转录调控因子DNMT3b在肝癌细胞SMMC7721中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌是人体常见的致命性肿瘤,预后差,严重威胁人类的健康,因此深入研究肝癌的发生发展机制,进而加强肝癌的防治具有重要意义。
     随着分子生物学的发展,已逐渐认识到表遗传学(Epigenetics)调节与肿瘤基因的转录调控密切相关;因为这种表遗传学调节不改变基因编码序列,并且是可逆的,因而越来越受到重视。研究表明,表遗传学或/和遗传学改变均可引起肿瘤的发生是一个涉及多种肿瘤基因功能改变的多步骤过程,其中肿瘤抑制基因的功能失活为细胞的恶性转化所必需。由DNMTs催化完成的DNA甲基化是DNA的一种天然修饰方式,是表遗传学主要内容之一,其在基因的表达调控、胚胎发育调节、基因组印记、X染色体失活及肿瘤的发生等许多方面发挥着重要的作用。
     在DNMTs家族中,DNMT3b的作用最为重要。DNMT3b主要表达于未分化的胚胎干细胞,催化DNA的从头甲基化,在正常体细胞中表达很低。CPG岛是公认的基因表达调控区域。大约50%的CPG岛位于基因启动子区域。在正常细胞大部分的启动子区域CPG岛是未甲基化的。由DNMT3b催化的肿瘤抑制基因启动子区CPG岛的甲基化反应,使CPG岛甲基化状态改变导致该基因表达沉默,进而引起肿瘤的发生。我们的研究也发现,在肝细胞恶性转化过程中,FHIT基因(一重要的肿瘤抑制基因)的表达明显受抑制,用siRNA抑制DNMT3b表达后,FHIT基因又恢复表达,但这一过程中,FHIT基因启动子区域CpG岛并未被甲基化,由此提示在肝细胞恶性转化过程中DNMT3b除发挥DNA甲基转移酶作用外尚有转录调控因子的作用。事实上,DNMT3b具有PWWP和PHD结构域,而这些结构域与蛋白质-蛋白质间的相互作用有关,说明DNMT3b已经具备了作为信号传导分子的基础。以前的研究多集中于DNMT3b作为酶的功能,而其作为转录调控因子的功能目前尚未见报道。
     信号转导子和转录激活子(Signal transducers and activators of transcription,STATs)是一重要的核转录因子.STATs家族成员参与了许多细胞因子、生长因子的信号传导,在调节人体免疫反应、炎症反应和细胞的生长、分化、凋亡等方面发挥着重要作用,与人类恶性肿瘤的发生、发展和演进有关。据文献报道,STATs及其下游基因Bcl-2、CyclinD1、c-myc、VEGF、P21等在肝癌组织中异常表达,而STATs在肿瘤的发生发展中,启动子区甲基化状态不变。有研究表明:STATs及其下游基因在肿瘤的发生、发展过程中起到重要作用。如:Bcl-2、CyclinD1、c-myc、VEGF都是重要的癌基因。它们在肝细胞肝癌的发生、增殖、分化、凋亡、血管生成和侵袭转移等多方面都发挥了重要作用。如果能够证实DNMT3b与STATs信号传导通路相关联,则提示DNMT3b-STATs信号传导通路的存在,这就说明DNMT3b即可以作为DNA甲基转移酶催化基因的甲基化,影响基因的表达,又可以作为转录调控因子发挥作用。这就进一步揭示了DNMT3b功能的多样性,为肿瘤的基因治疗提供新的靶点,为肝癌的防治提供新思路。
     方法
     1、传代培养SMMC7721细胞;
     2、将终浓度为50nM的DNMT3bsiRNA转染到肝癌细胞SMMC7721中:
     3、在SMMC7721细胞转染DNMT3bsiRNA 48h后,收集转染细胞和未转染细胞提取细胞质蛋白或总蛋白,用Western blotting检测DNMT3b的表达改变;
     4、在SMMC7721细胞转染DNMT3bsiRNA前及转染24、48h后,用细胞计数板计数转染细胞和未转染细胞的细胞数量;
     5、用Western blotting检测STATs及其下游基因c-myc,VEGF,CyclinD1等的表达改变情况;
     6、处理所得数据,得出结论。
     结果
     1、在SMMC7721细胞转染DNMT3bsiRNA 48h后,通过Western Blotting检测DNMT3b的表达发现:转染细胞的DNMT3b表达水平比未转染细胞明显降低。
     2、转染细胞的生长速度与未转染细胞相比明显受到抑制,统计学上有显著性差异(P<0.05),同时有大量死亡细胞存在。
     3、转染细胞的STAT1、STAT3、STAT5及其下游基因VEGF、c-myc、CyclinD1的表达水平与未转染细胞相比均降低。
     结论
     1、DNMT3bsiRNA的建立可以方便地研究DNMT3b的功能。通过DNMT3bsiRNA特异性的抑制DNMT3b的表达。
     2、在SMMC7721细胞体系中存在DNMT3b-STATs信号传导通路,抑制DNMT3b的表达可以同时下调STAT1、STAT3、STAT5及其下游基因VEGF、c-myc、CyclinD1等的表达。
     3、DNMT3b的表达改变,可以引起细胞周期蛋白CyclinD1的表达改变,使肿瘤细胞停滞在G1期,抑制肝癌细胞的增殖,促进细胞的凋亡。
Human hepatocellular carcinoma is one of common fatal cancers and has poor prognosis. It seriously threaten human healthc,so deeply studying on the development of hepatocellular carcinoma and strengthening the liver cancer prevention have great significance.
     With the development of molecular biology,we have gradually come to realize that epigenetic regulation and transcriptional regulation of cancer gene are closely related. This adjustment does not change epigenetic gene coding sequence and is reversible, so the scientis pay more attention to this adjustment. Research shows that epigenetic and / or genetic changes may cause cancer. This is a multi-tumor gene function in the multi-step process. The inactivation of tumor suppressor gene function is necessary for the malignant transformation of cells. DNA methylation which is catalyzed by various methyltransferase enzymes (DNMTs)is a natural DNA modification method, is one of the main content of epigenetics. DNA methylation play an important role in many aspects such as regulating gene expression, regulating embryonic development, genomic imprinting, X chromosome inactivation and the incidence of tumors.
     In DNMTs family, DNMT3b is the most important one. DNMT3b expressed in the Undifferentiated embryonic stem cells catalyzes the DNA methylation, but in normal cells the expression is very low. CpG islands are recognized as an important regulatory mechanism for the gene expression. About 50% of CpG islands are located in promoterregions. Most of promoter-associated CpG islands are unmethylated in normal cells.The switching from unmethylated to methylated CpG islands is recognized as an essential contributor to gene silencing which associated with a loss of gene function .This process is catalyzed by DNMT3b and eventually lead to the occurrence of cancer. Our study also found that in the process of malignant transformation of hepatic cells, the expression of FHIT gene (an important tumor suppressor gene) is significantly inhibited. Using siRNA to inhibit the expression of the DNMT3b, the FHIT gene's expression is also restored. But in this process,the CpG island of FHIT gene's promoter region was not methylated. The results suggest that in the process of malignant transformation of hepatic cells DNMT3b not only play the role of DNA methyltransferase, but also play the role of transcriptional regulation factors. In fact, DNMT3b has PWWP and PHD domains. These domains are relevant with the protein-protein interactions. DNMT3b have had the basis of signal transduction molecules. Previous studies focused on DNMT3b as enzyme, but its function as a transcriptional regulatory factor has not been reported until now.
     Signal transducers and activators of transcription (STATs) are the important nuclear transcription factor. STATs family have many members. They play an important role, such as the signal transduction of many cytokines and growth factors and in the regulation of human immune response inflammatory response and cell growth, differentiation, apoptosis. STATs also have the functions of correlation with the growth, proliferation and evolution in human cancers. It also has been reported that the expression of STATs and its downstream gene such as Bcl-2, Cyclin D1, c-myc, VEGF, P21 are abnormal in hepatocellular carcinoma tissue, but the CpG island of STATs gene promoter region are invariably. Researches show that STATs and the downstream genes are great signficance in the development process in tumors. Bcl-2, Cyclin D1, c-myc and VEGF are very important cancer genes. They are great significance in many aspects of the hepatocellular carcinoma such as proliferation, differentiation, apoptosis, angiogenesis, invasion and metastasis and other functions.If we can certificate DNMT3b is associated with STATs signal transduction pathway, this suggested that DNMT3b-STATs signaling pathway is the existence and DNMT3b not only can be used as DNA methyltransferase to catalyze methylation of the gene, affect gene expression but also can play a role as a transcriptional regulatory factor. This will further reveals the diversity of the function of DNMT3b and gives us a new target for cancer gene therapy and provide new ideas for the prevention of hepatocellular carcinoma.
     Methods:
     1. Culture SMMC7721 cell line;
     2. SMMC7721were transfected with DNMT3bsiRNA transfection of hepatoma cells, the final concentration is 50nM;
     3. After transfected with or without DNMT3bsiRNA at 48h, collection transfected cells and untransfected cells and then cytoplasmic extract the total protein. Western blotting detection DNMT3b expression changes;
     4. Transfected with or without DNMT3bsiRNA before and after 24 or 48h, Use cell counting plate to count transfected cells and untransfected cell;
     5. Using Western blotting to detect the expression of STATs and its downstream genes,such as VEGF, Cyclin D1 expression, etc;
     6. Dealing with the data and coming to a conclusion.
     Results:
     1. After transfection with the DNMT3bsiRNA 48h, we use western blotting to detect the expression of DNMT3b in SMMC7721 cell line.we found that DNMT3b expression in transfected cells was significantly lower than untransfected cells and normal cells.
     2. Compared with the untransfected cells, the growth rate of transfected cells were inhibited. The difference was significant (P <0.05), while there are a large number of dead cells.
     3. Compared with the untransfected cells, the expression levels of STAT1, STAT3, STAT5 and its downstream Cyclin D1, c-myc, VEGF gene were also decreased ikin the transfected cells.
     Conclusion:
     1. The establishment of DNMT3bsiRNA can make us easily study the function of DNMT3b.
     2. Finding that the signal transduction pathways DNMT3b-STATs exist in SMMC7721 cell line. Down regulation the expression of DNMT3b can inhibit the expression of STAT1, STAT3, STAT5 and theirs downstream gene Cyclin D1, c-myc, VEGF.
     3. Finding that down regulation the expression of DNMT3b, can induce the changes in the expression of Cyclin D1 protein, make tumor cells stagnated in G1 phase and inhibit the cell proliferation and apoptosis in hepatocellular carcinoma.
引文
1. Plass C. Cancer epigenomics. Hum Mol Genet, 2002, 11: 2479-2488.
    2. Martienssen RA, Riggs AD.Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor,1996, New York: Cold Spring Harbor Laboratory Press.
    3. Nephew KP and Huang TH. Epigenetic gene silencing in cancer initiation and progression. Cancer Letters, 2003, 190: 125-133.
    4. Fearon ER and Vogelstein B. A genetic model for colorectal tumorigenesis. Cell, 1990, 61: 759-767.
    5. Vogelstein B and Kinzler KW. The Genetic Basis of Human Cancer. McGraw-Hill, 1998, Health Professions Division, New York.
    6. Robertson KD, Wolffe AP. DNA methylation in healthand disease. Nat Rev Genet, 2000. 1: 11-19.
    7. Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA. Cooperativity betweenDNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol, 2002, 22: 480—491.
    8. Nagai M, Nakamura A, Makino R, et al. Expression of DNA (5-cytosin)-methyltransferases (DNMTs) in hepatocellular carcinomas. Hepatol Res,2003,26:186-191.
    9. Saito Y, Kanai Y, Nakagawa T. Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer,2003,105:527-532.
    10. Lin CH, Hsieh SY, Sheen IS. Genome-wide hypomethylation in hepatocellular carcinogenesis, Cancer Res.2001,61:4238-4243.
    11. Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol, 2004,24:9048-9058.
    12. Deplus R,Brenner C,Burgers WA, Putmans P,Kouzarides T, de Launoit Y,Fuks F. Dnmt3L is a transcriptional repressor that recruits histone deacetylase.Nucleic Acids Res, 2002,30:3831-3838.
    13. Buettner R,Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res,2002, 8:945-54.
    14. Wittig I, Groner B. Signal transducer and activator of transcription 5 (STAT5), a crucial regulator of immune and cancer cells.Curr Drug Targets Immune Endocr Metabol Disord,2005, 5:449-463.
    15. Haura EB, Zhaeng Z, Song L, cantor A, Bepler G.Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin Cancer Res,2005, 11:8288-8294.
    16. Yae Kanai, Yoshimasa Saito, Saori Ushijima, Setsuo H, Yohashi. Alterations in gene expression associated with the overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, during human hepatocarcinogenesis. J Cancer Res Clin Oncol,2004, 130:636-644.
    17. Harborth J, Elbashir SM, Bechert K, et al.Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci,2001,14:4557-4565.
    18. Elbashir SM, Harborth J, Lendeckel W.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411:494-498.
    19. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev, 2004,18:2195-2224.
    20. Greten FR, Karin M. The IKK/NF-kappaB activation pathway—a target for prevention and treatment of cancer. Cancer Lett,2004, 206(2):193-199.
    21. DiDonato J, Mercurio F, Rosette C, Wu-Li J, Suyang H, Ghosh S, Karin M. Mapping of the inducible IB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol,1996, 16(4):1295-1304.
    22. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-kappaB activity. Annu Rev Immunol. 2000. 18:621-663.
    23. Sun S-C, Ganchi PA, Ballard DW, Greene WC: NF-κB controls expression of inhibitor IκB: evidence for an inducible autoregulatory pathway. Science,1993,259(5103):1912-1915.
    24. Xiao G, Harhaj EW, Sun SC. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell Biol,2001,7(2):401-409.
    25. Senftleben U, Cao Y, Xiao G, Kraehn G, Greten F, Chen Y, Hu Y, Fong A, Sun SC, Karin M. Activation of IKKa of a second, evolutionary conserved.NF-κB signaling pathway.Science,2001,293 (5534): 1495- 1499.
    26. Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR. Distinct roles of the IκB kinase a and β subunits in liberationg nuclear factor kappa B (NF-κB) from IκB and in phosphorylating the p65 subunit of NF-κB. J Biol Chem,2002,277(6):3863-3869.
    27. Garg A, Aggarwal BB. Nuclear factor-kappaB as a target for cancer drug development. Leukemia,2002,16(6):1053-1068.
    28. Harnmerman PS, Fox CJ, Cinalli RM, Xu A, Wagner JD, Lindsten T, Thompson CB. Lymphocyte transformation by Pim-2 is dependent on nuclear factor-kappaB activation. Cancer Res,2004,64(22):8341-8.
    29. Griffin JD. Leukemia stem cells and constitutive activation of NF-kappaB. Blood,2001,98(8):2291.
    30. Weston VJ, Austen B, Wei W, Marston E, Alvi A, Lawson S, Darbyshire PJ, Griffiths M, Hill F, Mann JR, Moss PA, Taylor AM, Stankovic T. Apoptotic resistance to ionizing radiation in pediatric B-precursor acute lymphoblastic leukemia frequently involves increased NF-kappaB survival pathway signaling. Blood,2004, 104(5):1465-73.
    31. Domingo-Domenech J, Mellado B, Ferrer B, Truan D, Codony-Servat J, Sauleda S, Alcover J, Campo E, Gascon P, Rovira A, Ross JS, Fernandez PL, Albanell J. Activation of nuclear factor-kappaB in human prostate carcinogenesis and association to biochemical relapse. Br J Cancer,2005, 93(11):1285-94.
    32. Demicco EG, Kavanagh KT, Romieu-Mourez R, Wang X, Shin SR, Landesman-Bollag E, Seldin DC, Sonenshein GE. RelB/p52 NF-kappaB complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor IkappaB-alpha expression and promote carcinogenesis of the mammary gland. Mol Cell Biol, 2005, 25(22): 10136-47.
    33. Bharti AC, Aggarwal BB. Nuclear factor-kappaB and cancer: its role in prevention and therapy. Biochem Pharmacol,2002,64(5-6):883-8.
    34. Banerjee S, Bueso-Ramos C, Aggarwal BB. Suppression of 7,12-dimethybenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2 and matrix metalloprotease 9. Cancer Res,2002,62(17):4945-54.
    35. Anto RJ, Mukhopadhyay A, Shishidia S, Gairola CG, Aggarwal BB. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis,2002,23(9):1511-8.
    36. Gilmore TD, Starczynowski DT, Kalaitzidis D. RELevant gene amplification in B-cell lymphomas? Blood, 2004, 103(8): 3243-4.
    37. Inghirami G, Chiarle R, Simmons WJ, Piva R, Schlessinger K, Levy DE. New and old functions of STAT3: a pivotal target for individualized treatment of cancer. Cell Cycle, 2005,Sep;4(9): 1131-3. Epub 2005 Sep 30.
    38. Frisullo G, Angelucci F, Caggiula M, Nociti V, Iorio R, Patanella AK, Sancricca C, Mirabella M, Tonali PA, Batocchi AP. pSTAT1, pSTAT3, and T-bet expression in peripheral blood mononuclear cells from relapsing-remitting multiple sclerosis patients correlates with disease activity.J Neurosci Res, 2006, 84(5):1027-36.
    39. Coppo P, Flamant S, De Mas V, Jarrier P, Guillier M, Bonnet ML, Lacout C, Guilhot F, Vainchenker W, Turhan AG. BCR-ABL activates STAT3 via JAK and MEK pathways in human cells. Br J Haematol, 2006,134(2):171-9.
    40. Boxer LM, Dang CV. Translocations involving c-myc and c-myc function[J]. Oncogene, 2001, 20(4J0): 5595-5610.
    41. Johnson BE, lhde DC, Makuch RW, et al. Myc family oncogene amplification in tumor cell lines established from small cell lung can cer patients and its relationship to clinical status and course [J]. J Clin Invest,1987,79(6): 1629-1634.
    42. Papaioannou AI, Kostikas K, Kollia P, Gourgoulianis KI. Clinical implications for vascular endothelial growth factor in the lung: friend or foe? Respir Res,2006,7:128.
    43. Muller C. Hepatocellular carcinoma—rising incidence, changing therapeutic strategies.Wien Med Wochenschr,2006,;156(13-14): 404-9.
    44. Poon RT, Ho JW, Tong CS, Lau C, Ng IO, Fan ST. Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma. Br J Surg, 2004, 91(10): 1354-60.
    45. Blons H, Laccourreye O, Laurent-Puig P. Cellular and neoplastic otorhinolaryngologic changes, molecular markers and therapeutic potential. Ann Otolaryngol Chir Cervicofac, 2003, 120(3): 152-60.
    46. Li YJ, Wei ZM, Meng YX, et. al. Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis. World J Gastroenterol, 2005, 11(14): 2117-23.
    47. Gagarin D, Yang Z, Butler J, et.al. Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions: potential role of STATs, cyclinD1, BAD, and BcI-XL. J Mol Cell Cardiol,2005,39(3):453-65.
    48. Ramana CV et al.EMBO J,2000,19(2):263)272.
    49. Ouchi T et al.Proc Natl Acad Sci USA,2000,97(10):5208)5213.
    50. Lee CK, Smith E, Gimeno R, et al. STAT1 affects lymphocyte survival and proliferation partially independent of its role downstream of IFN γ [J] J Immunol, 2000, 164(3): 1286.
    51. Kumar A, Commane M, Flickinger TW, et al. Defective TNF-α-induced apoptosis in STAT1-null cells due to low consti2 tutive levels of caspases [J]. Science, 1997, 278 (5343): 1630.
    52. CaloV, MigliavaccaM,BazanV, etal.STAT proteins: from normal control of cellular events to tumorigenesis. Cell Physiol, 2003, 197(2): 157216.
    53. Chen H, Hutt FletcherL, et al. A positive autoregulatory loop of LMPI expression and STAT activation in epithelial cells latently infected with Epstein Barrvirus. J Virol, 2003, 77(7): 413924148.
    54. Oakley GG, Roe AL, Blouin RA, et al. 2,4,4c22rich2 lorobiphenyl increases STAT5 ranscriptional activity. Mol Carcinog, 2001, 30(4): 1992208.
    55. Ooi GT, Hurst KR, Poy MN, Rechler MM, Boisclair YR. Binding of STAT5a and STAT5b to a single element resembling a gamma-interferon-activated sequence mediates the growth hormone induction of the mouse acid-labile subunit promoter in liver cells.Mol Endocrinol,1998,12(5):675-87.
    1. Fearon ER and Vogelstein B. A genetic model for colorectal tumorigenesis. Cell, 1990,61: 759-767.
    2. Vogelstein B and Kinzler KW. The Genetic Basis of Human Cancer. McGraw-Hill, Health Professions Division, 1998, New York.
    3. Plass C. (2002) Cancer epigenomics. Hum Mol Genet.11:2479-2488.
    4. Martienssen RA, Riggs AD.(1996) Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
    5. Nephew KP and Huang TH.Epigenetic gene silencing in cancer initiation and progression. Cancer Letters,2003,190:125-133.
    6. Plass C, Shibata H, Kalcheva I, Mullins L, Kotelevtseva N, Mullins J, Kato R, Sasaki H, Hirotsune S, Okazaki Y. Identification of Grfl on mouse chromosome 9 as an imprinted gene by RLGS-M. Nat. Genet, 1996,14:106-109.
    7. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, and Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature, 2000, 405: 486-489.
    8. Iguchi-Ariga SM, and Schaffner W. O CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev, 1989, 3: 612-619.
    9. Tate PH, and Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev, 1993, 3:226-231.
    10. Bell AC, and Felsenfeld G. O Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature, 2000, 405: 482—485.
    11. Boyes J, and Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell, 1991, 64: 1123—1134.
    12. Hendrich B and Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell Biol, 1998, 18: 6538-6547.
    13. Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, and Bird A. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat. Genet,1999, 23: 58—61.
    14. Meehan RR, Lewis JD, and Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res, 1992, 20: 5085-5092.
    15. Bacolla A, Pradhan S, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase. Ⅱ. Steady-state kinetics reveal allosteric activation by methylated dna. J Biol Chem, 1999, 274: 33011-33019.
    16. Flynn J, Glickman JF, Reich NO. Murine DNA cytosine-C5 methyltransferase: pre-steady-and steady-state kinetic analysis with regulatory DNA sequences. Biochemistry, 1996, 35: 7308-7315.
    17. Glickman JF, Pavlovich JG, Reich NO. Peptide mapping of the murine DNA methyltransferase reveals a major phosphorylation site and the start of translation. J Biol Chem, 1997, 272: 17851-17857.
    18. Aoki A, Suetake I, Miyagawa J. Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases. Nucleic Acids Res, 2001,29:3506-3512.
    19. Hsieh CL. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol. 1999,19: 8211-8218.
    20. Okano M, Bell DW, Haber DA and Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99: 247-257.
    21. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, Jones PA. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res,1999, 27: 2291-2298.
    22. Baylin SB, Esteller M, Rountree MR. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Gene, 2001, 10: 687-692.
    23. Jones PA, Laird PW. Cancer epigenetics comes of age. Nature Genet, 1999, 21: 163-167.
    24. Jones PA and Baylin SB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet,2002,3:415-428.
    25.刘丽华,肖文华,杨金亮。5-脱氧杂氮胞苷抑制肝癌细胞株生物学行为的机制.世界华人消化杂志,2000,8:420-423.
    26. Soejima K, Fang W, and Rollins BJ. DNA methyltransferase 3b Contributes to Oncogenic transformation induced by SV40 T antigen and Activated Ras,.Oncogene,2003, 22:4723-4733.
    27. Baniushin BF Methylation of adenine residues in DNA of eukaryotes. Mol Biol (Mosk), 2005,39:557-566.
    28. Gromova ES, Khoroshaev AV. Prokaryotic DNA methyltransferases: the structure and the mechanism of interaction with DNA. Mol Biol (Mosk), 2003,37:300 - 314 (in Russian).
    29. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, Milliken EE, Issa JP.Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res,1999,43:985-991.
    30. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet,2002, 3: 662 - 673.
    31. Jones PA. Laird PW Cancer epigenetics comes of age. Nat Genet, 1999, 21:163-167.
    32. Robertson KD. DNA methylation and human disease. Nat Rev, Genet,2005,6: 597-610.
    33. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet, 2000,9: 2395-2402.
    34. Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci,2004,61: 2571-2587.
    35. Okno M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet, 1998,19: 219-220.
    36. Hsieh CL. The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmtl. BMC Biochem, 2005, 6: 6.
    37. Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, Li E. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development, 1996, 122: 3195-3205.
    38. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R.DNA hypomethylation leads to elevated mutation rates. Nature, 1998,395: 89-93.
    39. Guo G, Wang W, Bradley A. Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature, 2004,429: 891-895.
    40. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 1992, 69: 915-926.
    41. Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002,416: 552-556.
    42. Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol, 2002, 22: 480-491.
    43. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99: 247-257.
    44. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R.Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA, 2000,97: 5237-5242.
    45. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 2005, 74: 481-514.
    46. Aapola U, Kawasaki K, Scott HS, Ollila J, Vihinen M, Heino M, Shintani A, Kawasaki K, Minoshima S, Krohn K, Antonarakis SE, Shimizu N, Kudoh J, Peterson P. Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics, 2000, 65: 293-298.
    47. Slater LM, Allen MD, Bycroft M. Structural variation in PWWP domains. J Mol Biol, 2003, 330: 571-576.
    48. Bourc' his D, Xu GL, Lin CS, Bollman B, Bestor TH.Dnmt3L and the establishment of maternal genomic imprints. Science,2001,294: 2536-2539.
    49. Yoder JA, Bestor TH. A candidate mammalian DNA methyltransferase related to pmtlp of fission yeast. Hum Mol Genet, 1998, 7: 279-284.
    50. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene, 2002, 21: 5400-5413.
    51. Eden A, Gaudet F, Waghmare A, Jaenisch R.Chromosomal instability and tumors promoted by DNA hypomethylation. Science, 2003, 300: 455.
    52. Baylin S, Bestor TH. Altered methylation patt erns in cancer cell genomes: cause or consequence? Cancer Cell, 2002, 1: 299-305.
    53. Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer, 2005, 5: 223-231.
    54. van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415: 530-536.
    55. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res, 2001, 61: 3225-3229.
    56. Kim JS, Han J, Shim YM, Park J, Kim DH. Aberrant methylation of H-cadherin (CDH13) promoter is associated with tumor progression in primary nonsmall cell lung carcinoma. Cancer, 2005, 104: 1825-1833.
    57. Rideout WM 3rd, Coetzee GA, Olumi AF, Jones PA.5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science,1990, 249: 1288-1290.
    58. Yoon JH, Smith LE, Feng Z, Tang M, Lee CS, Pfeifer GP. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res, 2001, 61: 7110-7117.
    59. Xu Jun, Fan Hong, Zhao Zhu. Jiang, ZHANG Jian-Qiong, X1E W ei IdentifiCation of Potential Genes Regulated by DNA Methyltransferase 3 B in a Hepatocellar carcinoma Cell Line by RNA Interference and M icroarray Analysis.Acta Genetica Sinica, 2005, 32 (11): 1115-1127.
    60. Soejima K, Fang W, and Rollins BJ. DNA methyltransferase 3b Contributes to Oncogenic transformation induced by SV40 T antigen and Activated Ras. Oncogene,2003,22:4723-4733.
    61. Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol, 2004, 24: 9048-9058.
    62. Deplus R, Brenner C, Burgers WA, Putmans P,Kouzarides T, de Launoit Y,Fuks F. Dnmt3L is a transcriptional repressor that recruits histone deacetylase.Nucleic Acids Res, 2002, 30: 3831-3838.
    63. Ghoshal K, Datta J, Majumder S, Bai S, Dong X, Parthun M, Jacob ST. Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein Ⅰ promoter by activating the transcription factor MTF-1 and forming an open chromatin structure.Mol Cell Biol,2002,22:8302-319.
    64. Hellebrekers DM, Jair KW, Vire E, Eguchi S, Heobers NT, Fraga MF, Esteller M, Fuks F, BaylinSB, Van Engeland M, Griffioen AW. Angiostatic activity of DNA methyltransferase inhibitors.Mol Cancer Ther,2006,5:467-475.
    65. Yae Kanai, Yoshimasa Saito, Saori Ushijima, Setsuo H, Yohashi. Alterations in gene expression associated with the overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, during human hepatocarcinogenesis. J Cancer Res Clin Oncol,2004, 130:636-644.
    66. Herman JG, Umar A, Polyak K, Graft JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA,1998,95: 6870-6875.
    67. Brueckner B, Boy RG, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases.Cancer Res, 2005, 65: 6305-6311.
    68. Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, MacLeod AR. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet,2003, 33: 61-65.
    69. Villar-Garea A, Fraga MF, Espada J, Esteller M. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res,2003,63: 4984-4989.
    70. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS.Tea polyphenol (-)-epigallocatechin-3- gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res,2003,63: 7563-7570.
    71. Pogribny I, Koturbash I, Tryndyak V, Hudson D,Stevenson SM,Sedelnikova O,Bonner W,kovalchuk O. Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus.Mol Cancer Res. 3: 553-561.
    72. Siedlecki P, Boy RG, Musch T, Brueckner B, Suhai S, Lyko F, Zielenkiewicz P.Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem,2006,49: 678-683.
    73. Lyko F, Ramsahoye BH, Kashevsky H, Tudor M, Mastrangelo MA, Orr-Weaver TL, Jaenisch R.Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nat Genet,1999,23: 363-366.
    74. Szyf M.DNA methylation and demethylation as targets for anticancer therapy. Biochemistry (Mosc),2005,70:533-549.
    75. Siedlecki P, Boy RG, Comagic S, Schirrmacher R, Wiessler M, Zielenkiewicz P, Suhai S, Lyko F. Establish mentand functional validation of a structural homology model for human DNA methyltransferase 1. Biochem Biophys Res Commun,2003,306: 558-563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700