医用涤纶材料抗凝及促内皮化表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成医用高分子材料被广泛的应用于包括心血管人工器官在内的人工器官植入类的材料中。然而当高分子材料与血液接触时,在界面上会形成一系列的复杂的相互作用,导致凝血反应和血栓的形成,从而限制了高分子材料在血液接触材料上的进一步应用。生物材料表面覆盖内皮细胞层是改善材料血液相容性的理想方法,但直接把内皮细胞种植在基质材料表面不仅增殖速度慢,而且由于细胞与材料表面之间的作用力比较小,使得通常在短的时间内就容易脱落分离。
     因此,本研究将具有强细胞亲合力的天然大分子如胶原蛋白、明胶等粘附蛋白通过共价键结合于医用涤纶PET材料表面,以加快内皮细胞的粘附与生长。但这些粘附蛋白不仅是细胞粘附的优良介质,也有利于血小板的粘附和血栓的形成。血小板的粘附往往在材料与血液接触的瞬间即发生,而细胞的粘附则需要较长的时间,这样可能在材料表面还未覆盖一层内皮细胞之前,已经形成了血栓。为阻止这种状况的发生,我们在涤纶材料表面共固定抗凝生物分子肝素(白蛋白)和促内皮生物分子胶原(明胶),以期获得同时具有良好的抗凝血性能和促内皮细胞生长的医用涤纶表面。
     本文通过X射线光电子能谱XPS分析了改性前后材料表面的组成成分的变化。在肝素—胶原(PET-CL-Hep)及肝素—明胶(PET-Gel-Hep)共固定的表面,不仅出现的N1s峰,还出现了较为明显的S2s,S2p峰,根据XPS高分辨谱计算可得PET-CL-Hep和PET-Gel-Hep的硫元素含量分别为1.55%和2.18%,这说明了肝素已与胶原或明胶共固定于材料表面。同时在白蛋白—胶原(PET-CL-BSA)和白蛋白—明胶(PET-Gel-BSA)的表面,氮元素的含量分别比仅固定胶原(PET-CL)和仅固定明胶(PET-Gel)的氮含量高4.74%和5.64%,这也提示了白蛋白与胶原或明胶分子的在PET表面的混合有效固定。接触角测量与表面能计算的结果表明肝素、白蛋白与胶原或明胶共固定改性后的材料表面接触角减小,表面能增加,材料表面的亲水性较好。
     采用甲苯胺蓝染色法测得接枝丙烯酸的材料表面的羧基密度为5.29×10~(-9)mol/cm~2,采用天狼猩红染色法得到PET-CL表面的胶原含量为3.14μg/cm~2,PET-Gel表面的明胶为2.02μg/cm~2。利用甲苯胺蓝及正己烷萃取法可得PET-CL-Hep表面的肝素含量为1.73μg/cm~2,PET-Gel-Hep表面的肝素1.91/μg/cm~2。
     体外血小板粘附及血小板乳酸脱氢酶(LDH)检测血小板数量的实验一致证明,肝素或白蛋白与胶原或明胶的共固定,使PET表面的抗凝血性能有所改善。LDH实验测得PET-CL-Hep、PET-Gel-Hep、PET-CL-BSA、PET-Gel-BSA表面的血小板黏附率分别为12.83%、17.24%、10.53%和12.19%,与未改性的涤纶表面血小板26.21%,PET-Gel 40.38%和PET-CL47.21%的黏附率相比,血小板粘附数量明显减少,血小板激活程度减轻。PET-CL-Hep和PET-Gel-Hep的APTT检测时间为68.9s和65.5,比未改性的涤纶表面延长9.7s和6.3s,比原血浆延长14.9s和11.5s。活化的部分凝血活酶时间(APTT)检测表面肝素与胶原或明胶的共固定可抑制内源性凝血系统的激活。采用酶联免疫法定量评价不同改性材料表面纤维蛋白原的变性情况。PET-CL-Hep、PET-Gel-Hep、PET-CL-BSA、PET-Gel-BSA的表面纤维蛋白原变性量分别为25.32%、22.48%、19.20%、20.59%,而空白样品的纤维蛋白原变性量为35.57%,这说明肝素(白蛋白)与胶原(明胶)的共固定,可减少纤维蛋白原的变性暴露出与血小板结合,从而减少了血小板在材料表面的聚集。上述一系列评价的结果均证明肝素(白蛋白)与胶原(明胶)的共固定,可改善PET的抗凝血性能。
     通过体外内皮细胞粘附及细胞Alamar Blue实验,定量表征内皮细胞在PET材料的黏附率、增殖率、细胞活性,并通过光学显微镜观察材料表面的细胞形态变化。在细胞培养的第120h,未改性涤纶表面的细胞数为4.88×10~4cells/cm~2,细胞活性为158.6%,而PET-CL-Hep,PET-Gel-Hep,PET-CL-BSA,PET-Gel-BSA表面的细胞数量分别为9.37,9.73,10.66,9.07(×10~4cells/cm~2),细胞活性依次为202.3%,205.9%,214.8%,199.4%。上述结果表明在医用涤纶表面,通过肝素或白蛋白与胶原或明胶的共固定可改善材料表面的促内皮细胞生长性能。
In recent years, synthetic polymers are widely used in biomedical materials for artificial organs including cardiovascular artificial organs. However, once blood contact with polymers, complicated interaction will happen on the interface so as to form coagulating reaction and thrombus. In that case, the farther application of synthetic polymers in blood-contacting devices was restricted. It is believed that the endothelialization of the blood contacting device surface may overcome the problem. Therefore, a surface that enhances cell-material interaction and promotes the endothelialization at a shorter time is necessary.
     In our research, natural proteins like gelatin and collagen molecules were immobilized onto the biomedical poly(ethylene terephthalate) (PET, dacron) surfaces. However, the immobilization of gelatin or collagen on the surface of materials may accelerate the aggregation of the platelets before the formation of endothelial layer. Hence, surface anticoagulative modification before endothelialization is necessary. Our study focuses on the co-immobilization of heparin (or albumin) and collagen (or gelatin) molecules on the PET surface which can construct the anticoagulant surface before the endothelium formation and also accelerate the endothelialization of polymer surface.
     The surface constitution of the modified PET is determined by X-ray photoelectron spectroscopy (XPS). According to the resurts of XPS, The detection of S2p, S2s might be in virtue of the sulfonic groups of the heparin chemically attached to the membrane surfaces, which demonstrates that of the molecules of heparin and collagen or gelatin co-immobilized on the PET surfaces. Comparing to the only collagen and gelatin immobilized surface, the nitrogen contents increase 4.74% and 5.64% on the surface of albumin-collagen (PET-CL-BSA) and albumin-gelatin (PET-Gel-BSA) co-immobilized PET film surface. This proves that albumin combined with collagen or gelatin molecules are effectively co-immobilized onto the PET film surfaces. The results of static contact angle indicate the hydrophilicity of the modified PET surface is more remarkably improved than that of the unmodified PET surface.
     The determination of carboxyl group on the acrylic acid grafted PET surface is 5.29×10~(-9)mol/cm~2. According to the protein measurement, the concentration of gelatin immobilized on only gelatin-PET (PET-Gel) is 2.02μg/cm~2, while the concertration of collagen immobilized on only collagen-PET (PET-CL) is 3.14μg/cm~2. The quantification of heparin on heparin-collagen co-immobilized surface (PET-CL-Hep) is 1.73μg/cm~2, and heparin on heparin-gelatin co-immobilized surface(PET-CL-Hep) is 1.91μg/cm~2.
     The results of lactate dehydrogenase(LDH) and the platelet adhesion test in vitro all indicat that the co-immobilization of heparin or albumin with collagen or gelatin molecules could improve the anticoagulation. The percentage of platelet adhered on the surface of PET-CL-Hep is 12.83%, PET-Gel-Hep 17.24%, PET-CL-BSA 10.53%, and PET-Gel-BSA 12.19%, thus the percentages of adhered platelet decreased significantly compared to those of untreated PET (26.21%) and the PET-Gel surface (40.38%) , the PET-CL surface (47.21%). The results of coagulant factor tests reveal that the activated partially thromboplastion time (APTT) of PET-CL-Hep is 68.9s and PET-Gel-Hep is 65.5s, which is longer than those of the virgin PET (59.2s) and the plasma (54s). The change of APTT indicates that the modified PET films can suppress intrinsic coagulant system. The number of denatured fibrinogen on different modified surfaces is also determined by enzyme linked immunosorbent assay (ELISA). The resulte shows that the proption of denatured fibrinogen on PET-CL-Hep is 25.32%, on PET-Gel-Hep is 22.48%, on PET-CL-BSA is 19.20%, and on PET-Gel-Hep is 20.59%, which is decreased comparing the unmodified PET (35.57%). All show that after the co-immobilization of heparin (albumin) and collagen (gelatin), the anticoagulation of the film surfaces has improved.
     The results of endothelial cells culture in vitro shows significant difference in the behavior of cell adhesion and proliferation among different materials. PET-CL-Hep and PET-Gel-Hep films support cell attachment and proliferation more than unmodified film surfaces. The ECs on the PET-CL-BSA and PET-Gel-BSA can spread and proliferate. Quantitative analysis of cell adhesion is performed for these different modified and untreated PET surfaces. For the 120 hour cultured samples, the number of cells on PET-CL-Hep, PET-Gel-Hep, PET-CL-BSA, PET-Gel-BSA are 9.37, 9.73, 10.66,9.07(×10~4cells/cm~2), and the activity of cell is 202.3%, 205.9%, 214.8%, 199.4%. This is in accordance with the optical microscopy images, which suggests that cell adhesion onto PET is favoured by surface co-immobilization of heparin (albumin) with collagen (gelatin).
引文
[1]高长有,马列.医用高分子材料.化学工业出版社.2006,6:1-70
    [2]刘引烽.特种高分子材料.上海大学出版社.2001,1:1-11
    [3]胡平.生物医用高分子材料的加工、改性及应用.塑料加工.2005,4:3
    [4]郭海霞,梁成浩.生物材料血液相容性研究进展.上海生物医学工程.2001,22(3):44-48
    [5]Khan W,Kapoor M,Kumar N.Covalent attachment of proteins to functionalized polypyrrole-coated metallic surfaces for improved biocompatibility.Acta Biomaterialia.2007,3:541-549
    [6]Lai J N,Sunderland B,Xue J M,Yah S,Zhao W J,Folkard M,Michael B D,Wang Y G.Study on hydrophilicity of polymer surfaces improved by plasma treatment.Applied Surface Science.2006,252:3375-3379
    [7]贝建中,屈雪,王身国.生物材料与细胞的相互作用.北京生物医学工程,2005,24(1):66-68
    [8]Zhu Y B,Mary B,Chan P.Density quantification of collagen grafted on biodegradable polyester:Its application to esophageal smooth muscle cell.Analytical Biochemistry.2007,363:119-127
    [9]Bisson I,Kosinski M,Ruault S,Gupta B,Hilborn J,Wurm F,Frey P.Acrylic acid grafting and collagen immobilization on poly(ethylene eterephthalate)surfaces for adherence and growth of human bladder smooth muscle cells.Biomaterials.2002,23:3151
    [10]Zhu Y B,Gao C Y,He T,Shen J C.Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin.Biomaterials.2004,25:423-430
    [11]Wissink M J B,Beernink R,Pieper J S,Poot A A,Engbers G H M.Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation.Biomatedals.2000,22:153
    [12]Li Z F,Kang Z T,Neoh K G,Tan K L.Covalent immobilization of glucose oxidase on the surface of polyaniline films graft copolymedzed with acrylic acid.Biomaterials.1998,19:45-53
    [13]Kim Y J,Kang I K,Huh M W,Yoon S C.Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate)immobilized with insulin and/or heparin using plasma glow discharge,Biomatedals.2000,21:121-130
    [14]朱梅湘,穆畅道,林玮等.胶原作为生物医学材料的优势与应用.化学世界.2003,3:161-164
    [15]Suhara H,Sawa Y,Nishimura M.Efficacy of a new coating material,PMEA,for cardiopulmonary bypass circuits in a porcine model.The Annals of Thoracic Surgery.2001,71:1603-1608
    [16]沈健.生物医用高分子材料的研制及其基础研究.南京理工大学博士论文.2004,10:4-8
    [17]郑书家.抗凝血生物材料的血液相容性研究.重庆大学硕士学位论文.2004:1-3
    [18]竺亚斌.胺解改性含酯基聚合物生物材料及其细胞相容性.浙江大学博士学位论文.2003,5:67-69
    [19]盛大平.alamarBlue在临床检验中的应用.国外医学临床生物化学与检验学分册.2005,6:367-371
    [20]Punshona G,Varaa D S,Sales K M.Interactions between endothelial cells and a poly(carbonate-silsesquioxane-bridge-urea)urethane.Biomaterials.2005,26:6271-6279
    [21]Rosenbaum J,Tobelem G.Modulation of endothelial cell growth induced by heparin.Cell Biology International Reports.1986,10:437
    [22]龙健,曾智.低分子肝素在缺氧复氧条件下对内皮细胞的保护作用. 重庆医科大学学报.2005,30(1):89-91
    [23]Elam J H,Elam M.Surface modification of intravenous catheters to reduce local tissue reaction.Biomaterials.2000,12:455-457
    [24]Carvalho R S,Kostenuik P J,Salih E,Bumann A,Gerstenfeld L C.Selective adhesion of osteoblastic cells to different integfin ligands induces osteopontin gene expression.Matrix Biology.2003,22:247
    [25]Chen C S,Mrksich M,Huang S,Whitesides G M,Ingber D E.Micropatterned surfaces for control of cell shape,position,and function.Biotechnology Programm.1998,14:356
    [26]Ruoslahti E.Stretching is good for a cell.Science.1997,276:1345
    [27]高长有,马列.医用高分子材料.化学工业出版社.2006,6:159-164
    [28]汪堃仁,薛绍白,柳惠图.细胞生物学.北京师范大学出版社.1998,11:403
    [29]Bhuvanesh Gupta,Christopher Plummer,Isabelle Bisson,Peter Frey,Jons Hilbom.Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate)films:characterization and human smoothmuscle cell growthon grafted films.Biomaterials.2002,23:863-871
    [30]Cheng Z Y,Teoh S H.Surface modification of ultra thin poly (e-caprolactone)films using acrylic acid and collagen.Biomaterials.2004,25:1991-2001
    [31]Cioffia M O H,Voorwalda H J C,Mota R P.Surface energy increase of oxygen-plasma-treated PET.Materials Characterization.2003,50,209-215
    [32]许海燕,孔桦,杨子彬.抗凝血高分子材料的研究进展及其在心血管外科中的应用.高分子材料科学与工程.2001,17(5):1673
    [33]Denizli F K,Guvenl O.Competitive adsorption of blood proteins on gamma-irradited-polycarbonate films.Journal of Biomaterial Science,Polymer Edtion.2002,13(2):127
    [34]Shen M C,Martinson L,Wagner M S.PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins:in vitro and in vivo studies.Journal of Biomaterial Science,Polymer Edtion.2002,13(4):367
    [35]Nanci A,Wuest J D,Peru L,Brunet P,Sharma V,Zalzal S,McKee M D.Chemical modification of titanium surfaces for covalent attachment of biological molecules.Journal of Biomedical Materials Research.1998,40(2):324-335
    [36]Chandy T,Sharma C P.Bioactive molecules immobilized to liposome modified albumin-blended chitosan membranes-Antithrombotic and permeability properties.Journal of Colloid and Interface Science.1989,130(2):331-340
    [37]Kang S S,Petsikas D,Murchan P,Cziperle D J,Ren D,Kim D U,Greisler H P.Effects of albumin coating of knitted Dacron grafts on transinterstitial blood loss and tissue ingrowth and incorporation.Cardiovascular Surgery.1997,5(2):184-189
    [38]Anselme K.Osteoblast adhesion on biomaterials.Biomaterials.2000,21:667-681
    [39]Hsu S H,Chen W C.Improved cell adhesion by plasma-induced grafting of L-lactide onto polyurethane surface.Biomaterials.2000,21:359-367
    [40]竺亚斌.胺解改性含酯基聚合物生物材料及其细胞相容性.浙江大学博士学位论文.2003,5:69-85
    [41]汪堃仁,薛绍白,柳惠图.细胞生物学.北京师范大学出版社.1998,11:409
    [42]Chandy T,Das G S,Wilson R F,Rao G H R.Use of plasma glow for surface-engineering biomolecules to enhance blood compatibility of Dacron and PTFE vascular prosthesis. Biomaterials. 2000, 21: 699-712
    [43] Li Y L, Neoh K G, Kang E T. Plasma protein adsorption and thrombus formation on surface functionalized polypyrrole with and without electrical stimulation. Journal of Colloid and Interface Science. 2004, 275: 488-495
    [44] Zhu A P, Chen T. Blood compatibility of surface-engineered poly(ethylene terephthalate) via o-carboxymethylchitosan. Colloids and Surfaces B: Biointerfaces. 2006,50:124
    [45] Wan G J, Huang N, Yang P, Fu R K Y, Ho J P Y, Xie X, Zhou H F, Chu P K. Platelet activation behavior on nitrogen plasma-implanted silicon. Materials Science and Engineering. 2007, 27: 928-932
    [46] Jing F J, Wang L, Fu R K Y, Leng Y X, Chen J Y, Huang N, Chu P K. Behavior of endothelial cells on micro-patterned titanium oxide fabricated by plasma immersion ion implantation and deposition and plasma etching. Surface & Coatings Technology. 2007,201: 6874-6877
    [47] Seal B L, Otero T C, Panitch A. Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering. 2001,34:147
    [48] Seifalian A M, Tiwari A, Hamilton G, Salacinski H J. Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artificial Organs. 2002,26: 307-320.
    [49] Greisler H, Gosselin C, Ren D, Kang S, Un Kim D. Biointeractive polymers and tissue engineered blood vessels. Biomaterials. 1996, 17: 329-36.
    [50] Zhu H G, Ji J, Lin R, Gao C Y, Feng L X, Shen J C. Surface engineering of poly(dl-lactic acid) by entrapment of alginateamino acid derivatives for promotion of chondrogenesis. Biomaterials. 2002, 23:3141.
    [51] Suh H, Hwang Y S, Lee J E, Han C D, Park J C. Behavior of osteoblasts on a type I atelocollagen grafted ozone oxidized poly(l-lactic acid) membrane. Biomaterials. 2001,22:219.
    
    [52] Bisson I, Kosinski M, Ruault S, Gupta B, Hilborn J, Wurm F, Frey P. Acrylic acid grafting and collagen immobilization on poly(ethylene eterephthalate) surfaces for adherence and growth of human bladder smooth muscle cells. Biomaterials. 2002,23: 3149-3158
    [53] Zhu Y B, Gao C Y, Shen J C. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterials. 2002, 23: 4889-4895
    [54] Brynda E, Houska M, Jirouskova M, Dyr J E. Albumin and heparin multilayer coatings for blood-contacting medical devices. Journal of Biomedical Material Research. 2000,51 (2): 249-257
    [55] Vohra R K, Thompson GJL, Carr H M H, Sharma H, Walker M G. Comparison of different vascular prostheses and matrices in relation to endothelial cell seeding. British Journal of Surgrey. 1991,78:417-20
    [56] Kesler K A, Herring M B, Arnold M P, Glover J L, Park H M, Helmus M N, Bendick P J. Enhanced strength of endothelial attachment on polyester elastomer and PTFE graft surfaces with fibronectin substrate. Journal of Vascular Surgery.1986,3: 58-64.
    [57] Schneider A, Chandra M, Lazarovici G, Vlodavsky I, Merin G, Uretzzky G, Borman JB, Schwalb H. Naturally produced extracellular matrix is an excellent substrate for canine endothelial cell proliferation and resistance to shear stress on PTFE vascular grafts. Thrombotic Haemostasis. 1997,78: 1392
    [58] Wissink M J B, Beernink R, Scharenborg N M, Poot A A, Engbers G H M, Beugeling T, Aken W G V, Jen J F. Endothelial cell seeding of (heparinized)collagen matrices:effects of bFGF pre-loading on proliferation(after low density seeding)and pro-coagulant factors.Journal of Controlled Release.2000,67:141-155
    [59]Zhu A P,Zhang M,Shen J.Blood compatibility of chitosan/heparin complex surface modified ePTFE vascular graft.Applied Surface Science.2005,241:485-492
    [60]Lambert AW,Fox A D,Williams D J,Horrocks M,Budd J S.Experience with heparin-bonded collagen-coated grafts for infrainguinal bypass.Cardiovascular Surgery.1999,7:491
    [61]项昭保,霍丹群,候长军,蔡绍皙.肝素化抗凝血生物材料的研究.现代医学仪器与应用.2002,4:25-29
    [62]Chandy T,Das G S,Wilson R F,Rao G H R.Use of plasma glow for surface-engineering biomolecules to enhance blood compatibility of Dacron and PTFE vascular prosthesis.Biomaterials.2000,21:699-712
    [63]Scharn D M,Oyen W J G,Klemm P L,Verhofstad A A J,Vliet J A V.Thrombogenicity and Related Biological Properties of Heparin Bonded Collagen Coated Polyester and Human Umbilical Vein Prosthetic Vascular Grafts.Journal of Surgical Research.2006,134:182-189
    [64]Kim Y J,Kang I K,Huh M W,Yoon S C.Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate)immobilized with insulin and/or heparin using plasma glow discharge.Biomatedals.2000,21:121-130
    [65]段维勋.人工心脏高分子材料表面共价结合肝素及其生物相容性.第四军医大学博士学位论文.2005,5:63-79
    [66]Nakajima A.Kunming International Syposium on Polymeric biomaterial.Preprint,1998,4
    [67]胡平.生物医用高分子材料的加工、改性及应用.2005,4:11-12
    [68]Lee J H,Khang G,Lee J W,Lee H B.Interaction of different types of cells on polymer surfaces with wettablity gradient.Journal of Colloid and Interface Science.1998,205:323-330
    [69]Khang G,Jeon J H,Kim Y S,Lee H B.Interaction of fibroblast cells on poly(lactide-co-glycolide)surface with wettability chemogradient.Bio-medical Materials and Engineer.1999,9:179-187
    [70]Klee D,Villari R V,Hocker H,Dekker B,Mittermayer C.Surface modification of a new flexible polymer with improved cell adhesion.Journal of Material Science:Materials and Medicine.1995,5:592-595
    [71]Ko T M,Lin J C,Cooper S L.Surface characterization and platelet adhesion studies of plasma-sulphonated polyethylene.Biomaterials.1993,14:657
    [72]计剑,邱永兴,俞小洁,封麟先.抗凝血聚氨酯材料的研究进展.功能高分子学报.1995,18(2):225-235
    [73]Lee H J,Park K D,Park H D,Lee W K,Han D K,Kim S H,Kim Y H.Platelet and bacterial repellence on sulfonated poly(ethylene glycol)-acrylate copolymer surfaces.Colloids and Surfaces B:Biointerfaces.2000,18:355-370
    [74]李建新.与血液接触高分子材料的抗凝/抗菌改性研究.西南交通大学硕士学位论文.2006.12:31-72
    [75]宫永宽,Francoise M.聚丙烯表面的生物相容性修饰:表面氨基放大还原胺化接枝磷酰胆碱.化学学报.2005,63:643-647
    [76]Iwasakia Y,Uchiyamab S,Kuritab K,Morimotoa N,Nakabayashi N.A nonthrombogenic gas-permeable membrane composed of a phospholipid polymer skin film adhered to a polyethylene porous membrane.Biomaterials.2002,23:3421-3427
    [77]高长有,马列.医用高分子材料.化学工业出版社.2006,6:184-202
    [78]Nobuyuki Morimotoa,Yasuhiko Iwasakia,Nobuo Nakabayashia,Kazuhiko Ishihara.Physical properties and blood compatibility of surface-modified segmented polyurethane by semi-interpenetrating polymer networks with a phospholipid polymer.Biomaterials.2002,23:4881-4887
    [79]魏文,陈为庄.血液相容性及表面改性的研究.高分子通报.2004,5:39-42
    [80]Wang J,Pan C J,Huang N,Sun H,Yang P,Leng Y X,Chen J Y,Wan G J,Chu P K.Surface characterization and blood compatibility of poly(ethylene terephthalate)modified by plasma surface grafting.Surface & Coatings Technology.2005,196:307-311
    [81]周静,沈健,林思聪.血液相溶材料的合成研究(Ⅱ)-一类新的抗血小板粘附高分子材料.高等学校化学学报.2002,12:2393-2395
    [82]Gouzya M F,Spedinga C,Salcherta K,Pompea T,Strellera U,Uhlmanna P,Rauwolfa C,Simona F,Bohmea F,Voita B,Werner C.In vitro blood compatibility of polymeric biomaterials through covalent immobilization of an amidine derivative.Biomaterials.2004,25:3493-3501
    [83]夏成勇,刘长建,乔彤,黄佃,刘晨,冉峰.磷酰胆碱接枝涤纶人工血管的生物相容性.中国动脉硬化杂志.2007,15(12):906-908
    [84]Tseng Y C,Mullin W M,Park K.Albumin grafting on to polypropylene by thermal activation.Biomaterials.1993,14:392-400
    [85]计剑,沈家骢.白蛋白原位复合生物医用功能材料的研究(Ⅰ).高等学校化学学报.2002,1:2196—2201
    [86]Sank A,Rostami K,Weaver F,Ertl D,Yellin A,Nimni M,Tuan T L.New evidence and new hope concerning endothelial seeding of vascular grafts.The American Journal of Surgery.1992,164(3):199-204
    [87]Carvalho R S,Kostenuik P J,Salih E,Bumann A,Gerstenfeld L C. Selective adhesion of osteoblastic cells to different integrin ligands induces osteopontin gene expression. Matrix Biology. 2003, 22: 241-249
    [88] Bisson I, Kosinski M, Ruault S, Gupta B, Hilborn J, Wurm F, Frey P. Acrylic acid grafting and collagen immobilization on poly(ethylene eterephthalate) surfaces for adherence and growth of human bladder smooth muscle cells. Biomaterials. 2002, 23: 3149-3158
    [89] Balakrishnana B, KumarbD S, Yoshidab Y, Jayakrishnan A. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials. 2005,26:3495-3502
    [90] Ying P Q, Jin G, Tao Z L. Competitive adsorption of collagen and bovine serum albumin—effect of the surface wettability. Colloids and Surfaces B: Biointerfaces. 2004,33: 259-263
    
    [91] Mao C, Zhang C, Qiu Y Z, Zhu A P, Shen J, Lin S C. Introduction of anticoagulation group to polypropylene film by radiation grafting and its blood compatibility. Applied Surface Science. 2004,228:26-33
    [92] Wang J, Pan C J, Huang N, Sun H, Yang P, Leng Y X, Chen J Y, Wan G J, Chu P K. Surface characterization and blood compatibility of poly(ethylene terephthalate) modified by plasma surface grafting. Surface & Coatings Technology. 2005,196:307- 311
    
    [93] Toulon P, Ajzenberg N, Smahi, M, Guillin M C. A new plastic collection tube made of polyethylene terephtalate is suitable for monitoring traditional anticoagulant therapy (oral anticoagulant, unfractionated heparin, and low molecular weight heparin). Thrombosis Research. 2007, 119:135-143
    
    [94] Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicology in Vitro. 2004,18: 703-710
    [95]罗磊.医用胶原蛋白的临床应用.国外医学口腔医学分册.1996,1:43-44
    [96]Nguyen A,Packham M A,Rand M L Effects of Ethanol on Platelet Responses Associated with Adhesion to Collagen.Thrombosis Research.1999,95:303-314
    [97]Moroi M,Jung S M.Platelet glycoprotein Ⅵ:its structure and function.Thrombosis Research.2004,114:221-233
    [98]Lin T M,Cheng T J,Wu T H,Chang H C.Comparing a piezoelectric quartz crystal with an optical coagulometer in monitoring high-dose heparin therapy by determining whole blood activated partial thromboplastin time and activated clotting time.Sensors and Actuators B.2005,109:270-277
    [99]刘云肖.生物大分子层层组装改性PET及其内皮细胞相容性研究.浙江大学硕士学位论文.2006,1:29
    [100]Yang P,Leng Y X,Zhao A S,Zhou H F,Xu L X,Sun H,Huang N.Blood compatibility improvement of titanium oxide film modified by phosphorus ion implantation.Nuclear Instruments and Methods in Physics Research B.2006,242:15-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700