5-Aza-dC对牛体细胞核移植胚早期发育及其甲基化水平的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1996年体细胞克隆绵羊“多莉”成功诞生以来,多种哺乳动物都成功的得到体细胞克隆后代。但体细胞核移植的效率却一直没有显著的提高,主要原因是供体细胞核在受体卵胞质中不能完全被重编程。DNA甲基化是哺乳动物主要的表观遗传修饰形式,是调节基因组功能的重要手段。在体细胞核移植胚胎早期发育中,8-细胞前DNA甲基化程度普遍高于正常受精胚胎。这种甲基化水平的异常可能是导致体细胞克隆发育异常的一个重要原因。本论文系统研究了牛体细胞克隆胚早期发育过程中DNA甲基化模式,同时研究了用DNA甲基化酶抑制剂(5-Aza-dC)处理供体细胞和(或)早期克隆胚,降低DNA甲基化水平对克隆胚发育及其甲基化水平的影响。
     1.检测了牛SCNT胚胎附植前各个发育阶段的DNA甲基化水平,对比了克隆胚胎在DNA甲基化水平上与IVF胚胎的差异。结果显示,克隆胚胎各个发育阶段DNA甲基化水平均高于体外受精胚胎,其中2-细胞到桑椹胚阶段甲基化水平显著高于IVF胚胎(P<0.05)。体外受精胚胎甲基化水平随着胚胎发育逐渐降低,到8-细胞阶段降到最低水平,从头甲基化发生在8-细胞到桑椹胚之间。而克隆胚胎单细胞核甲基化水平降低到4-细胞阶段,从头甲基化发生在4-细胞到8-细胞阶段。
     2.优化了5-Aza-dC处理方法,研究了DNA甲基化水平变化与克隆胚胎体外发育之间的关系。结果表明,低浓度的5-Aza-dC (20nM,72h)单独处理供体细胞或者重构胚不能显著提高克隆胚胎的体外发育率,对克隆胚的DNA甲基化水平没有明显影响;而供体细胞和重构胚均用低浓度5-Aza-dC (20nM,72h)处理可以显著提高囊胚发育率,2-细胞阶段DNA甲基化水平降低,8-细胞阶段的DNA甲基化水平显著降低且与IVF胚胎相比差异不再显著,说明克隆胚胎DNA甲基化水平影响其体外发育,降低2-细胞和8-细胞阶段的DNA甲基化水平可以提高克隆胚胎的体外发育能力。
     3.亚硫酸氢盐测序法研究5-Aza-dC (20nM,72h)同时处理供体细胞和重构胚后的8-细胞阶段克隆胚的Dnmt3a基因DNA甲基化水平。结果显示,5-Aza-dC处理过的克隆胚的Dnmt3a甲基化程度(38.9%)更接近于体外受精胚(43.3%),而未处理的克隆胚的Dnmt3a甲基化程度较低(25.6%)。
Since the birth of the somatic cloned sheep“Dolly”in 1996, there were more than ten mammalian species which had been cloned. However, SCNT efficiency hasn’t improved obviously since then, imcomplete reprogramming of donor cell nucleus by recipient oocytes may be one of the important reseasons. Methylation of DNA is a main epigenetic modification for regulating gene functions. Level of DNA methylation in somatic cloned embryos is higher than fertilized embryos prior to 8-cell stage. Abnormal level of DNA methylation in somatic cloned embryos may result in development abnormality. In the present study, model of DNA methylation in bovine SCNT embryos was studied systemically, the effects of 5-Aza-dC, a inhibitor of methylation enzyme, on the developmental competence and methylation level of DNA were also studied.
     1.The DNA methylation levels of IVF and SCNT embryos were analysed by immunodetection method, and the differences between two kinds of embryos were investigated. The results showed that, the DNA methylation level of cloned embryos were higher than that of IVF embryos, wich was significant from 2-cell to blastocyst stage, and the precocious de novo methylation was found in cloned embryos. The results revealed that the DNA methylation status were abnormal in cloned embryos.
     2.The epigenetic modification status of cloned embryos were analysed after donor cells and cloned embryos were treated with 5-Aza-dC, and the relationship between DNA methylation and the development of cloned embryos were investigated. The results showed that, the in vitro development potential and epigenetic modification status of cloned embryos were not changed after the donor cells or cloned embryos were treated with low concentration of 5-Aza-dC (20nM, 72h); when both donor cells and cloned embryos were treated with 5-Aza-dC (20nM, 72h), the blastocyst rate and blastocyst cell number were significantly increased, and the DNA methylation level of 2-cell embryos was reduced, which became significant at 8-cell stage.
     3.methylation level of Dnmt3a gene in somatic cloned 8-cell embryos after both donor cells and cloned embryos were treated with 5-Aza-dC (20nM, 72h) was detected by Bisulfite Sequencing PCR. In results, level of methylation of Dnmt3a gene in 5-Aza-dC–treated somatic cloned 8-cell embryos was 38.9%, similar to that of fertilized embryos(43.3%), and significantly higher than that of non-treated cloned embryos (25.6%).
引文
[1] Park IH,Zhao R,West JA,et al. Reprogramming of human somatic cells to pluripotency with defined factors .Nature, 2008, 451 (7175) :141-146 .
    [2] Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frog's eggs [J]. Proc Nat Acad Sci USA, 1952, 38: 455-46
    [3] Gurdon JB. Genetic reprogramming following nuclear transplantation in Amphibia [J]. Semin. Cell Dev Biol, 1999, 10: 239-224
    [4]章志国,章孝荣,刘亚,金仁桃,章美玲,汪存立,赵焕.连续核移植对异种山羊(Bore)克隆胚胎发育的影响[J].生殖医学杂志, 2006,(02):101-105
    [5] Sung,L. Y.,Gao,S.,Shen,H. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer .Nat Genet, 2006, 38 (11) :1323~1328 .
    [6] Modlinski JA. Transfer of embryonic nuclei to fertilized mouse eggs and development of tetraploid blastocysts [J]. Nature, 1978, 273: 466-467
    [7] Illmensee K, Hoppe PC. Nuclear transplantation in Mus musculus: developmental potential of nuclei from preimplantation embryos [J]. Cell, 1981, 23: 9-18
    [8] Prather RS, Barnes FL, Sims MM, et al. Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte [J]. Biol Reprod, 1987, 37 (4): 859-866
    [9]张涌,王建辰,钱菊汾等.山羊卵核移植的研究[J].中国农业科学, 1991, 24(5): 1-6
    [10] Illmensee K, Hoppe PC. Nuclear transplantation in Mus musculus: developmental potential of nuclei from preirnplantation embryos [J]. Cell, 1981, 23(1): 9-18
    [11] McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternel and paternal genomes [J]. Cell, 1984, 37(1): 179-183
    [12] Willadsen SM. Nuclear transplantation in sheep embryos [J]. Nature, 1986, 320: 63-65
    [13] Robl JM, Prather R, Barnes F, et al.Nuclear transplantation in bovine embryos [J]. J Anim Sci, 1987, 64: 642-647
    [14] Kono T, Shida Y, Tsunoda Y. Nuclear transplantation of rat embryos [J]. J Exp Zool Sci, 1987, 64: 642-647
    [15] Stice SL, Robl JM. Nuclear reprogramming in nuclear transplant rabbit embryos [J]. Biol Reprod, 1988, 39(3): 657-664.
    [16] Meng L, Ely JJ, Stouffer RL, et al. Rhesus monkeys produced by nuclear transfer [J]. Biol Reprod, 1997, 57(2): 454-459
    [17] Machaty Z, Prather RS. Strategies for activating nuclear transfer oocytes [J].Reprod Fertil Dev, 1998, 10: 599-613
    [18] Lee SL, Ock SA, Yoo JG, et al. Efficiency of gene transfection into donor cells for nuclear transfer of bovine embryos .Mol Reprod Dev, 2005, 72(2) :191-200 .
    [19]余华,叶健强,刘丹.动物转基因及克隆技术研究进展(上)[J].中国动物保健, 2009,(01) :97-102
    [20] Shiga K, Fujita T, Hirose K, et a1. Production of calves by transfer of nuclei from cultured somaticcells obtained from Japanese black bulls [J]. Theriogenology, 1999, 52(3): 527-535
    [21]郭继彤,安志兴,李煜等.成年耳细胞克隆山羊(Capra hircus) [J].中国科学(C辑), 2002, 32(1): 77-83
    [22] Polejaeva IA, Chen Sh, Vaught TD, et al. Cloned pigs produced by nuclear transfer from adult somatic cells [J]. Nature, 2000, 407(6800): 86-90
    [23] Chesne P, Adenot PG, Viglietta C, et al. Cloned rabbits produced by nuclear transfer from adult somatic cells [J]. Nat Biotechnol, 2002, 20(4): 366-369
    [24] Zhou Q, Renard JP, Le Friec G, et al. Generation of fertile cloned rats by regulating oocyte activation [J]. Science, 2003, 302(5648): 1179.
    [25] Woods GL, White KL, Vanderwall DK, et al. A mule cloned from fetal cells by nuclear transfer [J]. Science, 2003, 301(5636): 1063.
    [26] Galli C, Lagutina I, Crotti G, et al. Pregnancy: a cloned horse born to its dam twin [J]. Nature, 2003, 424(7051): 635.
    [27] Lee BC, Kim MK, Jang G, et al. Dogs cloned from adult somatic cells [J]. Nature 2005, 436-641
    [28]陈大元,李劲松,韩之明等.体细胞克隆牛:供体细胞核受体的影响[J].科学通报, 2003, 48(8): 768-773
    [29] Shiga K, Fujita T, Hirose K, et al. Production of calves by transfer of nuclei from cultured somatic cells obtained from Japanese black bulls [J]. Theriogenology, 1999, 52(3):527-535
    [30] Kato Y, Tani T, Tsunoda Y. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows [J]. J Reprod Fertil 2000, 120(2): 231–237
    [31] Akagi S, Adachi N, Matsukawa K, et al. Developmental potential of bovine nuclear transfer embryos and postnatal survival rate of cloned calves produced by two different timings of fusion and activation [J]. Mol Reprod Dev, 2003, 66(3): 264-272
    [32] Tecirlioglu RT, Cooney MA, Lewis IM, et al. Comparison of two approaches to nuclear transfer in the bovine: hand-made cloning with modifications and the conventional nuclear transfer technique [J]. Reprod Fertil Dev, 2005, 17: 573–585.
    [33] Ideta A, Urakawa M, Aoyagi Y, et al. Early morphological nuclear events and developmental capacity of embryos reconstructed with fetal fibroblasts at the M or G1 phase after intracytoplasmic nuclear injection in cattle [J]. J Reprod Dev 2005, 51: 187–194
    [34] Hall VJ, Ruddock NT, Cooney MA, et al. Production of a cloned calf using zona-free serial nuclear transfer [J]. Theriogenology, 2006, 65(2): 424–440
    [35]贾淑玲,刘利杰,彭树英,等.牛皮肤成纤维细胞的分离培养及转染人溶菌酶基因.农业生物技术学报, 2008,16(5): 789-803.
    [36] Walker SC, Shin T, Zaunbrecher GM, et al. A highly efficient method for porcine cloning by nuclear transfer using in vitro-matured oocytes [J]. Cloning Stem Cells, 2002, 4(2): 105-112
    [37] Betthauser J, Forsberg E, Augenstein M, et al. Production of cloned pigs from in vitro systems [J]. Nat Biotechnol, 2000, 18(10): 1055–1059
    [38] Onishi A, Lwamoto M, Akita T, et al. Pigcloning by microinjection of fetal fibroblast nuclei [J]. Science, 2000, 289: 1188-1190
    [39] Yin XJ, Cho SK, Park MR, et al. Nuclear remodelling and the developmental potential of nuclear transferred porcine oocytes under delayed-activated conditions [J]. Zygote, 2003, 11(2): 167–174
    [40] Park MR, Cho SK, Park JY, et al. Detection of rare Leydig cell hypoplasia in somatic cell cloned male piglets [J]. Zygote, 2004, 12(4): 305–313
    [41] Hoshino Y, Uchida M, Shimatsu Y, et al. Developmental competence of somatic cell nuclear transfer embryos reconstructed from oocytes matured in vitro with follicle shells in miniature pig [J]. Cloning Stem Cells, 2005, 7(1): 17–26
    [42] Tomii R, Kurome M, Ochiai T, et al. Production of cloned pigs by nuclear transfer of pre- adipocytes established from adult mature adipocytes [J]. Cloning Stem Cells, 2005, 7: 279-288
    [43] Holker M, Petersen B, Hassel P, et al. Duration of in vitro maturation of recipient oocytes affects blastocytes development of cloned porcine embryos [J]. Cloning Stem Cells, 2005, 7(1): 35–44
    [44] Pan DK, Zhang YH, Sun XZ, et al. Cloned pigs derived from somatic cell nuclear transfer embryos cultured in vitro at low oxygen tension [J]. Chin Sci Bull, 2006, 51: 839–844
    [45] Kubota C, Yamakuchi H, Todoroki J, et al. Six cloned calves produced from adult fibroblast cells after long - term culture [J]. Proc Nat Acad Sci USA, 2000, 97(3): 990-995
    [46] Arat S, Rzucidlo SJ, Gibbons J, et al. Production of transgenic bovine embryos by transfer of transfected granulosa cells into enucleated oocytes [J]. Molecular Reproduction and Development, 2001, 60(1): 20-26.
    [47] Ogura A, Inoue K, Ogonuki N, et al. Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cell [J]. 2000, 62(6): 1579-1584
    [48] Hochedlinger K, Jaenish R. Monoclonal minegenerated by nuclear transfer from mature B and T donor cells [J]. Nature, 2002, 415(6875):1 035-1038
    [49] Wang l, Zheng A, Yi L, et al. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins [J]. Biochem Biophys Res Commun, 2004, 325(1): 302-307
    [50] Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote [J].Curr Biol, 2000, 10(8): 475-478
    [51]邓守龙;刘晓;曹文广;王安江.体细胞核移植生产转基因牛胚胎的研究[J].黑龙江畜牧兽医, 2008,(12) :16-19
    [52] Gao S, Chung YG, Williams JW, et al. Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei [J]. Biol Reprod, 2003, 69(1): 48-56
    [53]陈燕玲,王燕,贲晓明,周晓玉,苗登顺.表皮生长因子对外周血间充质干细胞原代克隆形成的影响及其传代后多向分化潜能[J].中国组织工程研究与临床康复, 2009,(10) :1891-1895
    [54]白照岱,刘凯,邴鲁军.表皮生长因子对小鼠早期胚胎体外发育影响的研究[J].山东大学学报(医学版), 2004, 42(2): 150-158
    [55]严云勤,张黎霞,谭景和.小鼠输卵管、子宫和卵巢组织中的TGF-αmRNA活性[J].中国兽医学报, 2000, 20(5): 505-507
    [56]温勇,刘斌.转化生长因子在小鼠胚卵及孕鼠子宫的表达[J].北京医科大学报, 1997, 29(1): 12-14
    [57]蒋和生,卢克焕.β-转换生长因子对牛体外受精卵体外发育的影响[J].广西农业大学学报, 1999, 14(2): 151-156
    [58] Lavranos TC, Rathjen PD, Seamark RF. Trophic effects of myeloid leukaemia inhibitory factor (LIF) on mouse embryos [J]. Reprod Fertil, 1995, 105(2): 331-338
    [59]潘一红,刘建兵,高文学,张爱军,冯云.卵泡液中白血病抑制因子(LIF)和血清中E_2在早期胚胎发育中的作用[J].生殖与避孕, 2008,(08) :496-499
    [60] Perrier S, Charlet C, Dubois M, et al. Human endometrial leukemia inhibitory factor and interleukin- 6: control of secretion by transforming growth factor- beta- related members [J]. Neuroimmunomodulation, 2005, 12(3): 157-163
    [61]韩树标;王爱萍;张力;肖雄;李跃民. MPF和MAPK在卵母细胞成熟过程中的作用[J], 2007, 05: 14-16.
    [62] Tycko B. Epigenetic gene silencing in cancer [J]. Clin Invest, 2000, 105(4): 401-407
    [63] Nakagawa T,Kanai Y,Ushijima S,et al. DNAhypermethylation on multiple CpG islands associated with increased DNA methyltrans-ferase DNMT1protein expression during multistage urothelial carcino-genesis .J Urol, 2005, 173 :1767-1771 .
    [64] Singal R, Ginder GD. DNA methylation [J]. Blood, 1999, 93(12): 4059-4070
    [65] Klose,RJ,Sarraf,SA,Schmiedeberg,L,McDermott,SM,Stancheva,I,Bird,AP. DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG .Mol Cell, 2005, 19 :667~678 .
    [66]刘秉胜.组蛋白乙酰化与真核基因的转录.国外医学分子生物学分册[J], 2000, 22, (6): 335-359.
    [67] Worrad DM, Turner BM, Schultz RM. Temporally restrictd spatial localization of acetylated isoforms of histone H4 and RNA polymeraseⅡin the 2-cell mouse embryo [J]. Development, 1995, 121(9): 2949 -2959
    [68] Bellier S, Chastant S, Aderrot P. Nuclear translocation and carboxylterninal domain phoaphorylation of RNA polymeraseⅡdelinenate the two phase of zygotic gene activation in mammalian embryos [J]. EMBO, 1997, 16(20): 6250-6226
    [69] Shambhunath Choudhary,Hwa-Chain Robert Wang. Pro-apoptotic activity of oncogenic H-Ras for histone deacetylase inhibitor to induce apoptosis of human cancer HT29 cells[J]. Journal of Cancer Research and Clinical Oncology, 2007,133(10) :725~739.
    [70] Brownell JE, Zhou J, Ranallt T, et al. Tetrahymena histone acetyltransferase a: A homology to yeast GCN5p linking histone acetylation to gene activation [J]. Cell, 1996, 84: 843-851
    [71] Spencer TE, Jenster G, Burcin MM,et al. Steroid receptor coactivator-1 isa histone acetyltransferase [J]. Nature, 1997, 389: 1994-1998
    [72] Muraoka M, Konishi M, Kikuchi-Yanoshita R, et al. P300 gene alterations in colorectal and gastric carcinomas [J]. Oncogene, 1996, 12: 1565-1569
    [73] Petrij F, Giles RH, Dauwers HG, et al. Rubinstein-Taybi syndrome caused by mutations in thetranscriptional cactivator CBP [J]. Nature, 1995, 376: 348-351
    [74]汤屹,刘文励,周剑峰.组蛋白去乙酰化酶抑制剂治疗肿瘤的机制和临床应用研究进展[J].中华血液学杂志, 2002, 23(6): 329-331
    [75] Johnstone RW. Histone deacetylase inhibitors: novel drugs for the treatment of cancer [J]. Nat Rev Drug Discov, 2002, 1: 287-299
    [76] Mayer W, Niveleau A, Walter J, et al. Demethylation of thezygotic paternal genome [J]. Nature, 2000, 403 (6769): 501-502
    [77] Howell CY, Bestor TH, Ding F, et al. Genomic imprinting disrupted by a material effect mutation in the Dnmt1 gene [J]. Cell, 2001, 104(6): 829-838
    [78] Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development [J]. Science, 2001, 293 (10): 1089-1093
    [79] Shi W, Hoeflich A, Flasuinkei H, et al. Induction of a senescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos [J]. Biol Reprod, 2003, 69: 301-309
    [80] Enright BP, Sung LY, Chang C, et al. Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2′- Deoxycytidine [J]. Biol Reprod, 2005, 72: 944-948
    [81] Maatouk DM, Resnick JL. Continuing primordial germ cell differentiation in the mouse embryo is a cell-intrinsic program sensitive to DNA methylation [J]. Dev Biol, 2003, 258(1): 201-208
    [82] ReikW, DeanW, Walter J. Epigenetic reprogramming in mammalian development [J]. Science, 2001, 293 (5532): 1089-1093
    [83] Diana L, Carmen M, Hugh JC, et al. Methylation Dynamics of Imprinted Genes in Mouse Germ Cells [J]. Genomics, 2002, 79 (4): 530-538
    [84] Constancia M, Kelsey G, Reik W. Resourceful imprinting [J]. Nature, 2004, 432(7013): 53–57
    [85] Brannan CI, Bartolomei MS. Mechanisms of genomic imprinting [J]. Curr Opin Genet Dev, 1999, 9(2): 164–170
    [86] Mann JR. Imprinting in the germ line [J]. Stem Cells, 2001, 19(4): 287–294
    [87] Eggenschwiler J, Ludwig T, Fisher P, et al. Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes [J]. Genes Dev, 1997, 11(23): 3128-3142
    [88] Young LE, Fernandes K, McEvoy TG, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture[J]. Nat Genet, 2001, 27(2):153-154.
    [89] Tamashiro KL, Wakayama T, Akutsu H , et al. Cloned mice have an obese phenotype not transmitted to their offspring[J]. Nat Med, 2002, 8(3):262-267.
    [90] Inoue K, Kohda T, Lee J, et al. Faithful expression of imprinted genes in cloned mice[J]. Science, 2002, 295(5553):297.
    [91] Bjornsson H T,Brown LJ,Fallin MD,et al. Epigenetic specif-ity of lossi mprinting of IGF2genein Wil ms tumors .J Natl Canc-er Inst, 2007, 99 (16) :1270~1273 .
    [92] Inoue K, Kohda T, Lee J, et al. Faithful expression of imprinted genes in cloned mice[J]. Science, 2002,295(5553):297
    [93] Smith SL, Everts RE, Tian XC, et al. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning[J]. Proc Natl Acad Sci USA, 2005, 102(49):17582-17587.
    [94] Long JE, Cai X. Igf-2r expression regulated by epigenetic modification and the locus of gene imprinting disrupted in cloned cattle[J]. Gene, 2007, 388(1-2):125-134.
    [95] Yang L, Chavatte-Palmer P, Kubota C, et al. Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones[J]. Mol Reprod Dev, 2005, 71(4):431-438.
    [96] Liu JH, Yin S, Xiong B, et al. Aberrant DNA methylation imprints in aborted bovine clones[J]. Mol Reprod Dev, 2008, 75(4):598-607.
    [97] Lin L, Li Q, Zhang L, et al. Aberrant epigenetic changes and gene expression in cloned cattle dying around birth[J]. BMC Dev Biol, 2008, 8:14.
    [98]陈洁,李冬杰,刘艳琴,等.体细胞核移植牛肺脏中H19和Xist基因的DNA甲基化状态[J].科学通报, 2008, 53(11): 1305-1310
    [99] Agnel J. Sfeir Weihang Chai Jerry W. Shay and Woodring E. Wright. Telomere-End Processing the Terminal Nucleotidesof Human Chromosomes .Molecular Cell, 2005, 18 (1) :131-138 .
    [100] Eric Gilson,Arturo LV. Telomere Length Profilesin Humans[J] .Cell Cycle, 2007, 6 (20) :2486-2494 .
    [101]李晟阳;罗光彬;连正兴;邓学梅;姚汝强.哺乳动物胚胎生物技术应用中线粒体的命运[J].中国畜牧兽医, 2006,33(04) :41-44.
    [102]吴易雄.转基因动物研究及其产业化[J].生物技术通报, 2007, (06) :5-9.
    [103]林莉;胡佐忠.转基因动物技术的研究进展[J].畜禽业, 2005, (05) :20-23.
    [104] Nallella KP, Sharma RK, Aziz N,et al.Significance of sperm characteristics in the evaluation of male infertility.Fertil Steril 2006; 85(3):629-634.
    [105] Fauser BC and Devroey P Why is the clinical acceptance of gonadotropinreleasing hormone antagonist co-treatment during ovarian hyperstimulation for in vitro fertilization so slow 2005 83: 1607–1611.
    [106] Velasquez JG, Canovas S, Barajas P, et al. Role of sialic acid in bovine sperm–zona pellucida binding. Mol Reprod Dev 2007;74:617–628.
    [107] Jin JL,O'Doherty AM,Wang S,et al.CatSper3 and CatSper4 encode two cation channel-like proteins exclusively expressed in the testis[J]. Biol Reprod, 2005, 73(6):1235-1242.
    [108] Munne, S., Cohen, J., Simpson, J.et al. In Vitro Fertilization with Preimplantation Genetic Screening. NEJM , 2007, 357: 1769-1771
    [109] Weghofer, A., Munne, S., Brannath, W.,et al. The impact of LH-containing gonadotropins on diploidy rates in preimplantation embryos: long protocol stimulation. Hum Reprod,2008, 23: 499-503
    [110] Van Landuyt L,De Vos A,Joris H,et al.Blastocyst formation in vitro fertilization versus intracytoplasmic sperm injection cycles:Influence of the fertilization procedure[J].Fertil Steril,2005,83:1397-1406
    [111] Papanikolaou EG,et al.Steroid receptor expression in late follicular phase endometrium in GnRH antagonist IVF cycles is already altered,indicating initiation of early luteal phase transformation in the absence of secretory changes[J].Hum Reprod,2005,20:1541-1547.
    [112] Puglisi R, Vanni R, Galli A, et al. In vitro fertilisation with frozen–thawed bovine sperm sexed by flow cytometry and validated for accuracy by real-timePCR. Reproduction 2006;132:519–526.
    [113] Wilson RD, Fricke PM, Leibfried-Rutledge ML,et al. In vitro production of bovine embryos using sex-sorted sperm. Theriogenology 2006;65:1007–1015.
    [114] Conti M, Hsieh M, Park JY, et al. Role of the epidermal growth factor network in ovarian follicles[J]. Mol Endocrinol. 2006, 20: 715–723.
    [115] Liang CG, Huo LJ, Zhong ZS,et al. Cyclic adenosine 3’,5’-monophosphate-dependent activation of mitogen-activated protein kinase in cumulus cells is essential for germinal vesicle breakdown of porcine cumulus-enclosed oocytes[J]. Endocrinology, 2005, 146:4437–4444
    [116] Dochi O, Takahashi K, Hirai T, et al. The use of embryo transfer to produce pregnancies in repeat-breeding dairy cattle. Theriogenology2008;69:124–8.
    [117] Block J, Fischer-Brown AE, Rodina TM,et al. The effect of in vitro treatment of bovine embryos with IGF-1 on subsequent development in utero to Day 14 of gestation. Theriogenology2007;68:153–61.
    [118] Seidel Jr GE. Modifying oocytes and embryos to improve their cryopreservation. Theriogenology 2006;65:228–35.
    [119] Mucci N, Aller J, Kaiser GG,et al. Effect of estrous cow serum during bovine embryo culture on blastocyst development and cryotolerance after slow freezing or vitrification. Theriogenology 2006;65:1551–62.
    [120] Palma GA, Olivier NS, Neumuller C,et al. Effects of sexsortedspermatozoa on the efficiency of in vitro fertilization and ultrastructure of in vitro produced bovine blastocysts. AnatHistol Embryol 2008, 37: 67–73.
    [121] Daniels R, Hall V, Trounson AO. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulose cell nuclei. Biol Reprod, 2006, 3(4):1034-1040.
    [122] Humpherys D, Eggan K, Akutsu H, et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA, 2002, 99:12889-12894.
    [123] Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet, 2002, 3(9):662-673.
    [124] Kang YK, Koo DB, Park JS, et al. Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet, 2001, 28:173-177.
    [125] Wee G, Koo DB, Song BS, et al. Inheritable Histone H4 Acetylation of Somatic Chromatins in cloned Embryos[J]. Journal of Biological Chemical, 2006, 281:6048-6057.
    [126] Zhang L, Wang SH, Fan BL, et al. Global histone H4 acerylation of IGF1 and GH genes in lungs of somatic cel cloned calves. Asian_aust. J.Anim.Sci, 2006, 19(8):1090.
    [127] Liu, FJ, Zhang, Y, Zheng YM, et al. Optimization of electrofusion protocols for somatic cell nucleartransfer. Small Rumin. Res. 2007, 73, 246-251.
    [128] Fukushima M, Fukui Y. Effectes of gonadotropins and steroids on the subsequent fertilizability of extrafollicular bovine oocyts cultured in vitro[J]. Anim Reprod Sci, 1985, 9:323-332.
    [129] Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science, 2001,293:1068-1070.
    [130] Lee J, Jnoue K, Ono R, et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 2002, 129:1807-1817.
    [131] Kang YK, Park JS, Koo DB, et al. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J, 2002, 21(5): 1092-1100.
    [132] Bourc’his D, Le Bourhis D, Patin D, et al. Delayed and in complete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol, 2001, 11(19): 1542-1546.
    [133] Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development:aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA, 2001, 98(24): 13734-13738.
    [134] Dean W, Bowden L, Aitchison A, et al. Altered imprinted gene methylation and expression in completely ES cell-derived Mouse fetuses: association with aberrant phenotypes. Development, 1998, 125(12): 2273-2282.
    [135] Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 2003, 33(Supplement):245-54.
    [136] El Kharroubi A, Piras G, Stewart CL. DNA demethylation reactivates a subset of imprinted genes in uniparental mouse embryonic fibroblasts. J Biol Chem, 2001, 276(12):8674-8680.
    [137] Wijermans P, Lubbert M, Verhoef G, et al. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating, agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phaseⅡstudy in elderly patients[J]. J Clin Oncol, 2002, 18(5):956-962.
    [138]方晓明,孙立峰,彭佳萍,等.5--2′-脱氧胞苷对RKO结肠癌细胞株P16/CDKN2基因去甲基化的转录调节作用[J].中华医学杂志,2003,83(23) :2077-2082.
    [139]佟红艳,林茂芳.5′-杂-2′-脱氧胞苷对高危组骨髓增生异常综合征细胞作用的体外研究[J].中国实验血液学杂志,2004 ,12(4):467-471.
    [140] Enright BP, Sung LY, Chang CC, et al. Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2’-deoxycytidine. Biol Reprod, 2005, 72:944-948.
    [141] Chung YG, Ratnam S, Chillet JR. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos[J]. Biol Reprod, 2003, 69:146-153.
    [142] Enright BP, Kubota C, Yang X, et al. Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2'-deoxycytidine[J]. Biol Reprod, 2003, 69:896-901.
    [143] Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet, 1998, 19(3):219-220.
    [144] Aapola U, Kawasaki K, Scott HS, et al. Isolation and Initial Characterization of a Novel Zinc FingerGene, DNMT3L, on 21q22.3, Related to the Cytosine-5-Methyltransferase 3 Gene Family. Genomics, 2000, 65(3):293-298.
    [145] Bourc'his D, Xu GL, Lin CS, et al. Dnmt3L and the establishment of maternal genomic imprints. Science, 2001, 294(5551):2536-2539.
    [146] Hayatsu H.Bisulfite modification of cytosine and 5-methylcytosine as used in epigenetic studies [J]. Genes Environ, 2006,28(1): 1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700