傍河抽水驱动下污染物在河流—地下水系统中运移机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着工业化经济的迅猛发展和人口的快速增加,未达标排放的工业废水和生活污水,大量排入河流,使得河流污染日益严重,除此之外,近年来突发性水污染事件频繁发生,这些不仅加剧了当地的水资源危机,而且也严重的影响了经济发展和社会安定,均引起国际社会的广泛关注。河流与地下水之间具有着密切的联系,河流中的污染物在浓度梯度和(或)水力梯度作用下进入地下水,造成地下水的污染。傍河地下水水源地在我国北方地区城市供水尤其是饮用水的供给方面发挥着不可替代的作用。傍河地下水开采强度的增加,加速了河流污染物向地下水的运移。因此,河流污染或发生突发性水污染事件后,如何保障沿岸居民饮水安全和社会稳定是当前最为敏感和急待解决的问题。污染河流对沿岸地下水以及傍河水源地水质污染的机理研究,是一个急需解决的科学问题,也是保障我国北方地区城市饮水安全的国家目标和重大科技需求。
     为此,论文以国家自然科学基金“河流污染对地下水的影响模拟研究”为依托,利用砂槽来模拟河流与地下水系统,选择直线河流的一个断面,并选择保守性物质NaCl和非保守性物质硝基苯作为典型污染物,考虑影响污染物运移的因素:河流形态、河水位、河床介质、结构、排泄水位,来模拟河流与地下水关系演化过程中污染物的运移规律;构建河流与地下水关系演化过程中地下水流与污染质协同运移相耦合的数学模型;利用所建数值仿真模型,预测不同抽水强度下河流污染对沿河地下水环境的影响程度,分析影响污染物运移的因素,探讨污染物在河流与地下水关系演化过程中的运移机理;对傍河水源地供水安全问题提出相应对策。
     通过本次研究获得以下阶段性结论:
     1傍河水源地开采中,只要开采量超过河流的极限补给量,河水位与地下水位就会脱节。影响河流与地下水关系演化的因素有:含水层介质岩性、结构,河床形状、宽度、河水深度以及开采水位。这些因素不仅影响着河水与地下水的水力联系,同时也影响着污染物的运移。
     2在人类抽水驱动下,随着开采水位的下降,不仅河流—地下水含水系统、浸润曲线形状、河流补给方式,补给量、渗流途径发生了变化,而且河流污染物的运移方式也发生了改变,并具有明显的分带性。对流带、过渡带、弥散带是以河流为中心,以水流方向为轴,不断的扩大、移动。
     3无论河流与地下水的关系如何,河流污染物都会不断扩散,污染地下水。距离河流越近,就越容易污染。对傍河开采井来说,在河流与地下水脱节之前,随着开采水位的降低,污染物到达该点的时间越短;脱节之后,开采水位再继续降低,河流污染物到达该点的时间增加。
     4在相同水力梯度下,污染物的扩散距离随着时间而增加,最终趋于稳定;污染物的扩散速度随时间而减小,最后趋于零;污染前缘扩散的速度比污染峰值快。在不同水力梯度下,河流与地下水脱节前,水力梯度越大,污染物的扩散距离就越远,当开采水位达到临界脱节水位时扩散距离最远;脱节以后,水力梯度越大,污染物的扩散范围有所减小并基本保持不变;含水层中水力梯度越大,污染前缘运移的越快,但污染峰值运移却越慢。
     5在河流与地下水位关系的演化过程中,当河流—地下水含水层水力梯度J0.15时,开采井位于弥散带中;当0.15J0.65时,开采井位于过渡带中;当水力梯度J0.65时,开采井位于对流带中。因此,在傍河水源地的开采中,为了保证水源地的水质尽可能的使开采井位于弥散带中。
     6综合考虑水量、水质、经济三方面的问题,在傍河地下水水源地的开采过程中,在水质较好的河流中上游地段,可以使开采水位达到河流与地下水的临界脱节水位,来激发河流的最大补给量;在水质较差的河流中下游地段,开采水位不能太低,以保证开采井位于弥散带中。
In recent years, with the rapid development of industrialized economies and increase ofpopulation, some non-standard industrial waster and domestic sewage have been dischargedinto rivers, it caused more and more serious river contamination. Besides that, some abruptwater pollution events happen frequently. All of these not only aggravate the local waterresource crisis, but also seriously affected the economic development and social stabilization,as well as was comprehensively paid attention by international society. There is closerelationship between river and groundwater, because river contaminants enter subsurfaceaquifers under concentration gradient and/or hydraulic gradient and result in groundwatercontamination. Riverside groundwater source field play a non-substituent role on city supplywater especially drinking water supply in the northern regions of China. At the meanwhile,the increase of riverside groundwater exploitation intensity will accelerate transportation ofriver contaminants in groundwater. So how to ensure drinking water safety along river banksand social stabilization is a sensitive and urgent problem once river pollution and abruptwater pollution events exist. Mechanism researches of the influence of polluted river ongroundwater and water quality contamination of riverside groundwater source field, is notonly an urgent problem to solve exactly, but also a national goal and significant science andtechnology remand to ensure city drinking water safety in the northern regions.
     This paper, relying on the national natural science funding “simulation of influence ofriver pollution on groundwater”, designing a sand trough to simulate the relationshipbetween river and groundwater, choosing one section of a linear river and typicalcontaminants of one kind of conservative matters named NaCl and another kind ofun-conservative those named nitrobenzene, and considering influence factors of contaminanttransportation: river shape, river level, river bed media, structure and discharge level, baseon saturated and un-saturated flow theory, systemically stimulate transportation rules ofcontaminants during the evolution process between river and groundwater, construct themathematic model of coupling groundwater flow with contaminants transportation duringthe process. And it also predicts the influence extent under different groundwater pumpingintensity by the model, analyzes influence factors of contaminants transportation. And then it discusses transportation mechanism of contaminants during the evolution process of therelationship of river and groundwater. Finally it puts forward to the measurements of watersupply safety of riverside groundwater source field.Some conclusion has achieved from this study:
     1. Once groundwater withdrawal is larger than the maximum recharge of a river, water levelbetween river and groundwater will disjoint during exploitation of a riverside groundwatersource field. The related factors, which affect the evolution process of relationship betweenriver and groundwater, are lithology and structure of aquifers, shape and width of riverbed,water deepness and discharge level of a river, etc. These factors affect not only hydraulicconnection between river and groundwater, but also pollution transportation.
     2Under drive of pumping groundwater, with decline of groundwater level, not only therive-groundwater aquifer system, shape of soakage curves, recharge, recharge pattern of theriver and leakage paths have changed, but also transportation style of river pollutions haschanged and has obvious zonation. The convection zone, transition zone and dispersion zonecenter on river, enlarging and moving along river flow direction.
     3No matter how the relationship between river and groundwater changes, rivercontaminants will diffuse in groundwater and pollute groundwater. The closer distance from ariver, the more easily groundwater is polluted. To pumping wells along rivers, it takespollutants shorter time to reach these wells before water level between river and groundwaterdisjointed, however, after the water level between them disjointed, it takes pollutants a longertime to reach these wells with decline of exploitation water level.
     4Under the same hydraulic gradient, pollutant diffusion distance increases with theincrease of time, and tends to a stable value, however, pollutant diffusion velocity decreases,and tends to zero. Velocity of the front pollution diffusion is faster than that of pollution peak.Under different hydraulic gradient, the bigger hydraulic gradient is, the farther pollutantdiffusion distance is before level disjointed between river and groundwater. Then thepollutant diffusion distance is the farthest when discharge water level has access to its criticaldisjointed water level. After disjointed between them, the bigger hydraulic gradient is, theless pollutant diffusion areas reduce, then keeps stable. The bigger hydraulic gradient is, thefaster velocity of the front pollutant diffusion, but the more slowly speed of the pollution migration peak.
     5. During the evolution process of relationship between river level and groundwater level, ifhydraulic gradient of river-aquifer is smaller than0.15, wells will be in dispersion zones; if itshydraulic gradient is smaller than0.65, wells will be in transition zones; while if its hydraulicgradient is bigger than0.65, wells will be in advection zones. So wells should be indispersion zones as possible to ensure better water quality during exploitation of watersources near a river.
     6. During explorations of riverside groundwater source field, comprehensively consideringwater quality, quantity and economic efficiency, exploitation level may reach the criticaldisjointed level between a river and groundwater to stimulate the maximum recharge if waterquality of its middle and upperstream sections is better. However, exploitation level should behigher to ensure wells are always in dispersion zones if water quality of its middle andlowerstream sections is worse.
引文
[1]胡俊峰、王金生、滕彦国.地下水与河水相互作用的研究进展[J].水文地质工程地质.2004,1:108-113.
    [2]http://news.sina.com.cn/o/2005-02-01/10015008581s.shtml
    [3]李云生、王东、张震宇等.重点流域水污染防治“十一五”规划目标与任务[A]:见:2006全国饮用水源地和地下水污染防治规划及技术交流研讨会论文集[C].北京,2006,12-18.
    [4]崔伟中、刘晨.松花江和沱江等重大水污染事件的反思[J].水资源保护.2006,,2(1):1-4.
    [5]幸红、潘运芳.突发性水污染应急措施有关机制研究[J].人民珠江.2007,4:35-39.
    [6[李宗明.从松花江流域水污染事件看国家环境安全[J].中国发展观察.2006,1:28-30.
    [7]周公乐.阵痛,在水污染后延续-记松花江污染和“后松花江”污染[N].聚焦.绿色中国,1:16-17.
    [8]王文科、王钊、孔金玲等.水资源管理决策支持系统与水源优化利用——以关中地区为例[M].北京:科学出版社.2007.
    [9]再生.傍河地下水水源地的若干问题[J].工程勘察.1996,4:24-26.
    [10]戴长雷、迟宝明、陈鸿雁.傍河型地下水水源地论证[J].工程勘察.2005,2:26-28.
    [11]吴耀国、王超、王惠民.河岸渗滤作用脱氮机理及其特点的试验[J].城市环境与城市生态.2003,16(6):298-300.
    [12]吴耀国、张文存、王卫等.RBF保护地下水资源功效的试验研究[J].农业科学环境学报.2005,24(1):109-112.
    [13]陕西省环保局.陕西省环境质量报告书[R].2006.
    [14]长安大学.陕西省地下水污染现状调查评价报告[R].2007.
    [15]段磊、王文科、白小满等.西安市饮用水水源地地下水环境演化及可持续利用研究[J].安全与环境学报.2008,8(5):80-83.
    [16]Theis,C.V. The effect of a well on the flow of a nearby stream[J]. American Geophysical UnionTransactions.1941,22(3).
    [17]Hantush,M.S. Wells near streams with semipervious beds[J]. Journal of Geophysical Research.1965,70(12).
    [18]Zlotnik,V.A.,and H.Huang. Effect of shallow penetration and streambed sediments on aquiferresponse to stream stage fluctuations (canalytical model)[J].Groundwater1999.37(4).
    [19]Conrad,L.P., and M.S.Beljin. Evaluation of an induced infiltration model as applied to glacial aquifersystems[J]. Water Resources Bulletin.1996,32(6).
    [20]Butter,J.J., V.A.Zlotnik and M.S.Tsou. Drawdown and stream depletion produced by pumping in thevicinity of a partially penetrating stream[J], Groundwater2001,39(5).
    [21]Chen, X. H., and X. Chen. Effects of aquifer anisotropy on the migration of infiltrated stream water toa pumping well[J]. J of Hydrologic Engineering.2003,8:287-293.
    [22]Bourg,A.C.,Bertin,C. Biogeochemical processes during the infiltration of river water into an alluvialaquifer[J].Envion.Sci.Technol.1993,27:661-666.
    [23]Macler,B.A. Developing a national drinking water regulation for disinfection of groundwater[J].Ground Water Monit.Rem.1995,15(4):77-84.
    [24]Grischek,T.,Hiscock,K.M.,Metschies,T.,Dennis,P.F.,Nestler,W..Factors affecting denitrification duringinfiltration of river water into a sand and gravel aquifer in Saxony, Germany[J].Water Res.1998,32(2):450-460.
    [25]Verstraeten,I.M.,Carr,J.D.,Steele.G.V.,Thurman,E.M.,Basttian,K.c.,Dormedy, D.F. Surface watergroundwater interaction: herbicide transport into municipal cokkector wells[J].J.Environ.Qual.1999,28(5):1396-1405.
    [26]Grischek T, Hiscock K M, Metschies T. Factors affecting denierification during infiltration of riverwater into a sand and gravel aquifer in Saxony, Germany[J].Water Research,1988,32(2):450-460.
    [27]Durssan C, at al. River-bank filtration: Modeling of the changes in water chemistry with emphasis onnitrogen species[J]. J Contaminant Hydrology.1997,25(1-2):129-155.
    [28]Chittaranjan Ray, Thomas Grischek, Jurgen Schubert. A perspective of riverbank filtration[J].American water works Association.2002,94(4):149-160.
    [29]Tufenkji, N.,J.N.,Ryan.The promise of riverbank filtration[J]. Enciron. Sci. Technol.2002,28,422A-428A.
    [30]W. Kuehn, U. Mueller. Riverbank filtration: an overview[J]. American water works Association.2000,92(12):60-69.
    [31]R.A.Sheets,R.A.Darner,B.L.,Whitteberry. Lag times of bank filtration at a well field, Cincinnati, Ohio,USA[J].Journal of Hydrology.2002,266:162-174.
    [32]Alexandra Coynel, Jorg Schafer, Aymeric Dabrin, et al. Groundwater contributions to metal transportin a small river affected by mining and smelting waste[J].Water Research.2007,41:3420-3428.
    [33]Steven W. Chapman, Beth L. Parker, John A. Cherry, et al. Groundwater surface water interactionand its role on TCE groundwater plume attenuation[J]. Journal of Contaminant Hydrology.2007,91:203—232.
    [34]张有龄,河床地下水运动的供水理论分析[M],北京:科学出版社,1985.
    [35]王文科、李俊亭、王钊等.河流与地下水关系的演化及若干科学问题[J].吉林大学学报(地球科学版),2007,37(2):231~238.
    [36]Wang Wenke、Kong Jinlin、Duanlei.Study of relationship between Yellow River Drainage andgroundwater.Science in China,2004,47(Supp.I):25~41.
    [37]李俊亭、王文科,西北地区五城市大型水源地地下水流模型若干问题研究[J],西安地质学院学报.1994(2).
    [38]刘国东、李俊亭.Seepaga laws in aquifer near a partially penetrating river with an intensiveextraction of groundwater,Sci.in China (Series)[J],1997,40(5):489-496.
    [39]杨维、丁斌、王恩德等,地下水傍河水源地数值模拟[J],沈阳建筑大学学报.2004,20(4):325-328.
    [40]俞艳荣、李同福,滏阳河污水对沿岸地下水水质影响分析研究[J],水资源保护,1998,2:39-45.
    [41]术洪亮、魏保军、王新民等,潍河流域下游地表污水对地下水水质影响的状态分析[J],吉林地质,1999,18(2):37-41.
    [42]吴耀国、沈照理、钟佐燊等,污染的孝妇河对其流域裂隙水化学环境的影响[J],环境科学学报,1999,19(2):137-141.
    [43]高宗军、高洪阁、李白英等,污染河水对地下水化学环境的影响[J],中国地质灾害预防之学报,2002,13(1):89-93.
    [44]赵军,小凌河污染对沿岸地下水的影响,[J],锦州师范学院学报,2003,24(3):19-21.
    [45]柴宏伟、雷美清,金堤河对地下水污染演化的模拟研究[J],土工基础,2004,18(6):61-63.
    [46]李志萍、陈肖刚、沈照理.污染河流中Cr(VI)对浅层地下水的影响研究[J].环境科学学报,2006,26(1):99—10.
    [47]李志萍、陈肖刚、郝仕龙等.污染河流中苯系物对浅层地下水影响的室内模拟试验[J].地球科学与环境学报.2007,29(1):70-74.
    [48]李海明、陈鸿汉、郑西来.河床含水系统对单环芳烃净化特征室内模拟[J].地球科学——中国地质大学学报.2006,31(6):873-878.
    [49]王超、王沛芳、刘桂文.河流污水饱和入渗对沿岸地下水质影响预测研究[J],河海大学学报,2002,30(6):11-15.
    [50]梁斌、王超、王沛芳等.河流污水非饱和入渗对沿岸地下水质的影响[J],水科学进展,2003,14(5):548-553.
    [51]张文静、林学钰、苏小四.硝基苯在傍河地下水源地迁移转化的数值模拟研究[J].现代地质.2007,21(3):578-583.
    [52]李永涛.渭河水入渗机理及污染对地下水影响的原位试验与仿真模拟研究[D].长安大学,2003.
    [53]赵彦琦.渭河污染对地下水影响的原位试验与数值仿真模拟研究[D].长安大学,2004.
    [54]王文科.地下水有限分析数值模拟的理论与方法[M].西安:陕西科学技术出版社.1996.
    [55]孙讷正.地下水污染——数学模型和数值方法[M].北京:地质出版社.1989.
    [56]彭泽洲、杨天行、梁秀娟等.水环境数学模型及其应用[M].北京:化学工业出版社.2007.
    [57]薛禹群、谢春红.地下水数值模拟[M].北京:科学出版社.2007.
    [58]王文科.地下水溶质运移数值模拟的有限分析方法[R].长春地质学院.1996.
    [59]沈照理、朱宛华等.水文地球化学基础[M].地质出版社.1993.
    [60]林年丰、李昌静等.环境水文地质学[M].地质出版社.1990.
    [61]田春声.环境水文地质学[M].陕西科学技术出版社.1995.
    [62]闵茂中、崔卫东等.环境地质学[M].地质出版社出版社.1992.
    [63]戴塔根、刘悟辉、马国秋.环境地质学[M].地质出版社出版社.1999.
    [64]王秉忱、杨天行等.地下水污染地下水水质模拟方法[M].北京师范学院出版社.1985.
    [65]佳木斯地区地下水、土中硝基苯迁移转化机理及其模拟预测[D].吉林大学,2007.
    [66]http://baike.baidu.com/view/85916.htm.
    [67]张文静、林学钰、苏小四等.硝基苯在含水层中的迁移转化规律及其转化机理研究[J].水文.2007,27(4):1-4.
    [68]张文静、林学钰、苏小四.硝基苯在含水层中的迁移转化影响因素的定量研究[J].吉林大学学报(地球科学版).2007,37(2):346-349.
    [69]刘婷.硝基苯在河水中气-液-固相间迁移规律研究[D].哈尔滨工业大学.2006.
    [70]何燧源、金云云、何方.环境化学[M].华东理工大学出版社.1996.
    [71]戴树桂.环境化学[M].北京:高等教育出版社.1997:164.
    [72]Winter T C. Relation of stream, lakes, and wetlands to groundwater flow systems[J].JHydrol.1998,7:28-45.
    [73]Pfannkuch H O, Winter T C. Effect of anisotropy and groundwater system geometry on seepagethrough lakebeds,1. Analog and dimensional analysis[J].J Hydrol,1984,75:213-237.
    [74]Rushton KR, Tomlinson LM. Possible mechanisms for leakage between aquifers and rivers[J].JHydrol,1979,40:49-65.
    [75]Brunk M, Conser T. The ecological significance of exchange processes between rivers andgroundwater[J].Freswater Biol,1997,37:31-33.
    [76]王焰新.地下水污染与防治[M].高等教育出版社.2007.
    [77]李俊亭.地下水流数值模拟[M].地质出版社.1989:1-2.
    [78]吴耀国、吴运伟.饱和与非饱和流溶质运移的实验研究与数学模拟[J],勘察科学技术,1998,5:37-39.
    [79]赵耀东、李俊亭等.河流补给机理的试验研究[R].西安地质学院.1990年.
    [80]冯西洲.河流与地下水关系演化的实验研究[D].长安大学.2008.
    [81]李俊亭、王文科.西北地区五城市大型水源地地下水流模型若干问题研究[J].西安地质学院学报.1994,16(2):61-69.
    [82]徐建、戴树桂、刘广良.土壤和地下水中污染物迁移模型研究进展[J].土壤与环境.2002,11(3)299-302.
    [83]戴树桂、刘广良、钱芸等.土壤多介质环境污染研究进展[J].土壤与环境.2001,10(1):1-5.
    [84]王超.非饱和分层土壤中污染物迁移转化规律研究[J].河海大学学报.1998,26(1):59-65.
    [85]蒋业放、张兴有.河流与含水层水流耦合模型及其应用[J].地理学报.1999,54(6):526-533.
    [86]蒋业放、鲁静.河流-含水层相互作用条件下数值计算问题[J].河北地质学院学报.1994,17(4):378-386.
    [87]易云华、刘汉营、郇心善.河流和含水层相互作用数值模拟计算[J].电力勘测.1995,8(4):1-8.
    [88]地质矿产部水文地质工程地质技术方法研究队.水文地质手册[M].地质出版社.1978.
    [89]雷志栋、杨诗秀、谢森传.土壤水动力学[M].清华大学出版社.1988.
    [90]Gardner W R, Hilleld, Ben Yammin Y. Post irrigation of soil water: II. Simultaneous redistributionand evaporation [J]. Water Resources.1970b,6:1148-1153.
    [91]Brooks R H, Corey A T. Hydraulic properties of porous media[M]. Colorado State University, FortCollins, Colorado,1964.27.
    [92]Campbell G S.A simple method for determining unsaturated conductivity from moisture retentiondata [J].Soil Science,1974,117:311-314.
    [93]Van Genuchten, R. Predicting the hydraulic conductivity of unsaturated soils[J].Soil Sci. Soc. Am.Proc.1980,44:892-898.
    [94]Russo D. Determining soil hydraulic properties by parameter estimation: on the selection of a modelfor the hydraulic properties [J]. Water Resources.1988,24:453-459.
    [95]王才川.硝基苯在砂性介质中的穿透实验研究[D].长安大学.2010.
    [96]张更生、姜谙男、易南概等.基于FEMWATER矿冶污水在岩土介质扩散的三维数值模拟[J].有色矿冶.2006,22(6):46-49.
    [97]施小清、姜蓓蕾. FEMWATER在地下水流数值模拟中运用[J].工程勘察.2008,4:27-32.
    [98]张更生.海水入侵机理及防治措施的三维数值模拟[D].大连海事大学.2007.
    [99]王雪.北票市傍河水源地供水安全分析[D].河海大学.2007.
    [100]陈梦熊.中国水文地质环境地质问题研究(M〕.北京:地质出版社,1998.
    [101]刘国东、丁晶.傍河水源地地下水资源评价方法评述[J].水科学进展.1998,9(3):289-295.
    [102]林学钰、廖资生、石钦周.黄河下游傍河开采地下水研究—以郑州-开封间黄河段为例[J].吉林大学学报(地球科学版).2003,33(4).
    [103]Emst L. F. Groundwater flow to a deep well near a rectilinear channel[J]. JHydrology,1979,(42):129-146.
    [104]Winter T C.Numerical simulation of steady three-dimensional groundwater flow near lakes[J]. WaterResources Research,1978,14(2):245-254.
    [105]符志元.向阳机械厂傍河取水几个问题的讨论[J].地下水资源评价理论与方法研究.北京:地质出版社,1982,637-639.
    [106]Freyberg D L. Modeling the effects of a time-dependent wetted perimeter on infiltration fromephemeral channels[J]. Water Resources Research,1983,19(2):559-566.
    [107]段真富、王尧坤.间歇性河流傍河水源地地下水开采量评价[J].水文地质工程地质.1984,(6):39-41.
    [108]Reid M E, Dreiss S J. Modeling the effects of unsaturated, stratified sediments on groundwaterrecharge from intermittent streams[J]. J Hydrology,1990,(114):149-174.
    [109]Newsom J M, Wilson J L. Flow of ground water to a well near a stream-effect of ambientground-water flow direction[J]. Ground Water,1988,26(6):703-711.
    [110]Wilson J L. Induced infiltration in aquifer with ambient flow[J]. Water Resources Research,1993,29(10):3503-3512.
    [111]易树平、迟宝明、吴法伟.傍河水源地数值模拟与评价研究[J].自然资源学报.2006,21(6):154-160.
    [112]王雁林、王文科、钱云平等.黄河河川基流量演化规律及其驱动因子探讨[J].自然资源学报.2008,23(3):479-486.
    [113]杨泽元、王文科.干旱半干旱地区地下水引起的生态效应的研究现状与发展趋势[J].干旱区地理.2009,32(5):739-745.
    [114]王文科、杨泽元、程东会等.面向生态的干旱半干旱地区区域地下水资源评价的方法体系[J].吉林大学学报(地球科学版).2011,41(1):159-167.
    [115]刘礼领,焦红军等。黄河河南段河道变迁对傍河水源地的影响[J].人民黄河.2007,29(6):28-30.
    [116]张红梅、速宝玉.土壤及地下水污染研究进展[J].灌溉排水学报.2004,23(3):70-74.
    [117]刘佩贵、束龙仓.傍河水源地地下水水流数值模拟的不确定性[J].吉林大学学报(地球科学版).2008,38(4):639-643.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700