溶藻弧菌噬菌体、菌影疫苗及其对对虾免疫保护性的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从自然环境中分离,筛选了一株致病弧菌,经鉴定为溶藻弧菌,并同时从环境当中分离了它的噬菌体。本文研究了噬菌体的生理特性,制作溶藻弧菌菌影。并利用全菌疫苗,菌影疫苗及噬菌体注射对虾,比较它们对南美白对虾免疫功能的影响和对对虾溶藻弧菌弧菌病的防治效果。具体研究结果如下:
     1.本文从虾塘水体中分离了一株溶藻弧菌,对该菌进行了常规的生理生化鉴定,确认该菌为溶藻弧菌;
     2.以分离到的溶藻弧菌为宿主菌从虾塘水体中分离了一株溶藻弧菌噬菌体。平板上噬菌斑特征:噬菌斑较为透明,圆整,边缘清楚,无晕环。噬菌斑较小,直径为1.0~1.2mm。进行扩增之后该噬菌体的最高效价可达10~(10)pfu/mL;
     3.测定了溶藻弧菌噬菌体的生理生化特性,实验结果表明:噬菌体的RTD为106pfu/mL。最适pH为8.0,太酸或者太碱的环境都不适合噬菌体的生存;最适温度为35℃,具有有较好的耐热性,对60℃以上的温度敏感;对紫外线敏感,溶藻弧菌和噬菌体混合时间影响出斑数量;该噬菌体对氯仿不敏感,但其对非离子去垢剂Triton-X100敏感,经处理后滴度剩余17.8%;Mg~(2+)有利于噬菌体的吸附,比不添加的出斑率高出55~71个百分点。在盐度为25‰的情况下,对溶藻弧菌的裂解能力最强,这可能是因为这株噬菌体是在海水环境下分离出来的有关,所以对于高盐度的耐受性比较好;该噬菌体的最佳感染复数为在0.1~10之间;噬菌体的潜伏期为35min;
     4.本文探索了如何能用噬菌体尽量完全的裂解宿主,由实验结果可以看出:溶藻弧菌的培养时期对于噬菌体的除菌效果是有影响的,噬菌体对于培养了2小时到8小时之间的宿主菌的裂解能力相当,宿主菌数量的变化规律也一致,都是刚开始有微弱的升高,到了4小时以后开始下降,6小时后下降更加明显,当达到一个最低点后,又有升高;噬菌体对于培养了10个小时的菌的裂解能力相比培养了2小时到8小时之的菌的裂解能力有所降低,在噬菌体和宿主菌反应时间到10小时时,菌的数量就达到了最低值,但这个最低值高于噬菌体和培养了2小时到8小时之间的宿主菌相互反应所达到的最低值;用培养时期在12小时以后的溶藻弧菌作为宿主时,结果发现噬菌体对菌的数量变化作用比较小。菌数量的变化曲线接近于菌的生长曲线;但当噬菌体数和溶藻弧菌数之间的比不同时,弧菌的数量变化规律也不同,当弧菌数量比噬菌体数多时,菌数量是先呈现上升趋势,然后下降,再上升;当噬菌体数量比较多时,菌的数量先下降,后缓慢上升,当MIO=10时,除菌效果最好,噬菌体数和溶藻弧菌数之间的比对除菌效果影响不是很大,只是会导致到达菌数量最少的时间点不同;
     5.实验结果发现在实验室中,噬菌体不能完全裂解细菌,使用100μL的大蒜液或浓度为100U/mL青霉素、100μg/mL链霉素的PBS就可以把经噬菌体裂解剩下的菌除干净;
     6.用溶藻弧菌对南美白对虾进行攻毒实验。结果表明,肌注射1×10~6cfu/mL的溶藻弧菌可以使对虾的死亡率达到30%,而1×10~7cfu/mL的溶藻弧菌可导致成虾红体病,1×10~8cfu/mL的溶藻弧菌可使对虾的死亡率达到90%。各实验组凡纳滨对虾的各部分的弧菌含量都远比对照组高,肝胰脏和肠内的含菌量尤其多;对虾的血细胞数目呈升高趋势;
     7.本实验给南美白对虾注射甲醛处理的全菌疫苗,噬菌体处理的菌影疫苗和噬菌体,比较三者对对虾的免疫学指标的影响。经噬菌体处理过的菌影疫苗注射的对虾的NOS活力最高,注射噬菌体对NOS活力的影响不是很明显,甚至低于阴性对照组;注射了10~8pfu/mL全菌疫苗的南美白对虾在12h的PO值最高。注射了10~8pfu/mL噬菌体的南美白对虾的血蓝蛋白在6h的含量最高;
     8.免疫后攻毒实验结果可以看出,10~8pfu/mL噬菌体对南美白对虾的免疫保护率最好,可以达到88.2%,随着浓度的降低,免疫保护率也随之下降,但10~6pfu/mL的噬菌体对南美白对虾仍有70.6%的免疫保护率,高于10~8cfu/mL的全菌疫苗。10~8cfu/mL菌影疫苗的免疫保护率也有76.5%高于10~8的全菌疫苗。
A new Vibrio alginolyticus phage was isolated and screened from the polluted water Vibrio alginolyticus is one of important pathogenic to aquatic and human beings. In the present Vibrio alginolyticus study aims at the biophysical chemistry characters of the phage and the produce of bccterial Vibrio alginolyticus ghosts. Compares the whole cell vaccine, bacterial ghosts vaccine and phage immune function and preventing the prawn vibrio disease. Our works coverd:
     1. A new Vibrio alginolyticus was isolated form the pond. The isolation was identified as Vibrio alginolyticus by physiologicaland and biochemical characteristic analysis;
     2. In this experiment a new phage of Vibrio alginolyticus was isolated from sewage by using Vibrio alginolyticus as its host bacteria. The plaques of the phage which was screen were clear in the center and with haloy around.The plaques were about 1.0~1.2mm diameter in the flat. The potency of the phages was 10~(10)pfu/mL after amplification.
     3 .The physiological and biochemical characteristic of the phages indicated that:the RTD of the phage is 106pfu/mL ;the optimum PH value of the phage is about 8.0; Overacidity or overalkalinity environment are not suitable for the survival of phage . The optimum temperature of the phage infected to Vibrio parahaemolyticus is 35℃; the phage has good heat tolerance; the phages were sensitive to upper 60℃. The phages were sensitive to ultraviolet radiation and Triton-X100. The mixed time of phages and hosts affects quantity of plaques. The phages were resistent to chloroform; titer of the phage is remin 17.8% after treatment. It’s favorable to the attachment of the phage when Mg~(2+) is in the culture medium.The ability of cleavage of the phages was strong when the salinity of the water is about 25‰. It adapt to the living entironment of phages. The best infect proportion was 0.1~1. The incubation period of the phage is 35min.
     4. This paper study in how to use the phage to completely pyrolysis hosts. They can be seen from the experimental results: the cultivation period of Vibrio alginolyticus affect the disinfection of phages, between 2 hours and 8 hours the effection is not significant and the change of the amount of Vibrio alginolyticus is uniform that began with a faint rise, four hours later began to fall, after six hours fall more evident and rised after reached the lowest point the splitted ability of phage is reduce to the 10 hours Vibrio alginolyticus .The number of bacteria in 10 hours to reach the lowest ,but is higher than before. In 12 hours with training period after as the host of dissolving algae vibrio, found the quantity change of bacteria phage role smaller. Phages play a smaller role to the change of the bacteria amount when the hosts have growed more than 12 hours. The curve of the number of bacteria is similar with the bacteria growth curve;The change of the amount of Vibrio alginolyticus is different when the amount of the phage is different from the amount of the hosts.When the number of the hosts is larger than the number of the phage , the mumber of hosts is first showed a rising trend, then down and up ;In contrast,the number of bacteria slowly increased but dropped later.When MIO=10, the disinfection dffect is best.The amount of the phages and the ratio of the amount of the hosts to the disinfection effect is not very big, but will lead to reach the minimum amount of bacteria in different time.
     5. The results of Experiments have found phage can't completely cracking bacteria in laboratory. Using 50μL garlic liquid or 10μLconcentration for 100U/mL of penicillin and 100 muon g/mL streptomycin of PBS can clean the rest of the bacteria.
     6. The virulence test show: 1×10~6cfu/mL Vibrio alginolyticus can make the prawn mortality 30%, and 1×10~7cfu/mL of Vibrio alginolyticus can cause red body disease to the shrimp, 1×10~8cfu/mL of Vibrio alginolyticus make the prawn mortality achieve 90%. The experiment of bacteria burden of the tissue and apparatus of Litopanaeus vannamei show that the amount of vibrios in the body of prawn is bigger than the control group expecially in hepatopancreas and intestines.
     7. This experiment showed effects of the immunological indexes after injected whole cell vaccine, bacterial ghosts and phage.The NOS value is the highest when injected bacterial ghosts, and the influence of phage is not obvious,even lower than negative control; PO value of the Litopanaeus vannamei Given 10~8 the whole cell vaccine is the highest. Hemocyanin is the highest of Litopanaeus vannamei Given 10~8 phage.
     8. The virulence test after immunization showed: the immune protective rate of Litopanaeus vannamei injected 10~8pfu/mL phage is better than others and up to 88.2%. With the concentration decreasing the immune protective rate also fall subsequently but the immune protective rate of Litopanaeus vannamei which injected 10~6pfu/mL phages is remin 70.6% and higher than 10~8cfu/mL whole cell vaccines. The immune protective rate of Litopanaeus vannamei injected 10~8cfu/mL bacterial ghosts is remin 76.5% and higher than 10~8cfu/mL whole cell vaccine.
引文
[1] Ripabelli G,Sammarco M L,Grasso G M,et al.Occurrence of Vibrioand other pathogenic bacteria in Mytilus galloprovincialis(mussels) harvested from Adriatic Sea,Italy[J].International Journal of Food Microbiology,1999,49:43-48.
    [2] Stefan H, Helmut W, Karin N B,et al.Isolation of Vibrio alginolyticusfrom seawater aquaria[J].Int J Hyg Environ Health,2000,203:169-175.
    [3] Vasconcelos G J, Stang W J, Laidlaw R H. Isolation of Vibrio parahaemolyticusand Vibrio alginolyticus from Estuarine Areas of Southeastern Alaska [J].Appl Microbiol,1975,4:557-559.
    [4] chan K Y,Woo M l,Lo K w,etal.occurrence and distribution of halophilic vibrios in subtropical coastal waters of hong kong[J].Applied and Environmental Microbiology,1986,6:1407-1411.
    [5]黄志坚,何建国.鲑点石斑鱼细菌病原的分离鉴定和致病性[J].中山大学学报:自然科学版,2002,41(5):64-67.
    [6]祝玲,吴忠业,林阿乞,等.引发杂色鲍苗掉板死亡的溶藻弧菌分离鉴定及毒力分析[J].水利渔业,2008,28(3):97—99.
    [7] Biake.p.A.et al.Annu Rev Microbiol [M]. 1980,34:341-346.
    [8]纪舒萍,纪奎滨,杨暑伏,等.溶藻弧菌引起食物中毒的病原学研究[J].中华预防医学志,1989,23(2):71─73.
    [9]纪舒萍,纪奎滨,杨暑伏,等.溶藻弧菌引起食物中毒的病原学研究[J].中华预防医学杂志,1989,23(2):71-73.
    [10]李文科,吕玉林,吴顺娥,等.一起由溶藻弧菌引起的食物中毒[J].中华流行病学杂志,1990,11(特刊8号):99-102.
    [11]林业杰,欧剑鸣,董新平,等.溶藻弧菌的病原学研究[J].海峡预防医学杂志,2001,1:45-46.
    [12]封会茹,游京蓉,刘玉堂,等.溶藻弧菌引起暴发型食物中毒的病原学研究[J].中国食品卫生杂志,2003,4:331-334.
    [13]权太淑,李薇,杨喜玲.自腹泻患者中分离溶藻弧菌及其病原性的探讨[J].中国公共卫生,1985,4(5):15-18.
    [14] Patterson TF, Bell S R, Bia F J. Vibrio alginolyticus cellulites following coral injury [J].Yale J BiolMed, 1988, 61(6): 507─512.
    [15] Dronda F, Dronda F, Canton R, et al. Vibro alginolyticus and swimmer s otitis externa.2 cases and reviewof the liter-ature[J]. Enferm Infecc Microbiol Clin, 1991, 9(10): 630─633.
    [16]薛清刚,王文兴.对虾疾病的病理与诊治[M].青岛:青岛海洋大学出版社, 1992.
    [17] Hisatsune K, Kiuye A, Kondo S. A comparative study of the sugar composition of O-antigenic lipopolysaccharides isolated fromVibrio alginolyticusand Vibrio parahaemolyticus[J].Microbiol Immunol,1981,25:127-136.
    [18]陈晓燕,胡超群.溶藻弧菌脂多糖在两种鱼类体内的组织分布[J].热带海洋学报,2002,21:30-35.
    [19]陈晓燕,胡超群,任春华,等.溶藻弧菌脂多糖单克隆抗体的制备、鉴定及初步应用[J].高技术通讯,2002,11:90-95.
    [20]鄢庆枇,苏永全,王军,等.溶藻弧菌脂多糖对大黄鱼的毒性与免疫保护性试验[J].台湾海峡,2003,22:163-167.
    [21]叶剑敏,简纪常,吴后波,等.溶藻弧菌脂多糖的化学成分分析及其对石斑鱼的毒性[J].水生生物学报.2004,28(5):574-576.
    [22] Long S,Mothibeli M A, Robb F T,etal.Regulation of extracellular alkaline protease activity by histidin in a collagenolytic Vibrio alginolyticusstrain[J].Journal of General Microiolog- y,1981,127:193-199.
    [23] Hare P,Long S,Robb F T,et al. Regulation of exoprotease production by temperature and oxygen in Vibrio alginolyticus[J].Arch Microbiol,1981,130:276-280.
    [24] Hare P,Scott-Burden T,Woods D R. Characterization of extracellular alkaline proteases and collagenase induction inVibrio alginolyticus[J].J Gen Microbiol,1983,129:1 141-1 147.
    [25] Lee K K,Yu S R,Liu P C. Alkaline Serine Protease is an Exotoxin ofVibrio alginolyticusin Kuruma Prawn,Penaeusjaponicus[J].Current Microbiology,1997,34:110-117.
    [26] Chen F R,Liu P C,Lee K K. Purification and partial characterization of a toxic serine protease produced by pathogenic Vibrio alginolyticus[J].Microbios,1999,98(390):95-111.
    [27] Chen F R,Liu P C,Lee K K. Lethal attribute of serine protease secreted by Vibrio alginolyticusstrains in kuruma prawnPenaeus japonicus[J].Z Naturforsch,2000,55(1-2):94-99.
    [28]权太淑,李薇,杨喜玲.自腹泻患者中分离溶藻弧菌及其病原性的探讨.中国公共卫生,1985,4(5):15-18.
    [29]林业杰,林勇,林金财,等.海产品携带溶藻弧菌调查[J].海峡预防医学杂志.2000,6(2):45-46.
    [30]彭喜春,张宁,冉艳红,等.海产品中溶藻弧菌的筛选及其致病因子的研究[J].现代食品科技,2008,24(4):312-315.
    [31]莫照兰,李会荣,俞勇,等.细菌糖蛋白对螯虾免疫因子的影响[J].中国水产科学, 2000, 7(3): 28-32.
    [32]李义,宋学宏,蔡春芳,等.复方中药添加剂对罗氏沼虾免疫功能的增强作用[J].饲料工业, 2002, 23(7): 45-47.
    [33] Itami T, Takahashi Y, Tsuchihira E,et al.Enhancement of disease resistance of kuruma PrawnPenaeusjaponicu and increase in phagocytic activity of prawn hemocytes after oral administration ofβ-1, 3-glucan (Schizophyllan)[M]. The Third Asian Fisheries Forum. Asian Fisheries Society, Manila, Philippine. 1993, 375—378.
    [34]司穉东,何晓青.噬菌体学[M].北京:科学出版社, 1996.
    [35]吕欣.噬菌体在细菌性感染治疗中的应用及展望[J].国外医学病毒学分册, 2001, 8(6): 190-192.
    [36]聂红苹.利用噬菌体进行生物防治的研究进展[J].湛江师范学院学报, 2007, 28(3): 91-94.
    [37] Alisky J, Iczkowski K, Rapoport A, et al. Bacteriophages show promise as antimicrobial agents [J]. J Infect, 1998, 36: 5-15.
    [38]张克斌.铜绿假单胞菌噬菌体的分离鉴定及其基因组学研究[D].重庆:第三军医大学, 2001.
    [39]郑志学,庞仲华,司穉东,等.中华结核和呼吸系统疾病杂志[M]. 1978: 94-95.
    [40] Litvinova AM, Chtetsova VM, Kavtreva IG. Evaluation of efficacy of the use of coli-Proteus bacteriophage in intestinal dysbacteriosis in premature infants[J]. Vopr Okhr Materin Det, 1978, 23(9): 42-44.
    [41] Soothill JS. Bacteriophage prevents destruction of skin grafts by Pseudomonas aeruginosa[J]. Burns, 1994, 20(3): 209-211.
    [42]张利军.类炭疽芽胞杆菌噬菌体03Z-1的生物学特性及裂菌效应研究[D].重庆:第三军医大学, 2004.
    [43] Barrow P, Lovell M, Berchieri A Jr. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves[J]. Clin Diagn Lab Immunol, 1998, 5(3): 294-298.
    [44] Park S C, Shimamura I, Fukunaga M, et al. Isolation of Bacteriophages Specific to a Fish Pathogen, Pseudomonas plecoglossicida, as a Candidate for Disease Control[J]. Appl Environ Microbiol, 2000, 66(4): 1416-1422.
    [45] Nakai T, Sugimoto R, Park K H, et al. Protective effects of bacteriophage onexperimental Lactococcus garvieae infection in yellowtail[J]. Dis Aquat Org, 1999, 37: 33-41.
    [46]谢明杰,李太武,苏秀榕,等.噬菌体脱毒机理的研究Ⅰ[J].中国微生态学杂志, 1999, 11(2): 56-58.
    [47]李太武,相建海,刘瑞玉,等.噬菌体防治皱纹盘疱脓疱病的研究[J].海洋与湖沼, 1999, 30(4): 374-380.
    [48]宁淑香,聂丽平,陆敏,等.河流弧菌-II(Vibrio fluvialis-II)噬菌体-VP_8的分离与研究[J].微生物学杂志, 2000, 20(1): 20-31.
    [49]宁业杰,陈亢川,陈拱力,等.溶藻弧菌噬菌体的分离[J].微生物学报,1993,33(4):285-289.
    [50] Short CM, Suttle CA. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments[J]. Appl Environ Microbiol, 2005, 71(1): 480-486.
    [51]宁淑香,聂丽平,邹侠,等.大连近海河流弧菌Ⅱ噬菌体的分离与研究[J].微生物学通报, 2002, 29(6): 20-23.
    [52]陈晓春,王继文,曹永长,等.噬菌体在疾病治疗方面的应用及研究[J].动物医学进展, 2005, 26(1): 32-35.
    [53] He XQ, Pan RN. Bacteriophage lytic patterns for identification of salmonellae, Shigellae, Escherichia coli, Citrobacter freundii, and Enterobacter cloacae[J]. J Clin Microbiol, 1992, 30(3): 590-594.
    [54] Jensen EC, Schrader HS, Rieland B, et al. Prevalence of Broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa[J]. Applied and environmental Microbiology, 1998, 64(2): 575-580.
    [55] Dabrowski CM, Weber DB, Woyton A. Bacteriophage treatment of suppurative skin infections[J]. Arch Immunol Ther Exp, 1987, 35(2): 175-183.
    [56]孙伟,朱春宝.噬菌体治疗细菌感染的研究[J].国外医药抗生素分册, 2005, 26(2): 54-69.
    [57] Allpress J L,Curry R J,Hanchette C L,et al.A GIS-based method for household recruitment in a prospective pesticide exposure study[J]. Int J Health Geogr,2008,7: 18.
    [58] Yi Q X,Huang J F,Wang F M,et al.Quantifying biochemical variables of corn by hyperspectral reflectance at leaf scale[J].Journal of Zhejiang University Science B,2008,9(5): 378-384.
    [59]王丽哲.裂解基因E和SN基因原核表达载体构建及大肠杆菌O_(138)菌影的研制(D).吉林大学,2007.
    [60] Palm-Apergi C,Hallbrink M. A new rapid cell-penetrating peptide based strategy to produce bacterial ghosts for plasmid delivery[J], J Control Release,2008,8:11.
    [60]许斌福,林能锋,杨金先等.大黄鱼副溶血弧菌的分离、鉴定及致病力分析.福建农业学报2002,17(3):174~177.
    [61]马光刚,郭福生,王娟等.海产品中副溶血弧菌的分离与鉴定.中国动物检疫,2002,19(9):25-28.
    [62]王培龙,吴凡生,李卓等. 57株非O1群弧菌噬菌体及生物学分型研究.中国卫生检验杂志,1997,7(1):36~38.
    [63]东秀珠,蔡妙英等.常见细菌系统鉴定手册[M].北京:科学出版社,2001,106~116.
    [64]徐笛诚,蔡妙英主编.革兰氏阴性杆新编鉴定手册.哈尔滨.黑龙江科学技术出版社,1994.
    [65] Holt J G,Krige N R,et al. Bergey’s manual of bacteriology(9th Ed)[M].1994,London:Williams and Wilkins Press.
    [66] [日]微生物研究法讨论会编.微生物学实验法.程光胜,李玲阁,张启先等译.北京:科学出版社, 1981,114~115.
    [67]蒋小皖,朱凤才,祖荣强. O139霍乱弧菌噬菌体的分离.江苏卫生保健,2002,4(3):121~122.
    [68]王秀茹,高儆,梁刚等.噬菌蛭弧菌噬菌班的鉴别与纯化的研究.微生物学报,1994,21(4):228~232.
    [69] [美]J.萨姆布鲁,g E.F.弗里奇,T.曼尼阿蒂斯著.分子克隆实验指南:第二版.金冬燕等译.北京:科学出版社,2002,133~137.
    [70]李广武,杨朝晖,岳海峰.产硷蛋白酶地衣芽孢杆菌N16抗噬菌体菌株筛选及噬菌体PG3特性的研究.武汉大学学报(自然科学版),1995,41(6):757~763.
    [71]徐亚红,朱宝根.副溶血性弧菌噬菌体的研究.中国卫生检验杂志,1999,9(5):359~360
    [72]徐焰,熊鸿燕,苏明全等.医院内污水中噬菌体的分离及其生物学特性观察.第四军医大学学报,2003,24(9):846~848.
    [73] Smith H W, Huggins M.B. Successful treatment of experimental Escherichia coliinfection in mice using phage its general superiority over antibiotics[J]. Journal of General Microbiology,1982, 128:307~318.
    [74] [美] S.R.马洛伊V.J.斯图特R.K.泰勒著.医用细菌遗传学实验指南.徐建国等译北京:科学出版社, 2000,302~303.
    [75]鲁会军,韩文瑜,雷连成等.致病性耐药大肠杆菌的噬菌体裂解试验.中国兽药杂志,2002,36(5):28~31.
    [76] Barrow P, lovell III , Berchieri A Jr. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves . Clin Diagn Lab Immunol, 1998 ,5(3):294-8.
    [77]鲁会军.耐大肠杆菌裂解性噬菌体生物学特性的研究.长春.中国人民解放军军需大学, 2002硕士研究生论文.
    [78]金晓琳,张克斌,胡福泉.噬菌体最佳保存方法探讨.微生物学通报,2001,23(7):863~864
    [79] Daniel N L L,Vincent A. Fischetti Prewention and climination of upper respiratory colonization of mice by group A streptococci by using abacteriophage lytic enzyme proc Natl Acad Sci. USA, 2001,98(7):4107~4112.
    [80]余贺.医学微生物学.北京:人民卫生出版社,1964,89.
    [81]乔华林.副溶血弧菌的致病性及其检验和测定[J].水产科学1999,18(4):2830.
    [82]陆承平兽医微生物学.北京:中国农业出版社,2001,240~242.
    [83]许斌福,林能锋,杨金先等.大黄鱼副溶血弧菌的分离、鉴定及致病力分析.福建农业学报2002,17(3):174~177.
    [84] Short C M,Suttle C A.Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol,2005 ,71(1):480-6.
    [85]宁淑香,聂丽平,邹侠.大连近海河流弧菌Ⅱ噬菌体的分离与研究.微生物学通报,2002,29(6):20~23.
    [86]杨水云,郭春林,赵文明.理化因素对苏云金芽孢杆菌噬菌体活性影响的研究.陕西师范大学学报(自然科学版),1998,26(增刊):225~228
    [87]郝卫东,尚兰琴,金庆中等.长波紫外线对M13mp2噬菌体的致突变作用.中国环境科学,1998,18(5):472~475.
    [88]宁淑香,聂丽平,陆敏.河流弧菌-II(Vibrio fluvialis-II)噬菌体-VP8的分离与研究.微生物学杂志,2000,20(1):20~31 .
    [89] Depaola A,Ulasze K J,Kaysner C A,et al. Molecular Serological,and Virulence Characteris- tics of Vibrio paraphaemolyticus isolated form Enviroment in north America and Asia. Appl Environ Microbiol,2003,69(7):3999~4005.
    [90]李维泉,姚鹤鸣,沈美娟.地中海拟无枝菌酸菌专一的噬菌体φMMR1的研究.病毒学报,1999,15(2):172~179.
    [91]曹立业.关于养虾池水质监测指标的建议.水产科学,1996,15(6):22~237
    [92]朱明田,颜望明.苏芸金杆菌噬菌体的形态及感染特性.山东大学学报(自然科学版),1995,30(3):340~344.
    [93]黄建军.铜绿假单胞菌噬菌体PaP2生物学特性及其基因组学的研究.重庆:第三军医大学,2004博士学位论文.
    [94] Lu Z,Breidt F J. Fleming H P,et al. Isolation and characterization of a Lactobacillus plantarum bacteriophage,φJL-1, from a cucumber fermentation. Int J Food Microbiol.2003,84(2):225-35.
    [95] Weiss BD, Capage MA, Kessel Metal·Isolation and characterization of a generalized transducing phage forXanthomonas campestrispv·Campestris·J Bacteriol, 1994, 176(11): 3354.
    [96]孙耀,赵俊.中国对虾在养殖中的自身有机质污染和急待解决的问题.海洋与海岸带开发,1994,11(1):29~32.
    [97]朱春华,徐志标.淡化养殖水体中Ca2+与Mg2+对南美白对虾生长的影响.淡水渔业,2002,32(6):166~168.
    [98]杨世平.米曲霉及其蛋白酶在水产养殖水质处理中的研究.湛江:湛江海洋大学2004,硕士论文.
    [99] Wang P W,Chu L,Guttman D S. Complete Sequence and Evolutionary Genomic Analysis of the Pseudomonas aeruginosa Transposable Bacteriophage. D3112. J. B,2004,186(2):400~ 410.
    [100]周莹冰,申晓东,等.铜绿假单胞菌噬菌体PaP3生物学特性的研究[J].解放军医学杂志,2006,31(10):999-1001.
    [101]孙荣华,李菁华,等.大肠埃希菌噬菌体的分离鉴定及其生物学特性研究[J].中国病原生物学杂志,2009,4(2):88-104.
    [102] Mirelman D. Inhibition of growth of Entamoeba histolytica by allicin, the active principle of garlic extract(Allium sativum)[J]. Journal of Infectious Diseases, 1987, 156(1): 243-244.
    [103]黄丽丽,王欣丽,康振生,等.紫外线诱导小麦条锈菌毒性突变及突变性的RAPD分析[J].菌物学报, 2005, 24(3): 400-406.
    [104] Alabi A O,Latchford J W,Jones D A. Demonstration of residual antibacterial activity in plasma of vaccinated Penaeus vannamei[J]. Aquaculture, 2000(187):15-34.
    [105]陶保华,胡超群,任春华.弧菌疫苗对斑节对虾和日本对虾免疫预防的作用[J].水产学报,2000,24(6):564-569.
    [106]陶保华,胡超群,任春华.海水鱼类病原弧菌对对虾的致病力及其疫苗的免疫预防[J].热带海洋学报,2001,20(4):68-73.
    [107]曹剑香,简纪常,吴灶和.溶藻弧菌疫苗对南美白对虾免疫功能的影响[J].湛江海洋大学学报,2004,24(6):11-17.
    [108]赵永芳.生物化学技术原理与应用[M].第三版.北京:科学出版社,2002:492-495.
    [109]姜国建.对虾白斑综合症抗病力指标的筛选及其应用的研究[D].青岛:中国科学院海洋研究所, 2004.
    [110] Yeaton R W. Invertebrate lectins:Occurrence[J]. Dev Comp Immunol, 1981,5: 39-40.
    [111] Yeh S T, Lee C S, Chen J C. Administration of hot-water extract of brown seaweed Sargassum duplicatum via immersion and injection enhances the immune resistance of white shrimp Litopenaeus vannamei[J]. Fish Shellfish Immun, 2006, 20: 332-345.
    [112] Muňoz M, Cedeňo R, Rodríguez J, et al. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei[J]. Aquaculture, 2000, 191: 89-107.
    [113] Nickerson K W, van Holde K E. A xomparishon of molluscan and arthropod hemocyanin[J]. Comp Biochem Physiol, 1971, 39: 855-872.
    [114]姜国建,于仁诚,周名江.活性氮中间体和一氧化氮合成酶系统在水产养殖生物病害防御中的作用[J].海洋科学,2006,,30(3):91-93.
    [115]刘恒,李光友.免疫多糖对养殖南美白对虾作用的研究[J].海洋于湖沼,1998,29(2):113-118.
    [116]江晓路,刘树清,张朝晖等.多糖对中国对虾免疫功能的影响[J].中国水产科学,1999,6(1):66-68.
    [117]袁军法,李莉娟,谷万港,等.对虾白斑综合征病毒VP28免疫后克氏原螯虾血清酶活性及中和活性[J].武汉大学学报,2005,51(2):253-258.
    [118]姜国建.对虾白斑综合症抗病力指标的筛选及其应用的研究[D].青岛:中国科学院海洋研究所,2004.
    [119]陶保华,胡超群,任春华.弧菌疫苗对斑节对虾和日本对虾免疫预防的作用[U].水产学报,2000,24(6):564-569.
    [120]王雷,李光友,毛远兴.口服免疫药物后中国对虾某些血细胞因子的测定及方法研究[J].海洋与湖沼,1995,26(1):34-41.
    [121]王雷,李光友,毛远兴.中国对虾血淋巴中的抗茸、溶菌活力与酚氧化酶的测定及其特性研究[J].海洋与湖沼,1995,26(2)179-185.
    [122] Djangmah J S.The effect of feeding and starvation on copper in the blood and atopancreas,and on blood protein of Crangon vulgaris(Fabricius)[J].Comp Biochem Physiol,1970,32:709-731.
    [123] Jaenicke E,Foll R,Decker H.Spider hemo-cyanin binds ecdysone and 20-OH-ecdysone [J].Biolchem,1999,274(26):34267-34271.
    [124] Paul R J,Pirow R.The physio-logical signi-ficance of respiratory proteins in invertebr- ates[J].Zoology,1998,100:319-327.
    [125] Destoumieux-Garzon D,Saulnier D,Garnier J,Jouffrey C,Bulet P,Bachere E.Crustracean Immunity:Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge[J].Biolchem,2001,276:47070-47077.
    [126] Premruethai S,Sirawut K,Rath P,et al.Immune-related gened discovery by expressed sequen cetags analysis of haem-ocytes in the Vibrio harvery infected Penaeus monndon[A].World Aquac Soc[C],2002,743.
    [127] Span A,Huang T S,Cerenius L,et al.cDNA cloning of prophenoloxidase from the fresh rayfish Pacifastacus leniusculus and its activation[J].PNAS,1995,92:939-943.
    [128] Paul R,Pirow R.The physio-logical signi-ficance of respiratory proteins in invertebr- ates[J].Zoology,1998,100:319-327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700