.河北农业大学学报,1995,18(4):112-117
    33.田亚南,柯穗,柯冲.柑橘黄龙病诊断法的研究进展.福建农业学报,1997,13(1):27-35
    34.田亚南,柯穗,柯冲.应用多聚酶链式反应(PCR)技术检测和定量分析柑橘黄龙病菌.植物病理学报,1996,26 (3):243-250
    35.田亚南,柯穗,李韬,徐平东,柯冲.柚类果树叶片斑驳病的病原鉴定与检测.1999,2:17-24
    36.王国平,洪霓.果树病毒检测与脱除技术的研究进展.华中农业大学学报,2004,23(6):685-691
    37.王君晖,黄纯农.玻璃化法—园艺作物茎尖和分生组织超低温保存的新途径.园艺学报,1994,21(3):277-282
    38.王明霞,陈菁瑛.两种非放射性标记DNA探针检测菊花矮化类病毒的比较.1997,1:56-59
    39.王子成,邓秀新.玻璃化法超低温保存柑橘茎尖及植株再生.园艺学报,2001,28(4):301-306
    40.王子成.柑橘种质资源离体保存研究.[博士论文].武汉:华中农业大学图书馆,2002
    41.吴德喜,舒广平,宋顺华.碎叶病毒生物鉴定研究.湖南农业科学.1990,47-49
    42.吴如健,黄兆才,柯冲.福建省柑橘裂皮病的调查与鉴定.福建省农科院学报,1987,3:49-56
    43.吴如健,柯冲.柑橘对黄龙病菌与病毒混合侵染的反应.福建农业学报,2000,15(4): 12-16
    44.吴世盘.柑橘黄龙病的直接荧光诊断法.华南农业大学学报,1987a,8(2):45-48
    45.吴世盘,范怀忠.柑橘黄龙病的显微镜快速诊断法.华南农业大学学报,1987b,8(3):76
    46.肖火根,范怀忠.交互保护作用及其在植物病毒防治上的应用.中国病毒学,1994,9(1):1-6
    47.谢芝勋,谢志勤,疣耀珊,刘加波,邓显文.应用三重聚合酶链式反应同时检测NDV、IBV、MG的研究.中国动物检疫,2000,17(11):20-22
    48.徐启江,陈典,路芳.植物病毒病原的鉴定及防治措施.黑龙江农垦师专学报,2002,59(1):98-101
    49.许长藩,李开本,柯冲,廖锦泽.木虱传播柑橘黄龙病及电镜检验报告.植物病理学报,1985,4:53-57
    50.严庆丰,黄纯农.植物组织和细胞的玻璃化冻存研究.细胞生物学杂志,1994,16(3):117-122
    51.易干军,霍合强,蔡长河.适用于AFLP分析用的荔枝DNA的提取方法.华南农业大学学报,1999,20(3):123-124
    52.余冬冬,柑橘衰退病毒的快速检测技术研究.[硕士论文].武汉:华中农业大学图书馆,2004
    53.张天淼,梁仙友,龚祖埙,陈作义.柑橘碎叶病毒的发生与初步鉴定.植物病理学报,1988,2:17-22
    54.赵学源,蒋元晖,李世菱,陈杰忠,欧阳立.我国柑橘栽培品种的裂皮病鉴定和脱除.园艺学报,1986,13(2):91-94.
    55.赵学源,蒋元晖.柑橘病毒病和类似病毒病害的发生和防治.广西园艺,2004,15(5):4-10
    56.赵学源,周常勇,唐科志.118个柚品种对柚矮化病抗(耐)病性初步测定.中国南方果树, 1999,28(6):3-5
    57.赵艳华,吴永杰,陈霜莹.包埋干燥超低温保存苹果离体茎尖.园艺学报,1998,25(1):93-95
    58.周常勇,赵学源,蒋元晖.柚矮化病调查和病原的鉴定.中国南方果树,1998,27:20-21
    59.周常勇.我国柑橘衰退病的发生概况与展望.见: 中国植物病理学会植物病毒专业委员会主编,第一次植物病毒与病毒病防治研究学术讨论会论文集.北京:中国农业科技出版社,1997,182-187
    60.周雪平,李德葆.双链检测技术在植物病毒研究中的应用.生物技术,1995,5(1):1-4
    61.庄胜慨,蔡明段.杨村柑橘黄龙病与管理体制.中国南方果树,2003,32(5):17-19
    62. Albiach-Marti M R, Mawassi M, Gowda S. Sequences of citrus tristeza virus separated in time and space are essentially identical. J Virol, 2000, 74:6856-6865
    63. Ayllon M A, Lopez C, Navas-Castillo J. Polymorphism of the 5' terminal region of citrus tristeza virus (CTV) RNA: incidence of three sequence types in isolates of different origin and pathogenicity, Arch Virol, 2001, 146: 27-40
    64. Bar-Joseph M, Marcus R, Lee R F. The continuous challenge of citrus tristeza viruscontrol. Annual Review Phytopathology, 1989, 27:291-316
    65. Bar-Joseph M. Cross-protection incomplereness: A possible cause for natural spread of cirus virus after a prolonged lag period in Iarael. Phytopathology, 1978, 68: 1110-1111
    66. Brison M, Boucaud M T, Pierronnet A, Dosba F, Effect of cryopreservation on the sanitary state of a cv. Prunus rootstock experimentally contaminated with Plum Pox Potyvirus. Plant Sci, 1997, 123:189-196
    67. Bastianel C, Garnier-Semancik M, Renaudin J, Bove' J M, and Eveillard S. Diversity of "Candidatus Liberibacter asiaticus" Based on the omp Gene Sequence. Appl Environ Microbiol. 2005, 71 (11):6473-6478
    68. Brlansky R H and Lee R F. Numbers of inclusion bodies produced by mild and severestrains of citrus tristeza virus in seven citrus hosts. Plant Dis, 1990, 74: 297-299
    69. Candrese T, Namba S, Martelli G P. Genus Trichovirus. Murphy F A, Fauquet C M, Bishop D H L, eds. Virus Taxonomy. Sixth Report of the ICTV. Wien: Sringer Verlag, 1995,468-470
    70. Costa A S, Muller G W. Tristeza control by cross protection: a USA-Brazil cooperative success. Plant Dis, 1980, 64:538-541
    71. Fonseca M E, Marcellino L H, Gander E. A rapid and sensitive dot-blot hybridization assay for the detection of citrus exocortis viroid in Citrus medica with digoxigenin-labelled RNA probes. J Virol Methods. 1996, 57(2): 203-207.
    72. Fulton W. Practices and precautions in the use of cross protection for virus disease control. Ann Rev Phytopatholo, 1986, 24: 67-81
    73. Chambercian J S, Gibbs R A, Ranier J E. Detection screening of the Duchennemuscular dystrophy locus via multiplex DNA amplification. Nucl Acids Res, 1988, 16: 1141-1156
    74. Derrick K S, Beretta M J, Barthe G A. Identification of strains of Citrus tristeza virus by subtraction hybridization. Plant Dis, 2003, 87: 1355-1359
    75. Diva do Carmo Teixeira, Colette Saillard, Sandrine Eveillard, Jean Luc Danet, Paulo Inacio da Costa, Antonio Juliano Ayres and Joseph Bove. ' Candidatus Liberibacter americanus', associated with citrus huanglongbing (greening disease) in Sao Paulo State, Brazil. Int J Syst Evol Microbiol, 2005, 55: 1857-1862
    76. Dodds J A, Jarupat T, Roistacher C N. Detection of strain specific doublestranded RNAs in Citrus species infected with citrus tristeza virus: a review. Phytophylactica, 1987, 19: 131-137
    77. Domingeuz A, Gueri J, Cambra M. Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep, 2000, 19: 427-433
    78. Duran-Vial N, Roistacher C N, Rivera-bustamante R. A definition if citrus viroid groups and their relation to exocortis disease. J Gen Virol, 1988a, 69: 3039-80
    79. Duran-Vila N, Pina J A, Ballester J F. The citrus exocotis disease: a complex of viriod RNAs. Pro Int Organi Citrus Viorologiests, 1988b, 10:152-164
    80. Engelmann F, In vitro conservation methods, in: J.A. Callow,B.V. Ford-Lloyd, H.J. Newbury Eds. Biotechnology and Plant Genetic Resources, CAB International, Oxford, 1997, 119-161
    81. Faggioli F. In vitro micrografting of pyruscommunis shoot tips. Adv Horti Science, 1997, 11(1): 25-29
    82. Fagoaga C, Semancik J S, Duran-Vila N. A citrus exocortis viroid variant from broad bean (Vicia faba L.): infectivity and pathogenesis. J Gen Virol, 1995, 76(9): 2271-2277
    83. Francis M I, Szychowski J A, Semancik J S. Structural sites specific to viroid groups. J Gen Virol, 1995, 69: 1081-1089
    84. Gao S J, Gamier M, Bove J M. Production of the monoclonal antibodies recognizing most Asian strains of greening BLO by in vitro immunization with an antigenic Protein purified from the BLO. Proc .12th Conf. IOCV. IOCV, Riverside, 1993,244-249
    85. Gamier M, and Danel N. The greening organism is a gram negative bacterium. Proc 9th Conf IOCV. University of California. Riverside: IOCV, 1984, 115-124.
    86. Gamier M, Martin-Gros G, Bove J M. Monoclonal antibodies against the bacterial-like organism associated with citrus greening disease. Annales de Microbiologie (Institut Pasteur), 1987,138:639-650
    87. Garnier M. Study of the greening organism (GO) with monoclonal antibodies: Serological identification, morphology, serotypes and purification of GO. Proc. 11th . Conf. IOCV. IOCV. Riverside, 1991,428-436
    88. Gamier M, Jagoueix-Eveillard S, Cronje P R, Le Roux H F and Bove J M. Genomic characterization of a liberibacter present in an ornamental rutaceous tree, Calodendrum capense, in the Western Cape province of South Africa. Proposal of 'Candidatus Liberibacter africanus subsp. capensis'.Int J Syst Evol Micr, 2000, 50: 2119-2125
    89. Garnett H M, Isolation of the greening organism. Citrus and Subtropical Fruit Journal, 1985,611:4-6
    90. Gella R. Effect of some virus diseases on the performance of two clones of Aguade Aranjuez pear. Acta Horticulturae, 1990, 256:137-142
    91. Gmitter F G, Louzada J E, Deng Z. A bacterial artificial chromosome (BAC) Library for cloning a citrus tristeza virus-resistance gene. Acta Horticulturuae, 1998,461: 355-359
    92. Gross H J, Krupp G, Dondey H. Nucleotide sequence and secondary structure of citrus exocortis and chrysanthemum stunt viroid. Eur J of Biochem, 1982, 121: 249-257
    93. Goodwin S B, Waalwijk C, Kema G H, Cavaletto J R, and Zhang G. Cloning and analysis of the mating-type idiomorphs from the barley pathogen Septoria passerineii, Mol Genet Genomics, 2003, 269(1): 1-12
    94. Hocquellet A, Toorawa P, Bove' J M, and Gamier M. Detection and identification of the two Candidatus Liberobacter species associated with citrus huanglongbing by PCR amplification of ribosomal protein genes of the β-operon. Mol Cell Probes. 1999, 13, 373-379
    95. Helliot B, Panis B, Poumay Y, Swennen R, Lepoivre P, Frison E. Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana ( Musa spp.). Plant Cell Rep, 2002, 20:1117-1122
    96. Hilf M E, Karasev A V, Albiach-Marti M R. Two paths of sequence divergence in the citrus tristeza virus complex. Phytopathology, 1999, 89: 336-342
    97. Hu Y, Feldstein P A, Bottine P J, Owens R A. Role of the variable domain in modulating potato spindle tuber viroid replication. Virology, 1996, 219: 45-46
    98. Jagoueix S, Bove J M, and Garnier M. The phloem-limited bacterium of greening disease of citrus is a member of a subdivision of the Proteobacteria. J of Syst Bacteriol. 1994, 44 (3):379-386
    99. Jagoueix S, Bove J M, Garnier M. Comparison of the 16S/23S Ribosomal Intergenic Regions of "Candidatus Liberobacter asiaticum" and "Candidatus Liberobacter africanum," the two species associated with Citrus Huanglongbing (Greening) Disease. Int J Sys Bacteriology. 1997, 47(1)224-227
    
    100.Karasev A V, Dawson W O, Hilf M E. Molecular biology of citrus tristeza virus: implications for disease diagnosis and control. Acta Horticulturuae, 1998, 472:333-337
    101.Kadota M, Imizu k, Hirano T Double - phase in vitro culture using sorbitol increases shoot proliferation and reduces hyperhydricity in Japanese pear. Sientia Horticulturae 2001,89:207-215
    102.Keese P, Symons R H. Domains in viroids: Evidence of inter-molecular RNA rearrangements and their contribution to viroid evolution. Pro Natl Acad Sci USA,1985, 82: 4582-4586
    103.Kinard G R. Detection of apple chlorotic leaf spot and apple stem grooving viruses using RT-PCR. Plant Dis , 1996 , 80 (6) :616-622
    104.Ki S M, Park S K, Cho B H, Kim, K C. Differentiation in pathogenicity of Alternaria kijuchiana Tanaka, block spot fungus of pear ,and conversion of resistant varieties into susceptible ones. Korean J Plant Protection, 1984,23:7-14
    105.Knapp E, Hanzer V, Weiss H. New aspects of virus elimination in fruit trees. Acta Horticulturae, 1995, 386: 409-415
    106.Kobayashi, Nakamura K, Kaneyoshi J. Transformation of kiwifruit (Actinidia chinensis) and trifoliate orange (Poncirus trifoliata) with a synthetic gene encoding the human epidermal growth factor (HEGF). J Jpn Soc Hortic Sci, 1996, 64: 763-769
    107.Kohmura H, Ikeda Y, Sakai A. Cryopreservation of apicalmeristem of Allium wakegi A. by vitrification and subsequent high plant regeneration. Crobiology, 1994, 31 (6):579
    108.Koonin E V, Dolija V V. Evolution and taxonomy of positive-strand RNA viruses:implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol,1993, 28: 375-430
    109.Luis R, Maria Angeles A, Ping K, Andres F, Marylou P, Jose G, Pedro M, and Bryce F. Genetic variation of Citrus Tristeza Virus isolates from California and Spain: evidence for mixed infections and recombination. J Virology, 2001, 75(17):8054-8062
    110.Magome H, Yoshikawa N, Takahashi T. Nucleotide sequence of citrus tatter leaf virus (isolate Li-23) genome. Ann Phytopathol Soc Jpn, 1994, 60: 762-763
    111 .Magome H, Yoshikawa N, Takahashi T, Ito T, and Miyakawa T. Molecular Variability of the Genomes of Capilloviruses from Apple, Japanese Pear, European Pear, and Citrus Trees. Mol Plant Pathology, 1997, 87(4): 389-396
    112.Moreno P, Guerri J, Munoz N. Identification of Spanish strains of citrus tristeza virus by analysis of double-stranded RNA. Phytopathology, 1990, 80: 477-482
    113.Moll J N, and Martin M. Comparison of organism causing greening disease with several plant pathogenic gram negative bacteria, rickettsia-like organisms and mycoplasma-like organisms. Coll Inserm, 1974. 33:89-96
    114.Murray R G E, Schleifer K H. Taxonomic notes: a proposal for recording the properties of prokaryotes. Int J Syst Bacterriol. 1994.44:174-176
    115.Nam K W, Kim K S, Graft transmission and cytopathlogy of pear black necrotic leaf spot (PBNLS) disease. J plant pathology, 2002, 18:301-307
    116.Lopez C, Ayllon M A, Navas-Castillo J. Sequence polymorphism in the 5' and 3' terminal regions of citrus tristeza virus RNA. Phytopathology, 1998, 88: 685-691
    117.Navarro L, Jiarez J. Obtencionde plants nuclears libres devirus dediversas variedades deagrios delgrupo Navelpor cultive deovules in vitro. Ann Inta, 1979, 12: 95-113
    118.Niino T, Tashiro K, Suzuki M. Cryopreservation of in vitro grown shoot tips of cherry and sweet cherry by one-step vitrification. Sci Horti, 1997, 70:155-163
    119.Niino T, Sakai A,Yakuwa H, Nojiri K.Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tiss Organ Culture, 1992, 28: 261-266
    120.Nikolaeva O V, Karasev A V, Gumpf D J. Production of polyclonal antisera to the coat protein of citrus tristeza virus expressed in Escherichia coli: application for immunodiagnosis. Phytopathology, 1995, 85: 691-694
    121.Nikolaeva O V, Karasev A V, Garnsey S M. Serological differentiation of the citrus tristeza virus isolates causing stem pitting in sweet orange. Plant Dis, 1998, 82:1276-1280
    122.0hira K, Namba S, Rozanov M, Kusumi T, Tsuchizaki T. Complete sequence of an infectious full-length cDNA clone of citrus tatter leaf capillovirus: Comparative sequence analysis of capillovirus genomes. J. Gen. Virol. 1995, 76: 2305-2309
    123.Olmos A , Cambra M, Dasi M A . Simultaneous detection and typing of plumpox potyvirus (PPV) isolates by hemi-nested-PCR and PCR-ELISA. J Virol Methods,1997, 68 (2): 127-137
    124.Paul H, Daigny G, Sangwan-Norreel B S. Cryopreservation of apple (Malus domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation Vitrification. Plant Cell Rep, 2000, 19:768-774
    125.Permar T A, Garnsey S M, Gumpf D J. A monoclonal antibody that discriminates strains of citrus tristeza virus. Phytopathology, 1990, 80: 224-228
    126.Piestun D, Batuman O, Che X. Truncated versions of the citrus tristeza virus (CTV) replicase and Basta resistance genes incorporated in transgenic troyer citrange. Acta Hort, 2000, 535: 233-237
    127.Plikaytis B B, Kurepina N, Woodley C L, Fleischmann R, Kreiswirth B, Shinnick T M. Multiplex PCR assay to aid in the identification of the highly transmissible Mycobacterium tuberculosis strain CDC1551.Tube Lung Dis, 1999, 79(5): 273-278
    128.Palacio A, Duran-Vila N. Single-strand conformation polymorphism (SSCP) analysis as a tool for viroid characterization. Virol Method, 1999, (77):27-36
    129.Roistacher C N, Calvan, Navarro L. Concepts and procedures for importation of citrus budwood. Proc Int Soc Citriculture, 1977, 3: 133-136
    130.Sakai A, Kobayashi S, Oiyama E. Cryopreservation of nucellar cells of navel organe (Citrus sinensis Obs. var.brasiliensis Tanka) by vitrification. Plant Cell Rep, 1990, 9:30-33
    131.Samia S, Al-Ababneh, Nabila S, Karam, and Rida A S. Cryopreservation of sour orange (Citrus aurantium L.) shoot tips. In Vitro Cellular & Developmental Biology.2002, 38:602-607
    132.SanoT, Candresse T, Hammond R W, Diener T O, Owens R A. Identification of multiple structural domain regulating viroid pathogenicity. Proc.Natl.Acad.Sci USA. 1992,89,10104-10108
    133.Sano T, Ishiguro A. Viability and pathogenicity of intersubgroup viroid chimeras suggest possible involvement of the terminal right region in replication. Virology,1998, 240: 238-244
    134.Subandiyah S, Iwannami T, Tsuyumu S, and Ieli H. Comparison of 16SrDNA and 16S/23S intergenic region sequences among citrus greening organisms in Asia. Plant Dis. 2000, 84(1):15-18
    135.Takagi H, Tient N, Islam O M. Cryopreservation of in vitri grown shoots tips of taro (Colocasiaesculenta L. Schott) by vitrification. Plant Cell Rep, 1997, 16: 594-599
    136.Takao T, Hiroyuki I, Katsumi O. Simultaneous detection of six citrus viroids and Apples stem grooving virus from citrus plants by multiplex reverse transcription polymerase chain reaction. J Virol Methods, 2002, 106: 235-239
    137.Tskagi H, Tinh N, Islam O M. Cryopreservation of in vitro-grown shoot tips of vitrification procedure. Plant Cell Rep, 1997, 16:594-599
    138.Tanino K, Mckersie BD. Injury within the crown of winter wheat seedling after freezing and icing stress. Can J Bot, 1985, 63: 432-436
    139.Villechanoux S, Gamier M, Renaudin J, Bove JM. The genome of non-cultured,bacterial-like organism associated with citrus greening disease contains the nusG-rplKAJL-rpoBC gene cluster and the gene for a bacteriophage type DNA polymerase.Curr Microbiol. 1993, 26(3): 161-166
    140.Visvader J E, Symons R H. Comparative sequence and structure of different isolates of citrus exocortis viroid. Virology. 1983, 130:232-237.
    141.Visvader J H, Symons, R H. Replication of in vitro constructed viroid mutants: location of the pathogenicity-modulation domain of citrus exocortis viroid. EMBO J.1986,5:2051-2055
    142.Visvader J H, Symons R H. Eleven new sequence variants of citrus exocortid viroid and the correlation of sequence with pathogenicity RNA, 1985, 13(6):2907-2920
    143.Wallace J M, Drake R J. Tatter leaf, a previously undescribed virus effect on citrus.Plant Dis Reporter, 1962, 46:211 -212
    144.Wang Q C, Mawassi M, Li P, Gafny R, Sela I, Tanne E. Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L.Plant Sci, 2003, 165:321-327
    145.Yamada T, Sakai A, Matusumura T. Cryopreservation of apical meristems of white clover. Plant Sci, 1991, 78: 81-87
    146. Yang G, Che X B, Gofman R. D-RNA molecules associated with subisolates of the VT strain of CTV which induce different seedling-yellow reactions. Virus Genes,1999, 19:5-13
    147.Yoshikawa N, Imaizumi M, Takahashi T, InouyeN. Striking similarities between the nucleotide sequence and genome organization of citrus tatter leaf and apple stem grooving capilloviruses. J Gen Virol, 1993, 74: 2743-2747

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700