环境中几种持久性有机污染物理化性质的分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性污染物是指具有持久性、半挥发性、生物累积性和高毒性等显著特性的天然和人工合成的有机污染物。随着化学工业和农业的发展,持久性有机污染物(POPs)在环境中因为其严重的危害性,成为了全球关注的焦点,越来越引起人们的重视。本文简单介绍了POPs的特点以及持久性有机污染物的环境行为,以及对其本身性质的分析和研究。主要内容如下:
     1.用简单而又优化的高效液相色谱(RP-HPLC)来预测多氯联苯类(PCBs)的正辛醇/水分配系数(Kow),本实验中所用的RP-HPLC法不同与其他文献,对于用HPLC测得的物质的保留时间用了类似于Huber的校正方法,也被称之为两点校正法,以此来建立有摇瓶法数据的12种型中性POPs的logKow与logkw的线性模型关系:logKow=(1.10±0.06)logkw-(0.28±0.22),其中R=0.986,F=398.8。实验测定他们在不同二元流动相比例下的保留时间,获得logk'和CB关系,再外推至纯水下的容量因子kw,通过以上实验得到的logkw-logkw的线性关系,可以准确地验证化合物p,p'-DDT、HCB、Hexamethylbenzene、PCB 28的Kow值,这些预测值与它们各自的摇瓶法数据值相差很小,从而来预钡PCB 118、PCB 138、PCB 180、PBDE15、PBDE 209的Kow值:5.99、6.10、6.62、5.32、7.97。从验证和预测的结果可以看出,本论文中采用两点校正法的HPLC法也是测得物质Kow值的一种有效和可靠的实验方法。
     2.紫外光谱、荧光光谱方法研究了有机氯农药p, p'-DDD、p, p'-DDE, p,p'-DDT这3种农药分子与NADH间的相互作用。本文的研究结果发现:1)紫外和荧光的实验结果都表明有机氯小分子(DDD、DDE、DDT)都能与NADH发生作用,2)pH=6.5时DDD、DDE易与NADH相结合,并影响到相连的腺嘌呤环和二氢尼克酰胺环上的电子分布;3)在pH= 6.5 Tris-HCl缓冲溶液中DDT的存在使辅酶二氢尼克酰胺环的结构发生了的改变。这几种农药污染物可能都是以一种模式与NADH作用且最可能的作用模式为嵌插结合。此实验结果有助于深入理解环境生物体系中有机氯小分子的致毒机制和脱毒机理
Persistent organic pollutants (POPs) refer to the persistent, semi-volatile, bioaccumulative and highly toxic, and other notable features of natural and synthetic organic contaminants. With the development of chemical industry and agriculture, because of their serious harms, POPs in the environment have drawn increasing attention globally. This paper briefly describes the characteristics of POPs and environmental behavior, as well as the nature of its own analysis and research. The major contents are as follows:
     1. An improved retention time correction method, dual-point retention time correction (DP-RTC) is proposed for reversed-phase high performance liquid chromatography (RP-HPLC), which is used as a commonly indirect experimental measurement for determining n-octanol/water partition coefficient (Kow) value. To obtain reliable Kow data, a semi-empirical logKow-logkw regression logKow= (1.10±0.06) logKw-(0.28±0.22) with an R2cv= 0.972, R=0.986 is established by plotting a set of reliable directly experimental Kow values against the corresponding corrected retention time of 12 benzene homologues, which are chosen as model compounds in this study. This estimation method is further validated by four verification compounds, HCB, Hexamethylbenzene, p,p'-DDT, and PCB 28, whose logKow values are both determined by DP-RTC-improved RP-HPLC method and theoretical calculation methods and are compared with reported slow-stirring measured ones respectively, and values determined by the former method are found to give better consistency with slow-stirring measurement, even for highly hydrophobic environmental contaminants (logKow > 6). Finally, this logKow - logKw model are applied for predicting physico-chemical parameter Kow for PCB 118, PCB 138, PCB 180, PBDE 15 and PBDE 209, and the estimated logKow values for these five persistent organic pollutants (POPs) are 5.99,6.10,6.62,5.32, and 7.97, respectively.
     2. UV spectra, fluorescence spectroscopy spectroscopy study of organochlorine pesticides p, p'-DDD, p, p'-DDE, p, p'-DDT pesticides in these three kinds of interaction between molecules and NADH. This study found that:1) UV and fluorescence experiments have shown that small molecules of organic chlorine (DDD, DDE, DDT) and NADH can play a role,2) pH=6.5 when the DDD, DDE and easy combination with NADH and impact associated nicotinamide adenine ring and the dihydro ring electronic distribution; 3) pH=6.5 Tris-HCl buffer solution the presence of DDT-dihydro-coenzyme nicotinamide ring structure has changed. These types of pesticide contamination may have been in a role model and NADH, and the most likely mode of action for the intercalative binding. These results help us to understand biological systems, environment, small molecules of organic chlorine toxic mechanism and detoxification mechanism.
引文
[1]David O什么是持久性有机污染物?持久性有机污染物控制研究会[D],北京:国家环保局,2001,9
    [2]李宝惠.淘汰持久性有机污染物(POPs)最新进展[J].山东环境,2001,101:40-41
    [3]苏丽敏,袁星.持久性有机污染物(POPs)及其生态毒性的研究现状与展望[J].重庆环境科学,2003,25(9):62-64
    [4]任仁.《斯德哥尔摩公约》禁用的12种持久性有机污染物[J].大学化学,2003, 18(3):37-41
    [5]S. J. Chen. Concentration, phase distribution, and size distribution of atmosphere polychlorinated biphenyls measured in southern Taiwanl[J]. Environ. Intem.,1996, 22(4):411-423
    [6]Th. Wallenhorst, P. Krauβ, H. Hagenmaier. PCDD/F in ambient air and deposition in Baden-Wurttemberg, Germany [J]. Chemospere,1997,34(5-7):1369-1378
    [7]Y. C. Miyabara, S. J. Hashimoto, M. Sagai, et al. PCDDs and PCDFs in vehicle exhaust particles in Japan [J]. Chemospere,1999,39(1):143-150
    [8]T. Kouimtzis. PCDD/Fs and PCBs in airborne particulate matter of the greater Thessaloniki area[J]. Chemosphere,2002,47:193-205
    [9]T. Kuchler, H. Brzezinski. Application of GC/MS-MS for the analysis of PCDD/Fs in sewage effluents[J]. Chemosphere,2000,40:213-220
    [10]M. Horstmann, M. S. McLachlan. Concentration of Polychlorinated Dibenzo-p-Dioxins (PCDD) and Dibenzofurans (PCDF) in Urban Runoff and Household Waste water s[J]. Chemosphere,1995,31(3):2887-2896
    [11]J. Stevens, N. J. L. Green, K. C. Jones. Survey of PCDD/Fs and non-ortho PCBs in UK sewage sludges[J]. Chemospere,2001,44:1455-1462
    [12]L. G. Bellucci, M. Frignani, S. Raccanelli, et al. Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Surficial Sediments of the Venice Lagoon (Italy)[J]. Marine Pollution Bulletin,2000,40(1):65-76
    [13]J. F. Muller. Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in sediments from Hong Kong[J]. Marine Pollution Bulletin,2002, 45:372-378
    [14]S.J. Hashimoto, M. Matsuda, T. Wakimoto, et al, Simple sampling and analysis of PCDDs and PCDFs in Japanese seawater[J]. Chemospere,1995, 30(10):1979-1986
    [15]张祖麟,洪华生,余刚.闽江口持久性有机污染物—多氯联苯的初步研究[J].环境科学学报,2002,22(6):788-791
    [16]D. X. Yuan, D. N. Yang, L. Terry, et al. Status of persistent organic pollutants in the sediment from several estuaries in China[J]. Enviromental Pollutant,2001, 114:101-111
    [17]康跃惠,盛国英.珠江澳门河口沉积物柱样中有机氯农药的垂直分布特征[J].环境科学,2001,22(1):81-85
    [18]M. Manz, K.-D. Wenzel, U. Dietze, et al. Persistent organic pollutants in agricultural soils of central Germany [J]. The Science of the Total Environment, 2001,277:187-198
    [19]E. Eljarrat, J. Caixach, J. Rivera. Level of polychlorinated dibenzo-p-dioxins and dibenzofurans in soil samples from Spain[J]. Chemosphere,2001,44:1383-1387
    [20]龚钟明.天津市郊污灌区农田土壤中的有机氯农药残留[J].农业环境保护,2002,21(5):459-461
    [21]于慧芳.北京地区人乳有机氯农药蓄积水平的动态研究[J].环境与健康杂志,2001,18(6):352-354.
    [22]J.-W. Choi, M. Matsuda, M. Kawano, et al. Chlorinated persistent organic pollutants in black-tailed gulls (Larus crassirostris) from Hokkaido, Japan[J]. Chemosphere,2001,44:1375-1382
    [23]B. E. BrunstrEm, K. Halldin. Ecotoxicological risk assessment of environmental pollutants in the Arctic[J]. Toxicology Letters,2000,112-113:111-118
    [24]A. Kostamo, M. Viljanen, J. Pellinen, et al. EOX and organochlorine compounds in fish and ringed seal samples from Lake Ladoga, Russia[J]. Chemosphere, 2000,41:1733-1740
    [25]S. Corsolini, T. Romeo, N. Ademollo, et al. POPs in key species of marine Antarctic ecosystem[J], Microchemical Journal,2002,73:187-193
    [26]J. C. Hansen. Environmental contaminants and human health in the Arctic[J]. Toxicology Letters,2000,112-113:119-125
    [27]S. M. Bard. Global Transport of Anthropogenic Contaminants and the Consequences for the Arctic Marine Ecosystem[J]. Marine Pollution Bulletin, 1999,38(5):356-379
    [28]M. Schuhmacher, J. L. Domingo, J. M. Llobet, et al. PCDD/F concentration in milk of nonoccupationally exposed women living in Southern Catalonia, Spain[J]. Chemospere,1999,38(5):995-1004
    [29]J.Yang. PCDDs, PCDFs, and PCBs concentrations in breast milk from two areas in Korea:body burden of mothers and implications for feeding infants [J]. Chemosphere,2002,46:419-428
    [30]C. K. C. Wong, K. M. Leung, B. H. T. Poon, et al. Organochlorine hydrocarbons inhuman breast milk collected in Hong Kong and Guangzhou[J]. Arch. Environ. Contam,2002,43:364-372
    [31]EPA. SPECIAL REPORT ON ENVIRONMENT ENDOCRINE DIS-RUPTION: AN EFFECTS ASSESSMENT AND ANALYSIS [J]. Washington, D. C. EPA. 1997
    [32]S. Fierens, H.Mairesse, J.F. Heilier, et al. Dioxin/polychlorinated biphenyl body burden, diabetes and endometriosis:findings in a population-based study in Belgium[J]. Biomarkers,2003,8(6):529-534
    [33]H. Jane, C. Chris, W. Richard. MOMs and POPs[J]. Washington, D. C.: ENVIRONMENTAL WORKING GROUP,2000
    [34]L. Hardell, B. Van Bavel, G. Lindstrom, et al. Concentrations of polychlorinated biphenyls in blood and the risk for testicular[J]. Int J Androl.2004, 27(5):282-290
    [35]K. Nakai, K. Suzuki, T. Oka, et al. The Tohoku Study of Child Development:A cohort study of effects of perinatal exposures to methylmercury and environmentally persistent organic pollutants on neurobehavioral development in Japanese children[J]. Tohoku J Exp Med,2004,202(3):227-237
    [36]方昌阁,张才乔,夏国良等.多氯联苯对鸡胚卵巢发育和配子分化的影响[J].中国农业大学学报,2001,6(3):1-5
    [37]H. Fielder. International Symposium on Chlorinated Dioxins and Related Compounds Federal Environmental Agency Vienna[J]. Organohalogen Compounds,1993,13:403-406
    [38]M. Denham, L. M. Schell, G. Deane, et al. Relationship of lead, mercury, mirex., dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyls to timing of menarche among AKwesasne Mohawk girls [J]. Pediatrics, 2005,115(2):127-134
    [39]S. Devos, R.Van Den Heuvel, R. Hooghe, et al. Limited effect of selected organic pollutants on cytokine production by peripheral blood leukocytes [J]. Eur Cytokine Netw,2004,25(2):145-51
    [40]N. Weisglas-Kuperus, T. C. L. Sa, C. Koopman-Esseboom, et al. Immunological effect of bsckground prenatal and postnatal exposure to dioxins and polychlorinated biphenyls in Dutch infants[J]. Pediatr. Res,1995,38:404-410
    [41]D. Kinloch, H. Kuhnlein, D.C.G. Muir. Inuit foods and diet:a preliminary assessment of benefits and risks[J]. Sci. Tot. Environ,1992,122:247-278
    [42]J. L. Jacobson, S. W. Jacobson. Intellectual impairment in children exposed to polycholrinates biphenyls in utero[J]. New Engl. J. Med,1996,335:783-789
    [43]D. B. McGregor, C. Paratensky, J. Wilourn, et al. An IARC evaluation of Polychlorinated dibenzofurans as risk factors in human carcinogenesis[J]. Environ. Health Perspect,1998,106(suppl 2):755-760
    [44]F. Wania, D. Msckay. Global f ractionation and cold condensation of low volatility organochlorine compounds in Polar Regions[J]. Ambio,1993,22:10-18
    [45]F. Wania, D. Msckay. Traching the dist ribution of persistent organic pollutants[J]. Envion.Sci. Technol,1996, (30):377-392
    [46]K. C. Jones, P. Voogt. Persistent organic pollutants (POPs):state of the science [J]. Enciron. pollut,1999,100:209-221
    [47]S.Sinkkonen, J.Paasivirta. Degradation half-life times of PCDDs. PCDFs and PCBs for environmental fate modeling[J]. Chemosphere,2000,40:943-949
    [48]H. W. Vallack, D. J. Bakker, L. Brandt, et al. Corit rolling persistent organic pollutants what next[J], Environmental Toxicology and Pharmacology,1998, 6:143-175
    [49]A. Finizio, D. Mackay, T. Bidleman, et al. Oetanola Irpartition coefficient as a predictor of partitioning of semi-volatile organic chemicals tb aerosols[J]. Atmos. Environ,1997,31:2289-2269
    [50]M. Meneses, M. Schuhmacher, J. L. Domingo. A design of two simple models to predict PCDD/F concentrations in vegetation and soils[J]. Chemosphere,2002, 46:1393-1402
    [51]J. C. White, M. J. I. Martina, B. D. Eitzer, et al. Tracking chlordane compositional and chiral profiles in soil and vegetation[J]. Chemosphere,2002, 47:639-646
    [52]E. Voutsas, K. Magoulas, D. Tassios. Prediction of the bioaccumulation of persistent organic pollutants in aquatic food webs[J]. Chemosphere,2002, 48:645-651
    [53]J. W. Chen, Q. Xie, Y. Z. Zhao, et al. Quantitive structure-property relationship studies on n-octanol/water partioning coefficients of PCDD/Fs[J]. Chemospere, 2001,44:1369-1374
    [54]G. H. Ding, J. W. Chen, X. L. Qiao, et al. Quantitative relationships between molecular structures, environmental temperatures and solid vapor pressures of PCDD/Fs[J]. Chemospere,2006,62:1057-1063
    [55]W. A. Ockenden, K. Breivik, S. N. Meijer, et al. The global re-cycling of persistent organic pollutants is strongly retarded by soils[J]. Environmental Pollution,2003,121:75-80
    [56]S. M. Liu, J. C. D. Pleil. Human blood and environmental media screening method for pesticides and polychlorinated biphenyl compounds using liquid extraction and gas chromatography mass spectrometry analysis[J]. Journal of Chromatography B,2002,769:155-167
    [57]H. Fueno, K. Tanaka, S. Sugawa. Theoretical study of the dechlorination reaction pathways of octachlorodibenzo-p-dioxin[J]. Chemosphere,2002,48:771-778
    [58]J. K. Jang, A.Li. Separation of PCBs and PAHs in sediment samples using silicagel fractionation chromatography [J]. Chemosphere,2001,44:1439-1445
    [59]袁东星,杨东宁,陈猛等.厦门西港及闽江口表层沉积物中多环芳烃和有机氯污染物的含量及分布[J].环境科学学报,2001,21(1):107-112
    [60]毕新慧,徐小白.多氯联苯的环境行为[J].华学进展,2000,12(2):152-158
    [61]朱明华,仪器分析[M].北京:高等教育出版社,2002,373-375
    [62]姜杰,张建清,蒋友胜等.高分辨质谱法测定海鱼中二恶英和多氯联苯[J].中国公共卫生,2004,20(11):1358-1360
    [63]M. Frignania, L. G. Belluccia, M. Favottob, et al. Pollution historical trends as recorded by sediments at selected sites of the Venice Lagoon[J]. Environment International,2005,31:1011-1022
    [64]陈社军,麦碧娴,曾永平等.沉积物中多溴联苯醚的测定[J].环境化学,2005,24(4):474-477
    [65]F Wania, D Mackny. The evolution of mass balance models ofpersistent organic pollutant fate in the environment[J]. Environmental Pollution,1999, 100:223-240.
    [1]A. Sabljic, H. Gusten, H. Verhaar. QSAR modellingof soil sorption: Improvements and systematics of logKoc vs logKow correlations. Chemosphere, 1995,31:4489-4514
    [2]N. Bodor, Z. Ganyi, C. K. Wong. A new method for estimationof partition mechanism. J Am Chem Soc,1989,111:3783-3786
    [3]S. W. Karickhoff. Semi-empirical estimation of sorption ofhydrophobic pollutants on natural sediments. Chemosphere,1981,10:833-846
    [4]E. E. Kenaga. Correlation of bioconcentration factors ofchemicals in aquatic and terrestrial organisms with their physical and chemical properties. Environ Sci Technol,1980,14:553-556
    [5]H. Konemann. Structure-activity relationships and additivityin fish toxicities of environmental pollutants. Ecotoxicology and Environmental Safety,1980, 4:415-421
    [6]A. Bechalany, A. Tsantili-Kakoulidou, N. El Tayar, et al. Measurement of lipophilicity indices by reversed-phase high-performance liquid chromatography: comparison of two stationary phases and various eluents. J.Chromatogr.,1991, 541:221-229
    [7]J. Sangster. Octanol-water partition coefficients of simple organic compounds. J.Phys. Chem. Ref. Data,1989,18(3):1111-1229
    [8]H. Kubinyi. Lipophilicity and drug activity. Prog Drug Res,1979,23:97-198
    [9]W. Lambert. Modeling oil-water partitioning and membrane permeation using reversed-phase chromatography. J. Chromatogr. A,1993,656:469-484
    [10]A. J. Leo. Hydrophobic parameter:measurement and calculation. Methods Enzymol,1991,202:544-591.
    [11]J. A. Platts, S. P. Oldfield, M. M. Reif, et al. The RP-HPLC measurement and QSPR analysis oflog Po/w values of several Pt(II) complexes. J. Inorg. Biochem, 2006,100(7):1199-1207
    [12]W. B. Neely, D. R. Branson, G. E. Blau. Partition coefficient tomeasure bioconcentration potential of organic chemicals in fish. Environ. Sci. Technol, 1974,8(13):1113-1115
    [13]F. A. Gobas, J. M. Lahittete, G. Garofalo, et al. A novel method for measuring membrane-water partition coefficients of hydrophobic organic chemicals: comparison with 1-octanol-water partitioning. J. Pharm. Sci.,1988, 77(3):265-272
    [14]M. H. Abraham, P. H. Grellier, R. A. McGill. Determination of olive oil-gas and hexadecane-gas partition coefficients, and calculation of the corresponding olive oil-water and hexadecane-water partition coefficients. J. Chem Soc.,Perkin Trans.,1987,2:797-803
    [15]S. Demare, B. Slater,G. Lacombe, et al. Accurate automated log Po/w measurement by gradient-flow liquid-liquid partition chromatography:Part 1. Neutral compounds. J. Chromatogr. A,2007,1175(3):16-23
    [16]OECD. OECD Guideline for Testing of Chemicals, No.107:Partition Coefficient (n-octanol/water)-Flask shaking method.1981
    [17]Y. He, L. Wang, S. Han, et al. Determination and estimation of physicochemical properties for phenylsulfonyl acetates. Chemosphere,1995,30:117-125
    [18]D. N. Brooke, A. J. Dobbs, N. Williams. Octanol:water partition coefficients (P). Measurement, estimation, and interpretation, particularly for chemicals with P>105. Ecotoxicol. Environ. Safety,1986,11:251-260
    [19]A. G. Haelst, P. F. Van Heesen, F. W. M. Wielen, et al. Determination of n-octanol/water partition coefficients of tetrachlorobenzyltoluenes individually and in a mixture by the slow stirring method. Chemosphere,1994,29:1651-1660
    [20]J. De Bruijn, F. Busser, W. Seinen, et al. Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the slow-stirring method. Environ. Tox. Chem.,1989,8:499-512
    [21]J. J. Ellington, T. L. Floyd. Measuring Octanol/Water Partition Coefficients by the "Slow-Stirring" Method. US Environmental Protection Agency, Athens, GA. 1995
    [22]J. E. Garst, W. C. Wilson. Accurate wide-range, automated high-performance liquid chromatographic method for the estimation of octanol/water partition coefficients. I:Effect of chromatographic conditions and procedure variables on accuracy and reproducibility of the method. J.Pharm. Sci.,1984,73:1616-1629
    [23]J. Kurz, K. Ballschmiter. Vapour pressures, aqueous solubilities, Henry's law constants, partition coefficients between gas/water (Kgw), N-octanol/water (KoW) and gas/N-octanol (Kgo) of 106 polychlorinated diphenyl ethers (PCDE). Chemosphere,1999,38:573-586
    [24]A. Paschke, M. Manz, G. Schuurmann. Application of different RP-HPLC methods for the determination of the octanol/water partition coefficient of selected tetrachlorobenzyltoluenes. Chemosphere,2001,45:721-728
    [25]K. Ballschmiter, D. Klingler, S. Ellinger, et al. High-resolution gas chromatography retention data as a basis for estimation of the octanol-water distribution coefficients (Kow) of PCB:the effect of experimental conditions. Anal. Bioanal. Chem.,2005,382:1859-1870
    [26]J. Sangster. Octanol-Water Partition Coefficients-Fundamentals and Physical Chemistry, Wiley, Brisbane.1997
    [27]L. R. Snyder, J. W. Dolan, J. R.Gant. Gradient elution in high-performance liquid chromatography:I. Theoretical basis for reversed-phase systems. J. Chromatogr., 1979,165:3-30
    [28]T. Braumann. Determination of hydrophobic parameters by reversed-phase liquid chromatography:theory, experimental techniques, and application in studies on quantitative structure-activity relationships. J.Chromatogr.,1986,373:191-225
    [29]OECD. OECD Guideline for Testing of Chemicals, No.117:Partition coefficient (n-octanol/water)-High performance liquid chromatography method.1989
    [30]H. J. C. Klamer, M.Beekman. Estimating the 1-octanol/water partition coefficients and fish bioconcentrations factor of unknown compounds using a gradient HPLC method. Toxicol Model,1995,1:169-179
    [31]A. Kaune, M. Knorrenschild, A. Kettrup. Predicting 1-octanol-water partition coefficients by high performance liquid chromatography gradient elution. Fresenius J. Anal. Chem.,1995,352:3030-3312
    [32]J. D. Krass, B. Jastorff, H. G. Genieser. Determination of lipophilicity by gradient elution high-performance liquid chromatography. Anal. Chem.,1997,69: 2575-2581
    [33]K. Valko, C. Bevan, D. Reynolds. Chromatographic hydrophobicity index by fast-gradient RP-HPLC:a high-throughput alternative to logP/logD. Anal. Chem., 1997,69:2022-2029.
    [34]E. M. J. Verbruggen, H. J. C. Klamer, L. Villerius, et al. Gradient elution reversed-phase high-performance liquid chromatography for fractionation of complex mixtures of organic micropollutants according to hydrophobicity using isocratic retention parameter. J. Chromatogr. A,1999,835:19-27
    [35]A. Leo, C. Hansch, D. Helkins. Partition coefficient and their uses. Chem. Rev., 1971,71:525-538
    [36]J. S. Murray, P. Politzer, G. R. Famini. Theoretical alternatives to linear solvation energy relationships. J. Mol. Struct.:Theochem,1998,454:299-306
    [37]P. Gramatica, N. Navas, R. Todeschini.3D-modelling and prediction by WHIM descriptors. Part 9. Chromatographic relative retention time and physico-chemical properties of polychlorinated biphenyls (PCBs) Chemom. Intell. Lab. Sys.,1998,40:53-63
    [38]B. G. Hansen, A. B. Paya-Perez, M. Rahman, et al. QSARs for Kow and Koc of PCB congeners:A critical examination of data, assumptions and statistical approaches. Chemosphere,1999,39:2209-2228
    [39]K. Tuppurainen, J. Ruuskanen. Electronic eigenvalue (EEVA):a new QSAR/QSPR descriptor for electronic substituent effects based on molecular orbital energies. A QSAR approach to the Ah receptor binding affinity of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Chemosphere,2000,41:843-848
    [40]H. Kuramochi, K. Kawamoto. Modification of UNIFAC parameter table Revision 5 for representation of aqueous solubility and 1-octanol/water partition coefficient for POPs. Chemosphere,2006,63(4):698-706
    [41]L. L. Sun, L. P. Zhou, Y. Yu, et al. QSPR study of polychlorinated diphenyl ethers by molecular electronegativity distance vector (MEDV-4). Chemosphere, 2007,66:1039-1051
    [42]A. Finizio, M. Vighi, D. Sandroni. Determination of n-octanol/water partition coefficient (Kow) of pesticide critical review and comparison of methods. Chemosphere,1997,34:131-161
    [43]J. Li. Evaluation of a semi-empirical approach to correlation of retention with octanol-water partition coefficients by use of adjustable hydrogen-bonding indicator variables. J. Chromatogr. A,2005,61:479-492
    [44]C. H. Lochmuller, M. Hui. Calculated Log Kow as a Guide for Key-Set Mobile Phase Selection in Retention Prediction. J. Chromatogr.,1998,36:11-18
    [45]卢佩章,卢小明,李秀珍等.液-固色谱中流动相组成对保留值的影响-基本关系式的推导.科学通报,1982,27(9):1175-1183
    [46]P. C. Lu, X. M. Lu. Development of a high-performance liquid chromatograph with artificial intelligence. J. Chromatogr.1984,292:169-188
    [47]陈农,张玉奎,包绵生等.反相液相色谱保留值的预测模式.色谱,1989,7(5):280-282
    [48]L. R. Snyder, J. W. Dolan, J. R. Gant. Gradient elution in high-performance liquid chromatography:I. Theoretical basis for reversed-phase systems. J. Chromatogr.,1979,165:3-30
    [49]C. G. Huber. Micropellicular stationary phases for high-performance liquid chromatography of double-stranded DNA. J. Chromatogr A,1998,806(l):3-30
    [50]K. Rogers, A. Cammarata. Superdelocalizability and charge density. A correlation with partition coefficients. J. Med. Chem.,1969,12:692-693
    [51]N. Kurihara, M. Uchida, T. Fujita, et al. Studies on BHC isomers and related compounds V. Some physicochemical properties of BHC isomers. Pest. Biochem. Physiol.,1973,2(4):383-390
    [52]N. El Tayar, H. Van de Waterbeemd, M. Gryllaki, et al. The Lipophilicity of deuterium atoms. A comparison of shake-flask and HPLC methods. Int. J. Pharm.,1984,19:271-281
    [53]J. Iwasa, T. Fujita, C. Hansch. Substituent constants for aliphatic functions obtained from partition coefficients. J.Med. Chem.,1965,8:150-153
    [54]C. Hansch, A. J. Leo. Substituent constants for correlation analysis in chemistry and biology. Wiley, New York.1979
    [55]H. Kubinyi. Lipophilicity and drug activity. Prog Drug Res,1979,23:97-198
    [56]C. Chiou. Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ. Sci. Tech.,1985, 19:57-62
    [57]S. Karickhoff, D. Brown, T Scott. Sorption of hydrophobic pollutants on natural sediments. Water Res.,1979,13:241-248
    [58]H. Watarai, M. Tanaka, N. Suzuki. Determination of halobenzenes in heptane/water and 1-octanol/water systems and comparison with the scaled particle calculation. Anal Chem,1982,54:702-705
    [59]H. D. Sapirstein, M. G. Scanlon, W. Bushuk. Normalisation of high-performance liquid chromatography peak retention times for computerised comparison of wheat prolamin chromatograms. J. Chromatogr. A,1989,469:127-135
    [60]K. Petritis, L. J. Kangas, P. L. Ferguson, et al. Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses. Anal. Chem.,2003,75:1039-1048
    [1]苏敬武,丛庆美,张吉美等.威海市农产品及人乳中有机氯农药残留量的调查.环境与健康杂志[J],2000,18(1):29-31
    [2]P. J. John, N. Bakore, P. Bhatnagar. Assessment of organochlorine pesticide residue levels in dairy milk and buffalo mild from Jaipur City, Rajasthan, India[J]. Environmental International,2001,26(4):231-236
    [3]J. Payne, M. Scholze, A. Kortenkamp. Mixtures of Four Organochlorines Enhance Human Breast Cancer Cell Proliferation[J]. Environ Health Perspect,2001,109 (4):391-397
    [4]B. Krauthacker, E. Reiner. Organochlorine compounds in human milk and food of animal origin in samples from Croatia[J], Arhivza Higijenu Radai Toksikologiju, 2001,52(2):217-227
    [5]于慧芳,赵旭东,张晓鸣等.北京地区人乳有机氯农药蓄积水平的动态研究[J].环境与健康杂志,2001,18(6):352-354
    [6]Y. Konishi, K. Kuwabara, S. Hori. Continuous surveillance of organochlorine compounds in human breast milk from 1972 to 1998 in Osaka, Japan[J], Archives of Environmental Contamination and Toxicology,2001,40(2):571-578 [7] U. Nigam, M. K. J. Siddiqui. Organochlorine insecticide residues in dairy milk samples collected in Lucknow, India[J]. Bulletin of Environmental Contamination and Toxicology,2001,66(5):678-682
    [8]M.P. Longnecker, M.A. Klebanoff, H.B. Zhou, et al. Association between maternal serum concentrat ion of the DDT metabolite DDE and preterm and small for gestation age babies at birth. The Lancet,2001,358:110-114
    [9]翁挺,陶登彩,梅洁妍等.人体有机氯农药残留水平的调查.环境与健康杂志,1986,3(6):40-41
    [10]E. F. Daniel, T. B. Yan, S.Beckman, et al. Mechanism of AP-1-mediated gene exp ression by select organochlorines through the p38 MAPK pathway[J]. Carcinogenesis,2004,25(2):249-261
    [11]张宏,王凯忠,刘国津.DDT人体蓄积与乳腺癌[J].中华肿瘤杂志,2001,23(5):408-409
    [12]Costabeber, Ijoni. Organochloride insecticide residues:Risk factor for breast cancer[J]. Revista Media del Instituto Mexicano del Seguro Social,2001,39 (2): 127-132
    [13]V. K. Shukla, A. N. Rastogi, T. K. Adukia, et al. Organochlorine pesticide in carcinoma of the gallbladder:a case - chontrol study [J]. European Journal of Cancer Prevention,2001,10(2):153-156
    [14]M. C. R. Alavanja, C. Samanic,,M. Dosemeci, et al. Use of agricultural pesticides and p rostate cancer risk in the agricultural health study cohort[J]. Ep idemiolody,2003,157(9):800-814
    [15]E. Van Wijngaarden, P. A. Stewart, A. F. Olshan, et al. Parental occupational exposure to pesticides and childhood brain cancer [J]. Ep idemiology,2003, 157(11):989-997
    [16]P. Cocco, P. Brenman, A. Ibba, et al. Plasma polychlorobiphenyl and organochlorine pesticide level and risk of major lymphoma subtypes [J]. Occupational and environmental medicine,2008,65(2):132-140
    [17]L. Fritschi, G. Benke, A. M. Hughes, et al. Occupational exposure to pesticides and risk of non-hodgkin's lymphoma[J]. J Ep idemiology,2005,162(9):849-857
    [18]F. Menegaux, A. Baruchel, Y. Bertrand, et al. Household exposure to pesticides and risk of childhood acute leukaemia[J]. Occupational and environmental medicine,2006,63 (2):131-134
    [19]C. Struys-Ponsar, O. Guillard, Ph. van den Bosch de Aguilar. Effects of Aluminum Exposure on Glutamate Metabolism:A Possible Explanation for Its Toxicity. Experimental Neurology,2000,163(1):157-164
    [20]W. Birkmayer, G. J. D. Birkmayer. Nicotinamidadenin-dinucleotide (NADH) The New Approach in the Therapy of Parkinson's Disease. Ann Clin Lab Sci,1989, 19:38-43
    [21]C.Exley. Aluminum and Alzheimer's Disease, Journal of Alzheimer s Disease, 2001,3(6):551-552
    [22]C. V. Swegert, K. R. Dave, S. S. Katyare. Effect of aluminium-induced Alzheimer like condition on oxidative energy metabolism in rat liver, brain and heart mitochondria. Mechanisms of Ageing and Development,1999, 112(l):27-42
    [23]J.F. Ma, P. R. Ryan, E. Delhaize. Aluminum tolerance in plants and the complexing role of organic acids, Trends in Plant Science,2001,6(6):273-278
    [24]R. V. Hull, P. S. Congerlll, R. J. Hoobler. Conformation of NADH studied by fluorescence excitation transfer spectroscopy. Biophy.Chem.,2001,90,9(1):9-16
    [25]J. Schlessinger, I. Z. Steinberg, A. Levitzki. A comparative study of NAD+ binding sites in dehydrogenases by circular polarization of fluorescence. J.Mol.Biol.,1975,91(4):523-528
    [26]K. T. Yue, C. L. Martin, D. H. Chen. Raman spectroscopy of oxidized and reduced nicotinamide adenine dinucleotides. Biochem,1986,25(17):4941-4947
    [27]C. G. Suhayda, A. Haug. Organic acids prevent aluminum-induced conformational changes in calmodulin. Biochem. Biophys. Res. Commun.,1984, 119(1):376-381

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700