用户名: 密码: 验证码:
强化污泥厌氧发酵产酸的效能及发酵液碳源的利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水厂的剩余污泥已经成为主要的环境污染问题之一,由于剩余污泥中蕴藏大量的有机物资源,可以进行资源化处理,同时剩余污泥发酵产酸是进行污泥资源化处理的热点研究方向之一。产生的挥发酸(VFAs)因为可以作为补充碳源解决污水厂运行过程中出现的碳源不足问题,所以具有重要的实际应用意义。基于此,本文在已有研究的基础上,结合污泥厌氧发酵理论的代谢过程及机制,比较研究了强化污泥发酵产酸的处理技术,并对各发酵过程的动力学及机理进行了阐述,同时以强碱性处理后的发酵液为进水进一步实现了连续流工艺产酸,最后对发酵液碳源的应用途径进行了探索研究。
     首先以序批实验的方式探索了强化污泥厌氧发酵的几种技术,以污水厂剩余污泥为研究对象,采用自主设计的发酵装置比较研究了碱处理、投加β-环糊精(β-CD)、投加蒽醌-2,6-二磺酸钠(AQDS)强化污泥发酵产酸的效能。结果表明,碱性条件下(pH=8.0-10.0),VFAs积累量随着pH的升高而增加,当pH升高至12.0时,由于极端条件严重抑制了微生物的代谢过程,导致VFAs积累量大幅降低。投加β-CD也可以促进污泥的厌氧发酵产酸过程,在低投加量条件下(0.05g/gTSS和0.1g/gTSS),VFAs的增加趋势不明显,当投加量高于0.15g/gTSS时,VFAs的积累量开始明显增加。其中,β-CD投加量(x)与VFAs积累量(y)之间呈较好的正相关性,拟合方程为y=2319.43x+134.74,R2=0.981。投加AQDS后的产酸过程与投加β-CD实验组类似,在AQDS投加量较低时促进效果不明显,而当投加量增加到3mM和5mM时,VFAs积累量可以达到511.6mg/L和562.8mg/L,是同期空白对照组的2.5倍和2.7倍左右。
     进一步的机理分析结果表明,三种强化发酵产酸方式下的VFAs组分均是以乙酸和丙酸为主,二者之和占总VFAs的比例最大可以分别达到76.2%(pH=10.0)、88.2%(β-CD)、100%(AQDS),表现为乙酸-丙酸的发酵特征。大分子有机底物(蛋白质和总糖)的水解过程符合一级动力学模型,碱性条件下的水解速率高于其他条件,而β-CD和AQDS在促进水解过程时均存在一个投加阈值,即二者在低投加量条件下对水解速率的影响较小,但在高投加量时水解速率常数则显著提高,投加量的阈值分别为0.15g/gTSS和3mM。对产酸过程的微生物种群组成及动态变化过程通过聚合酶链式反应技术及变性梯度凝胶电泳技术(PCR-DGGE)进行分析,结果显示不同强化技术对种群组成具有明显的选择性,在最佳的产酸条件下的微生物种群表现为:pH=10.0时,Acinetobacter sp.和Acidovorax sp.是发酵体系中的产酸优势种群;β-CD投加量为0.2g/gTSS时, Dethiosulfatibacter aminovorans strain、 Clostridiaceaebacterium、Enterobacter sp.和Parabacteroides sp.为产酸优势种群;AQDS投加量为3mM时,Clostridiaceae bacterium、Clostridium symbiosum strain、Acidovorax sp.为产酸优势种群。
     鉴于强碱性(pH=12.0)处理技术在促进大分子有机物溶解方面的独特优势,试验中以强碱性处理后的发酵液为进水,采用连续搅拌反应器(CSTR)为发酵产酸的主体装置,考察了连续流产酸效果及工艺过程的微生物学机理。结果表明,高负荷(蛋白质浓度为2000mg/L)条件下,工艺在6.5d时即可进入产酸稳定期,平均的产酸效率为210.6mg VFAs/g VSS,蛋白质的平均去除率为62.5%。低负荷运行的结果表明,低负荷启动时的适应期明显增长,需要15d才能达到稳定,平均产酸效率为84.7mgVFAs/gVSS,蛋白质的平均去除率约为64.6%。进水负荷对于工艺中的微生物功能菌群具有一定选择性,但是Bacteroides sp.是稳定存在于两种进水工艺中的优势产酸种群,为今后产酸菌的筛选提供了非常有利的信息。
     最后探索研究了厌氧产酸发酵液碳源的应用,结果表明:(1)碱处理发酵液可以成功用来进行聚羟基脂肪酸酯(polyhydroxyalkanoates,PHA)合成,试验中采用SBR反应器,工艺运行了50d,最高的PHA合成量为420.5mg/gMLSS,高于同期对照试验以乙酸钠为单一碳源时的最大PHA合成量,但是由于底物成分的复杂性,PHA的产生和有机质的降解较对照试验均有所滞后。PHA的主要组分是聚-β-羟丁酸(poly-β-hydroxybutyrate, PHB),微生物种群特征的PCR-DGGE分析结果显示,Alcaligenes sp.、Pseudomonas sp.是工艺中合成PHA的主要功能种群;(2)污泥酸性厌氧发酵液可以作为反硝化除磷过程的碳源,但投加初期的除磷效果会略受冲击,逐渐可以恢复反硝化除磷特性,长期的运行证实了以发酵液为碳源的反硝化除磷工艺稳定性要优于同期对照工艺,吸磷速率可达到4.23mg PO43--P/g MLSS·h。
The wasted activated sludge (WAS) cause a serious environmental pollutedproblem. However, plenty of organic sources are stored in sluldge folcs, and therecovery of these organics is very important and meaningful, especially theaccumulation of volatile fatty acids (VFAs). The fermentative VFAs can be used ascomplementary carbon sources to enhance the removal of nitrogen and phosphorus.Thus, based on the existed studies and mechanisms of anaerobic digestion, thisstudy compared three different methods to enhance the fermentation of WAS, andinvestigated the dymatic formula and mechanism pathway of VFAs producing, andthen investigated the continuous VFAs producing process and the applications ofVFAs as external carbon sources.
     Firstly, three different enhanced methods were adopted in VFAs procution,such as alkaline pretreatment, addition of β-CD, and the addition of AQDS. Theresults revealed that VFAs increased from pH8.0to10.0but decreased when pHwas12.0. The addition of β-CD enhanced the VFAs producing. The VFAs slightlyincreased with lower β-CD dosage, but obvious increase was observed when β-CDdosage was higher than0.15g/gTSS. The simulated formula between β-CD additionand VFAs production was y=2319.43x+134.74and the corresponding R2was0.981.The AQDS addition showed the similar influences by β-CD. When the AQDSdosage was higher than3mM, VFAs production reached511.6mg/L and562.8mg/Lwhich was2.5and2.7fold than control test.
     In these three different fermentation processes, the main VFAs were acetic andpropionic acid, which accounted for76.2%at pH=10.0,88.2%with,100%withAQDS. The degradation of complex organics (including protein and carbohydrate)were accorded with first-order model, and the hydrolysis rate under alkalinecondition was higher than other conditions. With addition of β-CD and AQDS, therewas a threshold value of0.15g/gTSS and3mM, respectively. When the β-CD andAQDS dosages were higher than the threshold values, the hydrolysis rates weremuch higher than the relative lower dosages. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was adopted to studymicroorganism communities. The results showed that obvious changes were happened with different enhancements. At pH=10.0, Acinetobacter sp. andAcidovorax sp. were the dominant acid producing bateria. With β-CD addition of0.2g/gTSS, Dethiosulfatibacter aminovorans strain, Clostridiaceae bacterium,Enterobacter sp., and Parabacteroides sp. were the dominant acid producing bateria.With β-CD addition of3mM, Clostridiaceae bacterium, Clostridium symbiosumstrain, Acidovorax sp. were the dominant acid producing bateria.
     Due to the obvious predominance of alkalic enhancement, taking alkalic pre-fermentation liquid as influent and CSTR as main fermentation reactor, thecontinuous VFAs producing performance and relative microorganism communitieswere studied. The results revealed that average VFAs-producing efficiency was210.6mgVFAs/gVSS and the protein removal efficiency was62.5%after6.5d. Thelower loading influent was then introduced, and the results indicated that the meanVFAs-producing efficiency was84.7mgVFAs/gVSS and the mean protein removalefficiency was64.6%after15d. However, about30%protein was still remained ineffluent because the protein was sort of complex and refractory organics. Thedifferent loading rate influenced the functional microorganism communities, theBacteroides sp. was always the predominant VFAs-producing bacteria in these twoprocesses, which was promosing bacteria for screening of VFAs-producing bacteria.
     The application of carbon sources in fermentation liquid was investigated, andthe results revealed that:(1) The polyhydroxyalkanoates (PHA) can be synthesizedby carbon sources in alkaline fermentation liquid taking SBR as reactor, during theprocess of50days. The maximum PHA content reached420.5mg/g MLSS whichwas higher than PHA content synthesized by acetic acid as the carbon source. And,due to the complexity of fermentation liquid, the PHA producing and organicsremoval were both delayed. The main component of PHA was poly-β-hydroxybutyrate (PHB). The PCR-DGGE results revealed that Alcaligenes sp. andPseudomonas sp. were both the predominant microorganism communities;(2) Thefermentation liquid also can be used as influent for denitrifying phosphorus removal.At initial phase, the phosphorus removal was influenced, but for longer applicationthe denitrifying phosphorus removal was more stable than control test by traditionalcarbon source.The phosphorus uptake rate reached4.23mg PO43--P/g MLSS·husing fermentation liquid as influent.
引文
1李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社.2002:10-30.
    2国务院办公厅.“十二五”全国城镇污水处理及再生利用设施建设规划[C].中华人民共和国国务院公报.2012,14:20-35.
    3王显,徐志伟.生污泥质量与污水来源及其处理工艺的关系[J].中国给水排水.1998,14(l):46-47.
    4孟德良,刘建广.污水处理厂的能耗与能量的回收利用[J].给水排水.2002,28(4):18-20.
    5P. Elefsiniotis, D. G. Wareham, M. O. Smith. Use of volatile fatty acids froman acid-phase digester for denitrification [J]. Journal Biotechnology.2004,114:289-297.
    6张自杰.排水工程(下册)(第四版)[M].北京:中国建筑工业出版社.2000:328-400.
    7M. P. J. Weemaes, W. H. Verstraete. Evaluation of current wet sludgedisintegration techniques [J]. Journal of Chemistry Technology Biotechnology.1998,73:83-92
    8尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社.2004:1-50.
    9中华人民共和国环境保护部.城镇污水处理厂污泥处理处置及污染防治技术政策(试行)[J].中国环保产业.2009,03:6-8.
    10陈路全.加碱和超声破解预处理对剩余污泥厌氧消化的影响[D].天津大学.2008:1-20.
    11侯玲玲.热碱预处理对剩余污泥的溶胞率及发酵产酸的影响研究[D].哈尔滨工业大学.2011:1-5.
    12杨丽标,张丽娟,邹国元,等.生活污泥堆肥氮磷矿化特性及对芹菜生长的影响[J].土壤通报.2009,40(4):833-837.
    13胡祝英,康泽.污泥浓缩工艺的应用现状和发展对策[J].榆林学院学报.2008,18(4):73-75.
    14王晓吡,詹健,康晓荣,等.中国城市污水厂污泥处理处置技术[J].江西化工.2007,3:24-27.
    15张芳,王惠民.污泥无害化和综合利用途径研究[J].环境动态科学.1997,(3):12-14.
    16D. Marani, C.M. Braguglia, G. Mininni, et al. Behaviour of Cd, Cr, Mn, Ni, Pband Zn in sewage sludge incineration by fluidised bed furnace [J].WasteManagement.2003,23:117-122
    17F. Raposo, M. A. De la Rubia, V. Fernández-Cegrí, et al. Anaerobic digestionof solid organic substrates in batch mode: An overview relating to methaneyields and experimental procedures[J]. Renewable and Sustainable EnergyReviews.2011,16(1),861-877.
    18J. A. Eastman, J. F. Ferguson. Solubilization of particulate organic carbonduring the acid phase of anaerobic digestion [J]. Journal of the Water PollutionControl Federation.1981,53:352-366.
    19W. Gujer, A. J. B. Zehnder. Conversion processes in anaerobic digestion [J].Water Science and Technology.1983,12:127-167.
    20S. K. Khanal, D. Grewell, S. Sung, et al. Ultrasound applications in wastewatersludge pretreatment: a review [J]. Critical Review Environmental ScienceTechnology.2007,37:277-313.
    21李建吕,张无敌.氢分压对种间氢转移的影响[J].云南师范大学学报(自然科学版).2005,25(5):21-25.
    22许科伟.污泥厌氧消化过程中乙酸累积的微生态机理研究[D].江南大学.2010:1-16.
    23A. Cohen, J. M. Van Gemert, R. J. Zoetemeyer, et al. Main characteristics andstoichiometric aspects of acidogenesis of soluble carbohydrate containingwastewaters [J]. Process Biochemistry.1984,19(6):228-232.
    24M. Donanyos, B. Kosova, J. Zabranska. Production and utilization of volatilefatty acids in various types of anaerobic reactors [J]. Water ScienceTechnology.1985,17:1991-1996.
    25N. Q. Ren, B.Z. Wang, J. C. Huang. Ethanol-type fermentation fromcarbohydrate in high rate acidogenic reactor [J]. Biotechnology andBioengineering.1997,54(5):428-433.
    26任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社2005:51-135.
    27S. Baena, M. L. Fardeau, M. Labat, et al. Aminobacterium colombiensegen nov.sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge [J].Anaerobe.1998,4(5):241-250.
    28T. Nakae, J. A. Elliott. Production of volatile fatty acids by some lactic acidbacteria. II. selective formation of volatile fatty acids by degradation of aminoacids [J]. Journal of Dairy Science.1965,48(3):293-299.
    29M. D. Flythe, K. Andries. The effects of monensin on amino acid catabolizingbacteria isolated from the Boer goat rumen [J]. Small Ruminant Research.2009,81(2-3):178-181.
    30Y. Lu, C. Zhang, Q. Lai, et al. Improved hydrogen production undermicroaerophilic conditions by overexpression of polyphosphate kinase inEnterobacter aerogenes [J]. Enzyme and Microbial Technology.2011,48(2):187-192.
    31D. Urdaneta, D. Raffe, A. Ferrer, et al. Short-chain organic acids produced onglucose, lactose, and citrate media by Enterococcus faecalis, Lactobacilluscasei, and Enterobacter aerogenes strains[J]. Bioresource Technology.1995,54,(2):99-103.
    32J. F. Xu, N. Q. Ren, A. J. Wang, et al. Cell growth and hydrogen production onthe mixture of xylose and glucose using a novel strain of Clostridium sp. HR-1isolated from cow dung compost [J]. International Journal of Hydrogen Energy.2010,35(24):13467-13474.
    33R. J. Mitchell, J. S. Kim, B. S. Jeon, et al. Continuous hydrogen and butyricacid fermentation by immobilized Clostridium tyrobutyricum ATCC25755:Effects of the glucose concentration and hydraulic retention time [J].Bioresource Technology.2009,100(21):5352-5355.
    34D. B. Levin, L. Pitt, M. Love. Biohydrogen production: prospects andlimitations to practical application [J]. International Journal of HydrogenEnergy.2004,29(2):173-185.
    35H. Liu, J. Wang, X. Liu, et al. Acidogenic fermentation of proteinaceoussewage sludge: Effect of pH [J]. Water Research.2012,46(3):799-807.
    36A. Chatzifragkou, G. Aggelis, M. Komaitis, et al. Impact of anaerobiosisstrategy and bioreactor geometry on the biochemical response of Clostridiumbutyricum VPI1718during1,3-propanediol fermentation [J]. BioresourceTechnology.2011,102(22):10625-10632.
    37P. Plangklang, A. Reungsang, S. Pattra. Enhanced bio-hydrogen productionfrom sugarcane juice by immobilized Clostridium butyricum on sugarcanebagasse [J]. International Journal of Hydrogen Energy.2012.(In press)
    38J. J. Sepp l, J. A. Puhakka, O. Yli-Harja, et al. Fermentative hydrogenproduction by Clostridium butyricum and Escherichia coli in pure andcocultures [J]. International Journal of Hydrogen Energy.2011,36(17):10701-10708.
    39宋丽,刘晓风,袁月祥,等.厌氧发酵产氢微生物的研究进展[J].生物工程学报.2008,24(6):933-939.
    40刘乾亮.不同发酵菌群产氢能力的比较与反应器运行调控[D].哈尔滨工业大学.2006:1-13.
    41M. Li, Y. Zhao, Q. Guo, et al. Bio-hydrogen production from food waste andsewage sludge in the presence of aged refuse excavated from refuse landfill [J].Renewable Energy.2008,33(12):2573-2579.
    42N. Q. Ren, W. Q. Guo, X. J. Wang, et al. Effects of different pretreatmentmethods on fermentation types and dominant bacteria for hydrogen production[J]. International Journal of Hydrogen Energy.2008,33(16):4318-4324.
    43M. F. Arooj, S. K. Han, S. H. Kim, et al. Sludge characteristics in anaerobicSBR system producing hydrogen gas [J]. Water Research.2007,41(6):1177-1184.
    44S. K. Khanal, W. H. Chen, L. Li, et al. Biological hydrogen production: effectsof pH and intermediate products [J]. International Journal of Hydrogen Energy.2004,29:1123-1131.
    45L. R. V. de Sá, T. C. de Olivêira, T. F. dos Santos, et al. Hydrogenase activitymonitoring in the fermentative hydrogen production using heat pretreatedsludge: A useful approach to evaluate bacterial communities performance [J].International Journal of Hydrogen Energy.2011,36(13):7543-7549.
    46G. D. Poulou, T. Rudd, J. Lester. Anaerobie acidogenesis of a complexwastewater:1. The influence of operational parameters on reactor performance[J]. Biotechnology and Bioengeering.2007,31:958-968.
    47韩伟. CSTR生物制氢反应器的快速启动及运行特性的研究[D].东北林业大学.2009:10-40.
    48K. Nakasaki, L. T. H.Tran, Y. Idemoto, et al. Comparison of organic matterdegradation and microbial community during thermophilic composting of twodifferent types of anaerobic sludge [J]. Bioresource Technology.2009,100(2):676-682.
    49S. A. Patil, V. P. Surakasi, S. Koul, et al. Electricity generation using chocolateindustry wastewater and its treatment in activated sludge based microbial fuelcell and analysis of developed microbial community in the anode chamber [J].Bioresource Technology.2009,100(21):5132-5139.
    50Y. Yamashita, Y. A. Kurosumi, C. Sasaki, et al. Ethanol production from papersludge by immobilized Zymomonas mobilis [J]. Biochemical EngineeringJournal.2008,42(3):314-319.
    51A. Mohagheghi, N. Dowe, D. Schell, et al. Performance of a newly developedintegrant of Zymomonas mobilis for ethanol production on corn stoverhydrolysate [J]. Biotechnology Letter.2004,26:321-325.
    52D. Lehmann, T. L tke-Eversloh. Switching Clostridium acetobutylicum to anethanol producer by disruption of the butyrate/butanol fermentative pathway[J]. Metabolic Engineering.2011,13(5):464-473.
    53P. Patakova, M. Linhova, M. Rychtera, et al. Novel and neglected issues ofacetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridiummetabolic diversity, tools for process mapping and continuous fermentationsystems [J]. Biotechnology Advances.2012.(In press)
    54H. Younesi, G. Najafpour, A. R. Mohamed. Ethanol and acetate productionfrom synthesis gas via fermentation processes using anaerobic bacterium,Clostridium ljungdahlii [J]. Biochemical Engineering Journal.2005,27(2):110-119.
    55W. J. Mitchell. Physiology of carbohydrate to solvent conversion byclostridia[J]. Advanced Microbiology Physiology.1998,39:31-130.
    56V. A. Boumba, K. S. Ziavrou, T. Vougiouklakis. Biochemical pathwaysgenerating post-mortem volatile compounds co-detected during forensicethanol analyses [J]. Forensic Science International.2008,174,(2-3):133-151.
    57C. H. Ting,D. J. Lee. Production of hyrogen and methane from waste sludgeusing anaerobic fermentation [J]. International Journal of Hyrogen Energy.2007,32:677-682.
    58M. Morimoto, M. Astuko, A. Y. Atif, et al. Biological production ofhydrogen from glucose by narural anaerobic microflora [J]. InternationalJournal of Hyrogen Energy.2007,29:709-713.
    59姚欣.连续流厌氧发酵制氢反应系统的建立及稳定运行[D].东北林业大学.2011:1-45.
    60单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生物杂志.2003,23(6):42-46.
    61W. Kim, S. Lee, S. G. Shin, et al. Methanogenic community shift in anaerobicbatch digesters treating swine wastewater [J]. Water Research.2010,44(17):4900-4907.
    62A. Khalid, M. Arshad, M. Anjum, et al. The anaerobic digestion of solidorganic waste[J]. Waste Management.2011,31(8):1737-1744.
    63任南琪,王爱杰.厌氧生物技术原理与应用(第一版)[M].北京:化学工业出版社.2004:28-30.
    64N. Mahmoud, G. Zeeman, H. Gijzen, et al. Anaerobic stabilization andconversion of biopolymers in primary sludge-effect of temperature andsludge retention time [J]. Water Research.2004,38(4):983-991.
    65G. Zhang, P. Zhang, J. Yang, et al. Energy-efficient sludge sonication: powerand sludge characteristics [J]. Bioresource Technology.2008,99:9029-9031.
    66J. A. Eastman, J. F. Ferguson. Solubilization of particulate organic matterduring the acid-phase of anaerobic digestion [J]. Journal of the Water PollutionControl Federation.1981,53(3):352-366.
    67E. R. Moser, K. M. Udert, D. Wild, et al. Products from primary sludgefermentation and their suitability for nutrient removal [J].Water ScienceTechnology.1998,38(1):265-273.
    68G. C. Cha, T. Noike. Effect of rapid temperature change and HRT on anaerobicacidogenesis [J]. Water Science Technology.1997,36(6-7):247-253.
    69N. Ferreiro, M. Soto. Anaerobic hydrolysis of primary sludge: influence ofsludge concentration and temperature [J]. Water Science Technology.2003,47(12):239-246.
    70I. Maharaja, P. Elefsiniotis. The role of HRT and lowtemperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters [J].Bioresource Technology.2001,76(3):191-197.
    71U.C. Emine, O. Seba, D. O. Tas, et al. Influence of pH and temperature onsoluble substrate generation with primarysludge fermentation [J]. BioresourceTechnology.2009,100(1):380-386.
    72胡纪萃.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社.2002:65-90.
    73M. R. Salsabil, A. Prorot, M. Casellas, et al. Pre-treatment of activated sludge:effect of sonication on aerobic and anaerobic digestibility [J]. ChemicalEngineering Journal.2009,148:327-335.
    74徐强.污泥处理处置技术及装置(第一版)[M].北京:化学工业出版社.2003:120-135.
    75H. Yuan, Y. Chen, H. Zhang, et al. Improved bioproduction of short-chain fattyacids (SCFAs) from excess sludge under alkaline conditions [J].Environmental Science Technology.2006,40:2025-2029.76. C. Denise, J. B. Charles, H. Sonia, et al. The effect of pH control and‘hydraulic flush’ on hydrolysis and volatile fatty acids (VFA) production andprofile in anaerobic leach bed reactors digesting a high solids content substrate[J]. Bioresource Technology.2012.(In press).
    77J. J. Lay, Y. Y. Li, T. Noike. Influences of pH and moisturecontent on themethane production in high-solids sludge digestion [J]. Water Research.1997,31(6):1518-1524.
    78国家环保局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社.2006:300-310.
    79胡家俊,周群英.环境工程微生物学[M].北京:高等教育出版社.1988:28-39。
    80周洪波.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J].中国沼气.2000,18(4):20-23.
    81H. H. P. Fang, H. Q. Yu. Acidification of lactose in wastewater[J]. Journal ofEnvironmental Engineering.2001,127:825-831.
    82H. H. P. Fang, H. Q. Yu. Mesophilicacidification of gelatinaceous wastewater[J]. Journal of Biotechnology.2002,93(2):99-108.
    83I. Maharaja, P. Elefsiniotis. The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters [J].Bioresource Technology.2001,76(3):191-197.
    84李军,任健,王洪臣.初沉污泥水解酸化试验研究[J].北京工业大学学报.2008,34(2):1304-1308.
    85黄达然,冯雷雨,陈银广.连续流反应器中污泥停留时间对剩余污泥碱性厌氧发酵生产短链脂肪酸的影响[J].环境污染与防治.2008,30(10):16-19.
    86P. Elefsiniotis, W. K. Oldham. Anaerobic acidogenesis of primary sludge: Therole of solids retention time [J]. Biotechnology and Bioengineering.1994,44(1):7-13.
    87G. Moen, H. D. Stensel, L. Raghida. Effect of solids retention time on theperformance of thermophilic and mesophilic digestion of combined municipalwastewater sludges [J]. Water Environment Research.2003,75(6):539-548.
    88Y. Miron1, G. Zeeman, J. B. van Lier, et al. The role of sludgeretentiontime inthe hydrolysis and acidification of lipids, carbohydrates and proteins duringdigestion of primary sludge in CSTR systems [J]. Water Research.2000,34(5):1705-1713.
    89H. W. Yen, D. Brune. Anaerobic co-digestion of algal sludge and waste paperto produce methane [J]. Bioresource Technology.2007,98:130-134.
    90L. De Baere, O. Verdonck, W. Verstraete. High rate dry anaerobic compostingprocess for the organic fraction of solid waste [J]. Biotechnology andbioengineering Symposium.1985,15:321-330.
    91S. Ghosh, J. R. Conrad, D. L. Klass. Anaerobic acidogenesis of wastewatersludge [J]. Journal of the Water Pollution Control Federation.1975,47:30-45.
    92S. J. Hitte. Anaerobic digestion of solid waste and sewage sludge into methane[J]. Compost Science and Utilization.1976,17:26-30.
    93G. Sterzinger. Making biomass energy a contender [J]. Technology Review.1995,98:34-40.
    94M. Kayhanian, D. Rich. Pilot-scale high solids thermophilic anaerobicdigestion of municipalsolid waste with an emphasis on nutrient requirements[J]. Biomass and Bioenergy.1995,8(6):433-444.
    95M. Tuomela, M. Vikman, A. Hatakk. Biodegradation of lignin in acompostenvironment: a review [J]. Bioresource Technology.2000,72(2):169-183.
    96刘晓玲.城市污泥厌氧发酵产酸条件优化及其机理研究[D].江南大学.2008,133-150.
    97C. G. Golueke. Principles of composting. In: The staff of biocycle journal ofwaste recycling [C]. The Art and Science of Composting. The JG Press Inc.,Pennsylvania, USA.1991:14-27.
    98W. H. Rulkens, J. D. Bien. Recovery of energy from sludge-Comparison of thevarious options [J]. Water Science and Technology.2004,50(9),213-221.
    99J. A. Müller, A. Winter, G. Strünkmann. Investigation and assessment of sludgepre-treatment processes [J]. Water Science and Technology.2004,49(10),97-104.
    100U. Neis, K. Nickel, A. Tiehm. Enhancement of anaerobic sludge digestion byultrasonic disintegration [J]. Water Science and Technology.2000,42(9):73-80.
    101C. H. Ting, K. R. Lin, D. J. Lee, er al. Production of hydrogen and methanefrom wastewater sludge using anaerobic fermentation [J]. Water Science andTechnology.2004,50(9):223-228.
    102T. H. Kim, Y. M. Nam, C. Park, et al. Carbon source recovery from wasteactivated sludge by alkaline hydrolysis and gamma-ray irradiation forbiological denitrification [J]. Bioresource Technology,2009.100:5694-5699.
    103H. Wu, D. Yang, Q. Zhou, et al. The effect of pH on anaerobic fermentation ofprimary sludge at room temperature [J]. Journal of Hazardous Materials.2009.172:196-201.
    104J. Chung, M. Lee, J. Ahn, et al. Effects of operational conditions on sludgedegradation and organic acids formation in low-critical wet air oxidation [J].Journal of Hazardous Materials.2009,162:10-16.
    105G. M. Shida, A. R. Barros, C. M. Reis, et al. Long-term stability of hydrogenand organic acids production in an anaerobic fluidized-bed reactor using heattreated anaerobic sludge inoculum [J]. International Journal of HydrogenEnergy.2009,34:3679-3688.
    106G. H. Yu, P. J. He, L. M. Shao, et al. Toward understanding the mechanism ofimproving the production of volatile fatty acids from activated sludge at pH10.0[J]. Water Research.2008,42:4637-4644.
    107J. Massanet-Nicolau, R. Dinsdale, A. Guwy. Hydrogen production fromsewage sludge using mixed microflora inoculum: Effect of pH and enzymaticpretreatment[J]. Bioresource Technology.2008,99:6325-6331.
    108苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究[D].同济大学,2006:140-142.
    109K.Y. Show, T. Mao, D.J. Lee. Optimization of sludge disruption by sonication[J]. Water Research.2007,41:4741-4747.
    110Y. Chen, Y. S. Chen. Influence of pretreating activated sludge with acid andsurfactant prior to conventional conditioning on filtration dewatering [J].Chemical Engineering Journal.2004,99(2):137-143.
    111Y. Chen, H. Yang, G. Gu. Effect of acid and surfactant treatment on activatedsludge dewaterin gand settling [J]. Water Research.2001,35(11):2615-2620.
    112S. Jiang, Y. Chen, Q. Zhou. Biological short-chain fatty acids (SCFAs)production from waste-activated sludge affected by surfactant [J]. WaterResearch.2007,41(14):3112-3120.
    113S. Jiang, Y. Chen, Q. Zhou. Effec of sodium dodecyl sulfate on waste activatedsludge hydrolysis and acidification [J]. Chemical Engineering Journal.2007,132(l-3):311-317.
    114Y. Chen, S. Jiang, H. Yuan, et al.Hydrolysis and acidification of wasteactivated sludge at different pHs[J]. Water Research.2007,41(3):683-689.
    115B. Akin. Waste activated sludge disintegration in an ultrasonic batch reactor [J].Clean-Soil, Air, Water.2008,36:360-365.
    116L. Huan, J. Yiying, R.B. Mahar, et al. Effects of ultrasonic disintegration onsludge microbial activity and dewaterability [J]. Jouranl of HazardousMaterials.2009,161:1421-1426.
    117J. Laurent, M. Casellas, M. N. Pons, et al, Flocs surface functionalityassessment of sonicated activated sludge in relation with physico-chemicalproperties [J]. Ultrasonic Sonochemistry.2009,16:488-494.
    118F. R. Hawkes, R. Dinsdale, D. L. Hawkesb, et al. Sustainable fermentativehydrogen production: change for process optimization [J]. InternationalJournal of Hydrogen Energy.2002,27:1339-1347.
    119F. Ye, D. Shen, Y. Li. Reductions in excess sludge production by addition ofchemical uncouplers in activated batch cultures [J]. Journal of AppliedMicrobiology.2003,95:781-786.
    120I.W. Nah, Y.W. Kang, K.Y. Hwang. Mechanical pretreatment of wasteactivated sludge for anaerobic sludge digestion process [J]. Water Research.2000,34(8):2362-2368.
    121U. Baier, P. Schmidheiny. Enhanced anaerobic degradation of mechanicallydisintegrated sludge [J]. Water Science and Technology.1997,36(11):137-143.
    122S. Tanaka, T. Kobayashi, K. Kamiyama. Effects of thermochemicalpretreatment on the anaerobic digestion of waste activated sludge [J]. WaterScience and Technology.2007,35(8):209-215.
    123S.E. Woodard, R.F. Wukasch. A hydrolysis/thickening/filtration process for thetreatment of waste activated sludge [J]. Water Science and Technology.2004,
    30(3):29-38.
    124A. Soaresa. Comparison between disintegrated and fermented sewage sludgefor production of a carbon source suitable for biological nutrient removal [J].Jouranl of Hazardouz Materials.2010,175:733-739.
    125H. Ge, P. D. Jensen, D. J. Batstone. Pre-treatment mechanisms duringthermophilic–mesophilic temperature phased anaerobic digestion of primarysludge [J]. Water Research.2010.44:123-130.
    126H. Yoshida. Efficient high-speed methane fermentation for sewage sludgeusing subcritical water hydrolysis as pretreatment [J]. Bioresource Technology.2009,100:2933-2939.
    127F. Leiyu, Y. Yuanyuan. Kinetic analysis of waste activated sludge hydrolysisand short-chain fatty acids production at pH10[J]. Journal of EnvironmentalScience.2009,21:589-594.
    128Z. Ahmed, B. R. Lim, J. Cho, et al. Biological nitrogen and phosphorusremoval and changes in microbial community structure in a membranebioreactor: Effect of different carbon sources [J]. Water Research.2008,42(1-2):198-210.
    129J. Guerrero1, A. Guisasola, J. A. Baeza. The nature of the carbonsource rulesthe competition between PAO and denitrifiers in systems for simultaneousbiological nitrogen and phosphorus removal [J]. Water Research.2011,45(16):4793-4802.
    130S. J. Zhang, Y. Z. Peng, S. Y. Wang, et al. Organic matter and concentratednitrogen removal by shortcut nitrification and denitrification from maturemunicipal landfill leachate [J]. Journal of Environmental Sciences.2007,19(6):647-651.
    131Y. Y. Wang, J. J. Geng, G. Guo, et al. N2O production in anaerobic/anoxicdenitrifying phosphorus removal process: The effects of carbon sources shock[J]. Chemical Engineering Journal.2011,172(2-3):999-1007.
    132S. J. You, Y. P. Tsai, B. C. Cho, et al. Metabolic influence of lead onpolyhydroxyalkanoates (PHA) production and phosphate uptake in activatedsludge fed with glucose or acetic acid as carbon source [J]. BioresourceTechnology.2011,102(17):8165-8170.
    133J. D. Dole, S. A. Parsons. Struvite formation control and recovery [J].WaterResearch.2002,36(16):3925-3940.
    134华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水.2000,26(12):1-4.
    135王亚宜.反硝化除磷脱氮机理及工艺研究[D].哈尔滨工业大学.2004:1-30.
    136杨永哲,王蔚蔚,王磊.反硝化除磷诱导过程中聚磷速率的变化特征分析[J].西安建筑科技大学学报(自然科学版).2003,35(3):251-253.
    137李勇智,李安安,彭永臻. A2N-SBR双污泥反硝化生物除磷系统效能分析[J].北京工商大学学报.2007,25(1):10-14.
    138张洁,田立江,张雁秋.反硝化聚磷菌的培养驯化[J].环境污染治理技术与设备.2006,7(5):74-77.
    139刘洪波,李卓,缪强强,等.传统生物除磷脱氮工艺和反硝化除磷工艺对比[J].工业用水与废水.2006,37(6):56-59.
    140T. Kuba, M. C. M. van Loosdrecht, J. J. Heijnen. Phosphorus and nitrogenremoval with minimal COD requirement by integration of denitrifyingdephosphatation and nitrification in a two-sludge system [J]. Water Research.1996,30(7):1702-1710.
    141M. Thomas, P. Wright. Optimisation of Noosa BNP plant to improveperformance and reduce operating costs [J]. Water Science and Technology.2003,47(12):141-143.
    142佟娟.剩余污泥碱性发酵产生的短链脂肪酸作为生物脱氮除磷碳源的研究[D].同济大学.2008:10-30.
    143刘道广.表面活性剂促进污泥产生的酸作为生物脱氮除磷碳源的研究[D].同济大学.2008:20-71.
    144H. Salehizadeh, M. C. M. Van Loosdrecht. Production ofpolyhydroxyalkanoates by mixed culture: recent trends and biotechnologicalimportance [J]. Biotechnology Advances.2004,22:261-279.
    145I. Gasser, H. Müller, G. Berg. Ecology and characterization ofpolyhydroxyalkanoate producing microorganisms on and in plants [J]. FEMSMicrobiology Ecology.2009,70(1):142-150.
    146黄媛媛.活性污泥合成聚羟基脂肪酸脂的研究进展[J].生物技术通报.2009,(6):59-61.
    147R. A. J. Verlinden, D. J. Hill, M. A. Kenward, et al. Bacterial synthesis ofbiodegradable polyhydroxyalkanoates [J]. Journal of Applied Microbiology.2007,102(6):1437-1449.
    148B. H. Rehm. Bacterial polymers: biosynthesis, modifications and applications[J]. National Review Microbiology.2010,8:578-592.
    149D. Bourque, B. Ouellette, G. Andre, et al. Production of polybeta-hydroxybutyrate from methanol: characterization of a new isolate ofMethylobacterium extorquens [J]. Applied Microbiology and Biotechnology.1992,37:7-12.
    150S.Y. Lee, J. Choi. Effect of fermentation performance on the economics ofpoly-(3-hydroxybutyrate) production by Alcaligenes latus [J]. PolymerDegradation and Stability.1998,59:387-393.
    151C. F. Budde, S. L. Riedel, L. B. Willis, et al. Production of poly (3-hydroxybutyrateco-3-hydroxyhexanoate) from plant oil by engineeredRalstonia eutropha strains [J]. Applied Microbiology and Biotechnology.2011,77:2847-2854.
    152李云蓓.基于产酸废液的PHA合成菌的筛选及发酵条件研究[D].哈尔滨工业大学.2009:1-20.
    153P. Suriyamongkol, R. Weselake, S. Narine, et al. Biotechnological approachesfor the production of polyhydroxyalkanoates in microorganisms and plants: Areview [J]. Biotechnology Advances.2007,25(2):148-175.
    154郝晓地,朱景义,曹秀芹.利用混合菌群活性污泥法实现生物可降解塑料PHA的合成[J].生态环境.2005,14(6):967-971.
    155S. Bengtsson, A. Werker, M. Christensson, et al. Production ofpolyhydroxyalkan-oates by activated sludge treating a paper mill wastewater[J]. Bioresource Technology.2008,99:519-526.156. M. G. E. Albuquerque, C. Torres, S. Bengtsson, et al. Strategies for cultureselection in a three-stage PHA production process from sugar canemolasses[C]. Proceedings II of4th IWA Specialised Conference on SequencingBatch Reactor Technology (SBR4),7-10April, Rome, Italy,2008:2-4.
    157E. R. Coats, F. J. Loge, M. P. Wolcott, et al. Synthesis ofpolyhydroxyalkanoates in municipal wastewater treatment [J]. WaterEnvironmental Research.2007,79:2396-2403.
    158H. Y. Liu, P. V. Hall, J. L. Darby, et al.Production of polyhydroxyalkanoateduring treatment of tomato cannery wastewater [J].Water EnvironmentalResearch.2008,80:367-372.
    159N. B. Gurieff. Production of biodegradable polyhydroxyalkanoate polymersusing advanced biological wastewater treatment process technology[D].University of Queensland.2007:1-30.
    160T. Mino, W. T. Liu, H. Satoh, et al. Possible metabolism of polyphosphateaccumulating organisms (PAOs) and glycogen non accumulating organisms(GAOs) in enhanced biological phosphate removal process [C]. Proceedings10th Forum Appl. Biotechnol. Brugge., Belgium.1996:1769-1776.
    161M. Beccari, D. Dionisi, A. Giuliani, et al. Effect of different carbon sourceson aerobic storage by activated sludge [J]. Water Science and Technology.2002,45:157-168.
    162M. Majone, M. Beccari, D. Dionisi, et al. Role of storage phenomena onremoval of different substrates during pre-denitrification [J]. Water Research.2001,42:151-158.
    163J. Hollender, D. van Derkrol, L. Kornborger, et al. Effect of different carbonsources on the enhanced biological phosphorous removal in a sequencing batchreactor [J]. Applied Microbiology and Biotechnology.2002,18:355-360.
    164任中佳,王亚宜,耿军军.活性污泥胞内物质合成影响因素的研究进展[J].环境污染与防治.2011,33(4):74-80.
    165李伟.碳源对活性污泥合成聚羟基烷酸酯影响的研究[D].同济大学.2009:1-15.
    166蔡萌萌.剩余活性污泥中的微生物利用实际废液合成聚羟基烷酸酯[D].哈尔滨工业大学.2009:1-28.
    167O. H. Lowry, N. J. Rosebrough, A. L. Farr, et al. Protein measurement with theFolin phenol reagent [J]. Journal of Biology Chemistry.1951,193(1):265-275.
    168D. Herbert, P. J. Philipps, R. E. Strange. Carbohydrate analysis [J]. Methods inEnzymology.1971,5:265-277.
    169Q. Wen, Z. Chen, T. Tian, et al. Effects of phosphorus and nitrogen limitationon PHA production in activated sludge [J]. Journal of Environmental Sciences.22(10):1602-1607
    170X. Yang, M.A. Du, D. J. Lee, et al. Enhanced production of volatile fatty acids(VFAs) from sewage sludge by β-cyclodextrin [J]. Bioresource Technology.2012,110:688~691.
    171暴瑞玲.低温条件下好氧颗粒污泥同步脱氮除磷效能及其过程研究[D].哈尔滨工业大学.2009:32-40.
    172王玉兰.好氧颗粒污泥-膜组合工艺低温条件下脱氮除磷效能[D].哈尔滨工业大学.2010,23-30.
    173邢德峰,任南琪.应用DGGE微生物群落时的常见问题分析[J].微生物学报.2006,46(2):331-335.
    174B. J. Bassam, G. Caetano-Anollés, P. M. Gresshoff. Fast and sensitive silverstaining of DNA in polyacrylamide gels [J]. Analytical Biochemistry.1991,196(1):80-83
    175A. Li, S. Yang, X. Li, et al. Microbial population dynamics during aerobicsludge granulation at different organic loading rates [J]. Water Research.2008,
    42(13):3552-3560.
    176F. J. Cervantes, C. H. Gutiérrez, K. Y. López, et al. Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organiccompounds under different redox conditions [J]. Biodegradation.2008,19(2):235-246.
    177G. Némethy, I. Z. Steinberg, H. A. Scheraga. Influence of water structure andof hydrophobic interactions on the strength of side-chain hydrogen bonds inproteins [J]. Biopolymers.1963,1(1):43-69.
    178M. Laskowski Jr, H. A. Scheraga. Thermodynamic considerations of proteinreactions.1,2I. Modified Reactivity of Polar Groups [J]. Journal of theAmerican Chemical.1954,76(24):6305-6319.
    179张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社.1996:1-120.
    180张亚雷,周雪飞.厌氧消化数学模型[M].上海:同济大学出版社.2004.
    181N. Ferreiro, M. Soto, H. Anaerobic hydrolysis of primary sludge: influence ofsludge concentration and temperature [J]. Water Science and Technology.2003,47(12):239-246.
    182R. Moser-Engeler, K. M. Udert, D. Wild, et al. Products from primary sludgefermentation and their suitability for nutrient removal [J]. Water Science andTechnology.1998,38(1):265-273.
    183胡洪营,张旭,黄霞,等.环境工程原理(第二版)[M].北京:高等教育出版社.2011:416-418.
    184姜苏.表面活性剂促进污水厂剩余污泥发酵生产短链脂肪酸的研究[D].同济大学.2007:20-48.
    185P. F. Verhulst. Notice sur la loi que la population suit dans son accroissement[J]. Corr. Math. et Phys.1838,10:113-121.
    186J. H. M. Thornley, J. France. An open ended logistic based growth function [J].Ecological Modelling.2005,184(2-4):257-261.
    187汤琳,曾光明,孙伟,等. Logistic方程在微生物分批培养动力学中的应用[J].湖南大学学报(自然科学版.2004,31(3):23-28.
    188A.Levent. Inhibitory effect of heavy metals on methane-producing anaerobicgranular sludge [J]. Journal of Hazardous Materials.2009,162(2-3):1551-1556.
    189X. Wang, X. Cheng, D. Sun. Autocatalysis in reactive black5biodecolorization by Rhodopseudomonas palustris W1[J]. AppliedMicrobiology and Biotechnology.2008,80(5):907-915.
    190A. Donoso-Bravo, S. I. Pérez-Elvira, F. Fdz-Polanco. Application of simplifiedmodels for anaerobic biodegradability tests. Evaluation of pre-treatmentprocesses [J]. Chemical Engineering Journal.2010,160(2):607-614.
    191B. Bhushan, A. Halasz, J. Hawari. Effect of iron(III), humic acids andanthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines byClostridium sp. EDB2[J]. Journal of applied microbiology.2006,100:555-563.
    192D. R. Lovley, J. L. Fraga, J. D. Coates, et al. Humics as an electron donor foranaerobic respiration [J]. Environmental Microbiology.1999,1:89-98.
    193许志诚,洪义国,罗微,等.厌氧条件下希瓦氏菌腐殖质还原对偶氮还原的影响[J].微生物学报.2006,46:591-597.
    194S. K. Nicholson,P. John. The mechanism of bacterial indigo reduction[J].Applied Microbiology Biotechnology.2005,68:117-123.
    195K. Phuong, S. Hanazaki, K. Kakii, et al. Involvement of Acinetobacter sp. inthe floc-formation in activated sludge process [J]. Journal of Biotechnology.2012,157(4):505-511.
    196R.Schulze, S.Spring, R.Amann, et al. Genotypic diversity of AcidovoraxStrains isolated from activated sludge and description of Acidovorax defluviisp. nov.[J]. Systematic and Applied Microbiology.1999,22(2):205-214.
    197K. A. Padgett, C. Selmi, T. P. Kenny, et al. Phylogenetic and immunologicaldefinition of four lipoylated proteins from Novosphingobium aromaticivorans,implications for primary biliary cirrhosis [J]. Journal of Autoimmunity.2005,
    24(3):209-219.198A. A. H. Ueki, D. Suzuki, K. Ueki. Paludibacter propionicigenes gen. nov., sp.nov., a novel strictly anaerobic, gram-negative, propionate-producingbacterium isolated from plant residue in irrigated rice-field soil in Japan [J].International Journal of Systematic and Evolutionary Microbiology.2006,56:39-44.
    199王哲.水稻秸秆不同工艺条件下发酵液作为底物的产絮效能研究[D].哈尔滨工业大学.2011:1-30.200A. T. Mielczarek, C. Kragelund, P. S. Eriksen, et al. Population dynamics offilamentous bacteria in Danish wastewater treatment plants with nutrientremoval [J]. Water Research.2012,46(12):3781-3795.
    201D. Paris, R. Blondeau. Isolation and characterization of Arthrobacter sp. fromactivated sludge of a pulp and paper mill [J]. Water Research.1999,33(4):947-950.
    202G. Rehren, S. Walters, P. Fontan, et al. Differential gene expression betweenMycobacterium bovis and Mycobacterium tuberculosis [J]. Tuberculosis.2007,
    87(4):347-359.
    203P. P. Kanekar, S. S. Nilegaonkar, S. S. Sarnaik, et al. Optimization of proteaseactivity of alkaliphilic bacteria isolated from an alkaline lake in India [J].Bioresource Technology.2002,85(1):87-93.
    204S. G. Shin, D. Lee, C. Lee, et al. Qualitative and quantitative assessment ofmicrobial community in batch anaerobic digestion of secondary sludge [J].Bioresource Technology.2010,101(24):9461-9470.
    205邢德峰,任南琪,宫曼丽,等. DGGE技术监测生物制氢反应器微生物群落结构和演替[J].中国科学C辑生命科学.2004,34(6):569-574.
    206T. Ito, K. Yoshiguchi, H. D. Ariesyady, et al. Identification and quantificationof key microbial trophic groups of methanogenic glucose degradation in ananaerobic digester sludge [J]. Bioresource Technology.2012.(In press).
    207张露思,任南琪,高磊,等.连续流发酵条件下不同发酵类型产氢细菌的产氢特性分析[J].东北师大学报(自然科学版).2011,43(3):106-111.
    208F. M. Nagai, Y. Watanabe, H. Sakon, et al. Alistipes indistinctus sp. nov. andOdoribacter laneus sp. nov., common members of the human intestinalmicrobiota isolated from faeces [J]. International Journal of Systematic andEvolutionary Microbiology.2010,60(6):1296-1302.
    209D. B. Levin, L. Pitt, M. Love. Biohydrogen production: prospects andlimitations to practical application [J]. International Journal of HydrogenEnergy.2004,29(2):173-185.
    210姜卫红.乙酸菌糖磷酸化作用的研究[J].微生物学报.1999,39(6):539-545.
    211陈双雅,牛莉莉,东秀珠.厌氧细菌Acetanaerobacterium elongatum从葡萄糖的产氢特性研究[J].微生物学报.2006,46(2):233-237.
    212G. S. K. Wu, M. Rodgers, M. Rodger. et al. Microbial community associatedwith glucose-induced enhanced biological phosphorus removal [J]. WaterScience and Technology.2009,60(8):2105-2113.
    213E. A. Rasolofo, D. St-Gelais, G. LaPointe, et al. Molecular analysis of bacterialpopulation structure and dynamics during cold storage of untreated and treatedmilk [J]. International Journal of Food Microbiology.2010,138(1-2):108-118.
    214闵航,陈美慈,赵宇华,等.厌氧微生物学[M].杭州:浙江大学出版社.1992.
    215王镜岩,朱圣庚,徐长法.生物化学(下册)[M].北京:高等教育出版社.2002:313-339.
    216L.Y. Feng, Y. G. Chen, X. Zheng. Enhancement of waste activated sludgeprotein conversion and volatile fatty acids accumulation during waste activatedsludge anaerobic fermentation by carbohydrate substrate addition: The effectof pH [J]. Environmental Science Technology.2009,43:4373-4380.
    217童林荟.环糊精化学[M].北京:科学出版社.2001:12-17.
    218杨倩茜,刘畅,胡智泉,等.污水厂超声污泥厌氧消化性能的对比研究[J].环境科学与技术.2011,34(10):143-146.
    219D. J. Batstone, C. Balthes, K. Barr. Model assisted startup of anaerobicdigesters fed with thermally hydrolysed activated sludge [J]. Water Scienceand Technology.2010,62(7):1661-1666.
    220Y. G. Chen, A. A. Randall, M. Terrence. The efficiency of enhanced biologicalphosphorus removal from real wastewater affected by different ratios of aceticto propionic acid [J]. Water Research.2004,38(1):27-36.
    221J. Tong, Y. G. Chen. Enhanced biological phosphorus removal driven byshort-chain fatty acids produced from waste activated sludge alkalinefermentation [J]. Environmental Science Technology.2007,41:7126-7130.
    222Q. Wang, M. Kuninobu, H. I. Ogawa, et al. Degradation of volatile fatty acidsin highly efficient anaerobic digestion [J]. Biomass and Bioenergy.1999,16:407-416.
    223Y. Wang, Y. Zhang, J. Wang, et al. Effects of volatile fatty acid concentrationson methane yield and methanogenic bacteria [J]. Biomass and bioenergy.2009,33(5):848-853
    224X. Li, H. Chen, L.F. Hu, et al. Pilot-scale waste activated sludge alkalinefermentation, fermentation liquid separation, and application of fermentationliquid to improve biological nutrient removal [J]. Environmental ScienceTechnology.2011,45:1834-1839.
    225. T. Kindaichi, S. Okabe. Ecophysiological interaction between nitrifyingbacteria and heterotrophic bacteria in autotrophic nitrifying biofilms asdetermined by microautoradiography-fluorescence in situ hybridization [J].Applied Environmental Microbiology.2004,70(3):1641-1650
    226. K. Liu, H. K. Atiyeh, R. S. Tanner, et al. Fermentative production of ethanolfrom syngas using novel moderately alkaliphilic strains of Alkalibaculumbacchi [J]. Bioresource Technology.2012,104(0):336-341.
    227. Y. Y. Ning, D. W. Jin, G. P. Sheng, et al. Evaluation of the stability of hydrogenproduction and microbial diversity by anaerobic sludge with chloroformtreatment [J]. Renewable Energy.2012,38(1):253-257.
    228. M. E. Davey, W. A. Wood, R. Key, et al. Isolation of three species of geotogaand petrotoga: Two new genera, representing a new lineage in the bacterial lineof descent distantly related to the hermotogales[J]. Systematic and AppliedMicrobiology.1993,16(2):191-200.
    229. K. L. Cook, M. J. Rothrock Jr, N. Lovanh, er al. Spatial and temporal changesin the microbial community in an anaerobic swine waste treatment lagoon [J].Anaerobe.2010,16(2):74-82.
    230. Y. Jiang, Y. G. Chen, X. Zheng. Efficient polyhydroxyalkanoates productionfrom a waste-activated sludge alkaline fermentation liquid by activated sludgesubmitted to the aerobic feeding and discharge process[J]. EnvironmentalScience Technology.2009,43:7734-7741.
    231. M. M. Cai; C. Hong, Q. L. Zhao, et al. Optimal production ofpolyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids(VFAs) generated from alkaline excess sludge fermentation. BioresourceTechnology.2009,100:1399-1405.
    232. Z.Y. Ji, Y. G. Chen. Using sludge fermentation liquid to improve wastewatershort-cut nitrification-denitrification and denitrifying phosphorus removal vianitrite [J]. Environmental Science Technology.2010,44:8957-8963.
    233. K. N. Ohlinger, T. M. Young, E. D. Schroeder. Predicting struvite formation indigestion [J].Water Research.1998,32(12):3607-3614.
    234. P. Battistoni, A. De Angelis, P. Pavan, et al. Phosphorus removal from a realanaerobic supernatant by struvite crystallization [J]. Water Research.2001,35(9):2167-2178.
    235.姜世坤,尹军,赵玉鑫,等.鸟粪石法去除臭氧化污泥破解液中氮磷效能[J].水处理技术.2010,36(9):114~116.
    236. S.I. Lee, S.Y. Weon, C.W. Lee, et al. Removal of nitrogen and phosphate fromwastewater by addition of bittern[J]. Chemosphere.2003,51(4):265-271.
    237. I. Hirasawa, S. Kaneko, Y. Kanai, et al. Crystallization phenomena ofmagnesium ammonium phosphate (MAP) in a fluidized bed type crystallizer[J].Journal of Crystal Growth.2002,237:2183-2187.
    238. C. L. Paulo, S. L. Serafim, M. A. M. Reis. Synthesis of polyhydroxyalkanoatesfrom different short-chain fatty acid by mixed cultures submitted to aerobicdynamic feeding [J]. Journal of Biotechnology.2006,122:226-238.
    239. M. G. E. Albuquerque, V. Martino, E. Pollet, et al. Mixed culturepolyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-richstreams: Effect of substrate composition and feeding regime on PHAproductivity, composition and properties [J]. Journal of Biotechnology.2011,151:66-76.
    240. I. S. Aldor, J. D. Keasling. Process design for microbial plastic factories:metabolic engineering of polyhydroxyalkanoates [J]. Current Opinion inBiotechnology.2003,14(5):475-483.
    241. H. Satoh, T. Mino, T. Matsuo. PHA production by activated sludge[J].International Journal of Biological Macromolecules.1999,25(1-3):105-109.
    242. A. J. Anderson, E. A. Dawes. Occurrence, metabolism, metabolic role, andindustrial uses of bacterial polyhydroxyalkanoates[J]. Microbiology andMolecular Biology Reviews.1990,54(4):450-453.
    243. I. C. S. Duarte, L. L. Oliveira, N. K. Saavedra, et al.Treatment of linearalkylbenzene sulfonate in a horizontal anaerobic immobilized biomass reactor[J]. Bioresource Technology.2010,101(2):606-612.
    244. G. W. Huisman, E. Wonink, R. Meima, et al. Metabolism of poly (3-hydroxyalkanoates)(PHAs) by Pseudomonas oleovorans. Identification andsequences of genes and function of the encoded proteins in the synthesis anddegradation of PHA [J]. Journal of Biological Chemistry.1991,266(4):2191-2194.
    245. A. Timm, A. SteinbüChel. Cloning and molecular analysis of the poly (3‐hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1[J].European Journal of Biochemistry.1992,209(1):15-30.
    246. K. Ahmed, S. Chohnan, H. Ohashi, et al. Purification, bacteriolytic activity,and specificity of β-lytic protease from Lysobacter sp. IB-9374[J]. Journal ofBioscience and Bioengineering.2003,95(1):27-34.
    247. D. Dionisi, M. Beccari, S. D. Gregorio, et al. Storage of biodegradablepolymers by an enriched microbial community in a sequencing batch reactoroperated at high organic load rate [J]. Journal of Chemical Technology&Biotechnology.2005,80(11):1306-1318.
    248.李亚静,陈修辉,孙力平,等.丙酸/乙酸比值对反硝化除磷的影响[J].中国给水排水.2011,27(1):79-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700